Download Our Catalog

Total Page:16

File Type:pdf, Size:1020Kb

Download Our Catalog Sample Preparation Product Catalog Chromatography Sample Dialysis Equilibrium Dialysis Electrodialysis Sample Filtration www.harvardapparatus.com Easy-to-Use Quick Start Guides Complete with assembly diagrams, step-by-step instructions, and related product ordering information. Hard copy included with every QuikPrep sample preparation product shipment. Available for electronic download from the Harvard Apparatus website. www.harvardapparatus.com/manualsUltra-Micro DispoDialyzer (1 to 5 µl Sample Volume) 96-Well ™ ™ SpinColumnsQuick Start Guide DispoEquilibrium(25 to 150 Dialyzer μl) (25 to 75 μl Sample Volume) ™ Macro Quick Start TheGuide Ultra-Micro DispoDialyzer is a disposable (single-use SpinColumnsl SampleQuick Volume) Start Guide only) dialyzer for the processing of extremely small samples ™μ from 1 µl to 5 µl. Dialysis is carried out inside a micro centrifuge tube. (75 to 150 Sample recovery is easy with almost 100% sample recovery. Membranes are preinstalled with molecular weight cut offs Description Instructions For Silica Columns: from 1,000 to 50,000 Daltons. The Ultra-Micro DispoDialyzer 96-Well SpinColumns bringcomes speed with and two simplicity1. 1.5 Place ml 25capped to µl to 75µlmicro of centrifuge buffer intoa) Pipette collection one chamber 200 μl of of organic the solvent into open wells. tubes—one for theDispoEquilibrium dialysis and one Dialyzer for collection using the special pipette tips Quick StartDescription Guide high-throughput micro-sample preparation. Both Micro b) Centrifuge for 2 minutes at provided. The DispoEquilibrium DialyzerSpinColumns allows for and equilibriumInstructions Macro SpinColumns dialysis are suitable for 2000 x g to equilibrate. Note: Hold DispoEquilibrium Dialyzer at slightly less than of samples from 25 µl to 75automation µl with a built-inand available1. regenerated Tap the with column our completegently to ensure range that of the media is settled DispoEquilibrium Dialyzer 45° angle when loading4. to Remove avoid trapping the SpinColumn air bubbles from at the collection cellulose or cellulose acetatepacking membrane. materials. Optimal Theyat the forcan bottom. binding be pre-packed with custom and interaction studies, the DispoEquilibrium Dialyzer is the membrane. plate and blot dry any moisture on the exterior (25 to 75 μl Sample Volume) requested materials.2. IntendedRemove the for red single caps use and only. place into a centrifuge tube. made of inert PTFE allowing for maximum sample retention. 2. Push the black cap into placeof the oncolumn. buffer side. Designed for one time use, the DispoEquilibrum3. Place Dialyzer 500 μlis of water or buffer (use 1000 μl for G-100 Gel Filtration) in the column3. Place and wait an equivalent15 minutes volume for5. Pipettehydration. of sample 50 to 100into μlopposite of sample to the top of the well, idealInstructions in studies which use radiolabeled compounds, saving Description Instructions chamber using a new pipetteplacing tip. the sample directly in the center of the wells. you thePlace time 25 of µl having to 75µl to of clean buffer the into chamber one chamber after4. Centrifuge ofeach the use. for 4 minutes at approximately 2000 x g. Macro SpinColumns provide1. rapid purification of samples Note: Hold DispoEquilibrium Dialyzer at slightly less than Quick Start Guide Each DispoEquilibriumDispoEquilibrium DialyzerDialyzer1. Tap using has the two theSpinColumn specialchambers,5. pipette Repeat gently one tips Steps to ensure 3 and that4 if desired. the dry 6. Place the column plate into a new collection using a single-use, disposable centrifuge tube format. 45° angle when loading to avoid trapping air bubbles at for bufferprovided. and one for the sample.column It comesmaterial with is 6.settled two Remove caps at thecolumn bottom. from tube and blot the exteriorplate dry. and spin for 2 minutes at 2000 x g. For Centrifugation or filtration under vacuum or pressure can be the membrane. used to run the sample(one through black,Note: theone Hold columns. white), DispoEquilibrium two Available 0.65 mlwith Dialyzermicrocentrifuge at slightly tubes less than some applications, such as gel filtration, the 2. Remove the foil fromInstructions7. asAdd many between rows 75 as μl desiredand 150 forμl of sample to the column. our complete range toof collectpacking45° and materials angle hold when samples, or pre-packed loading and to twoavoidwith pipette trapping tips air for bubbles sample at 4. Push the white cap intopurified place on sample sample is side.now ready for further use. your application using8. Placea razor the or column other sharpin a new blade. centrifuge tube and spin for custom requested materials.delivery andthe recovery.membrane. 1. Flip 4open minutes the coverat approximately of the sample 2000 tube x g. and remove 5. Gently agitate the DispoEquilibrium7. If step 5 results Dialyzer in binding on a shakerof the sample to the 2. Push the black cap3. Place into place the SpinColumn on bufferthe side. Dialyzer.into one of the until equilibrium is reached. Size Exclusion Applications: column bed, next elute the sample. Add a suitable collection tubes and follow instructions below. Description 3. Place an equivalent volume of sample2. Place into opposite your sample into theNote: Dialyzer. Lay the DispoEquilibrium Dialyzer flat to orient The purified sample is collected in the centrifugevolume tube. of the desired elution buffer to the wells chamber using a new pipette tip. membrane in vertical position and maintain fluid contact The DispoEquilibrium Dialyzer allows for equilibrium dialysis For Gel Filtration/3. Add Ion 500Exchange µl of buffer Columns: to the sample tube. and spin for 2 minutes at 2000 x g. If necessary, of samples from 25 µl to 75 µl with a built-in regenerated Note: Hold DispoEquilibrium Dialyzer at slightlySolid Phase less than Extraction with membrane Technique: (see drawing below). 45° angle whena) loading Pipette to 200avoid4. μl Placetrapping of buffer Dialyzer air intobubbles with all openatsample wells. into the sample tube.the columns can be washed with a suitable buffer to cellulose or cellulose acetate membrane. Optimal for binding Unbound sample componentsCAUTION: areViolent removed. agitation Place willcolumn result in air bubble the membrane. 5. Close the cover of the sample tube. remove contaminants before elution of the sample. and interaction studies, the DispoEquilibrium Dialyzer is b) Wait 15 minutes for hydration.into a new centrifugeentrapment tube, add elution at the buffermembrane, and centrifuge which may either made of inert PTFE allowing for maximum sample retention. 6. When dialysisto recover is complete, desiredincrease sample.remove the dialysis Dialyzer. timeIt is ornot prevent necessary equilibrium to use a fromfresh collection plate for Designed for one time use, the DispoEquilibrum Dialyzer is 4. Push the whitec) capCentrifuge into place plate on samplefor 2 minutes side. at 2000 x g. being attained. each washing step. ideal in studies which use radiolabeled compounds, saving 5. Gently agitate the DispoEquilibriumNotes: Dialysis Dialyzer times on a shaker vary from 2 hours to overnight. until equilibriumd) Wash is reached. column as needed for your application. you the time of having to clean the chamber after each use. Sample volume, buffer volume,6. Uncap chemistry the sample Notes:of samples chamber and spin out the sample using Note: Lay the DispoEquilibrium Dialyzer flat to orient the microcentrifuge tube provided. Each DispoEquilibrium Dialyzer has two chambers, one and MWCO of membranes can all affect timeSpinColumns required are intended for single use only. Quality of for buffer and one for the sample. It comes with two caps membrane in vertical positionfor complete and maintain dialysis. fluid Change contact buffer solution after Note: Spin at resultsapproximately cannot 500be guaranteed x g for a few if seconds.plate is re-used. (one black, one white), two 0.65 ml microcentrifuge tubes with membrane (see drawing2 hours below). and if needed after 4 hours. 7. Uncap the buffer chamber and spin out the buffer using to collect and hold samples, and two pipette tips for sample CAUTION: Violent7. agitationOnce dialysis will result is complete, in air bubble either extract your sample with the microcentrifuge tube provided. delivery and recovery. Macro Spincolumns™ are intendedentrapment for single at usethe aonly.membrane, pipette, or whichinvert themay dialyzer either into a new collection tube increaseOrdering dialysis Information andtime briefly or prevent centrifuge equilibrium (500 to from 2,000 rpm for 1 to 2 sec). being attained. 8. Centrifuge briefly (500 to 2,000 rpm for 1 to 2 sec) 6. UncapEmpty the sample SpinColumns chamber and spin out the sample using the microcentrifugeto transfer tube provided.the remainder of the sample into the Frit collection tube. 96-well Micro SpinColumns 96-well Macro SpinColumns Note: Spin at approximately 500 x g for a few seconds. 7 µm frit 74-5635 74-5649 7. Uncap the buffer chamber and spin out the buffer using 25the µm microcentrifuge frit tube provided.74-5610 74-5650 9511-032 Rev 2.1 QuikPrep • email: [email protected] • harvardapparatus.com QuikPrep • email: [email protected] • harvardapparatus.com 9511-033 Rev 2.0 9511-043 Rev 2.1 9511-026 Rev 2.0 • harvardapparatus.com 9511-026 Rev 2.0 • email: [email protected] QuikPrep QuikPrep • email: [email protected] • harvardapparatus.com • harvardapparatus.com • email: [email protected] QuikPrep INTRODUCTION QuikPrep® Sample Preparation Products Small Volume
Recommended publications
  • Fractionation of Proteins with Two-Sided Electro-Ultrafiltration
    Journal of Biotechnology 128 (2007) 895–907 Fractionation of proteins with two-sided electro-ultrafiltration Tobias Kappler¨ ∗, Clemens Posten University of Karlsruhe, Institute of Engineering in Life Sciences, Division Bioprocess Engineering, Kaiserstr. 12, Geb. 30.70, 76128 Karlsruhe, Germany Received 7 June 2006; received in revised form 22 December 2006; accepted 2 January 2007 Abstract Downstream processing is a major challenge in bioprocess industry due to the high complexity of bio-suspensions itself, the low concentration of the product and the stress sensitivity of the valuable target molecules. A multitude of unit operations have to be joined together to achieve an acceptable purity and concentration of the product. Since each of the unit operations leads to a certain product loss, one important aim in downstream-research is the combination of different separation principles into one unit operation. In the current work a dead-end membrane process is combined with an electrophoresis operation. In the past this concept has proven successfully for the concentration of biopolymers. The present work shows that using different ultrafiltration membranes in a two-sided electro-filter apparatus with flushed electrodes brought significant enhancement of the protein fractionation process. Due to electrophoretic effects, the filtration velocity could be kept on a very high level for a long time, furthermore, the selectivity of a binary separation process carried out exemplarily for bovine serum albumin (BSA) and lysozyme (LZ) could be greatly increased; in the current case up to a value of more than 800. Thus the new two-sided electro-ultrafiltration technique achieves both high product purity and short separation times.
    [Show full text]
  • Removal of Waterborne Particles by Electrofiltration: Pilot-Scale Testing
    ENVIRONMENTAL ENGINEERING SCIENCE Volume 26, Number 12, 2009 ª Mary Ann Liebert, Inc. DOI: 10.1089=ees.2009.0238 Removal of Waterborne Particles by Electrofiltration: Pilot-Scale Testing Ying Li,1 Ray Ehrhard,1 Pratim Biswas,1,* Pramod Kulkarni,2 Keith Carns,3 Craig Patterson,4 Radha Krishnan,5 and Rajib Sinha5 1Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri. 2Center for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio. 3Global Energy Partners, LLC, Oakhurst, California. 4Office of Research and Development, National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio. 5Shaw Environmental and Infrastructure, Inc., Cincinnati, Ohio. Received: July 6, 2009 Accepted in revised form: October 20, 2009 Abstract Theoretical analysis using a trajectory approach indicated that in the presence of an external electric field, charged waterborne particles are subject to an additional migration velocity that increases their deposition on the surface of collectors (e.g., sand filter). Although researchers conducted bench-scale experiments to verify the effectiveness of electrofiltration, few studies have reported on the applications of electrofiltration in larger scale facilities. In this study, a prototype pilot-scale electrofiltration unit, consisting of an acrylic tank (0.3Â0.3Â1.2 m) with vertically placed stainless steel mesh electrodes embedded in a sand filter was tested at a local drinking water plant. Presedimentation basin water was used as the influent with a turbidity ranging from 12 to 37 NTU. At an approach velocity of 0.84 mm=s, an electrode voltage at 8 and 12 V increased the particle removal coefficient pC* [defined as Àlog(Cout=Cin)] to 1.79 and 1.86, respectively, compared to 1.48 when there was no electric field.
    [Show full text]
  • Current State of Fine Mineral Tailings Treatment: a Critical Review on Theory and Practice
    This is a repository copy of Current state of fine mineral tailings treatment: A critical review on theory and practice. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/85196/ Version: Accepted Version Article: Wang, C, Harbottle, D, Liu, Q et al. (1 more author) (2014) Current state of fine mineral tailings treatment: A critical review on theory and practice. Minerals Engineering, 58. 113 - 131. ISSN 0892-6875 https://doi.org/10.1016/j.mineng.2014.01.018 (c) 2014, Elsevier. Licensed under the Creative Commons Attribution-Non Commercial-No Derivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Current State of Fine Mineral Tailings Treatment: A Critical Review on Theory and Practice Chen Wang, David Harbottle, Qingxia Liu and Zhenghe Xu* Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada Highlights Presented facts on escalating generation of fine mineral tailings worldwide.
    [Show full text]
  • Separation and Concentration Technologies in Food Processing
    Separation and Concentration 3 Technologies in Food Processing Yves Pouliot, Valérie Conway, and Pierre-Louis Leclerc Department of Food Science and Nutrition, Université Laval, Québec, Canada 3.1 Introduction Another group of separation and concentration tech- nologies relied on heat-induced phase changes as the driv- Separation and concentration technologies are among ing force for the separation. From simple evaporation the most important unit operations in food processing. to distillation and solvent extraction, such approaches From disk-bowl centrifugation for industrial-scale allowed for the concentration of many liquid foods (i.e. production of skim milk to crystallization for sucrose milk, fruit and vegetable juices, etc.) and for as the indus- or ultrafiltration to recover soluble proteins from cheese trial production of ethanol, liquor, and vegetable oils. The whey, separation and concentration processes have most recent development involving phase change is the improved food processing. These technologies have use of supercritical carbon dioxide (CO2), which has allowed the development of new food products and found many value-added applications for the food indus- are being increasingly used for water recycling in food try over the past decade. processing. Indeed, food processing consumes large Conventional filtration relies on gravity, pressure or volumes of water. For this reason, waste water treatments vacuum to create the driving force necessary for the liquid use membrane technologies as part of the solution to phase to pass throughout different kinds of filters (e.g. per- numerous environmental problems posed by the food forated plates, cellulose filter papers, glass fiber filters) or industries. granularmaterial (e.g. sand or anthracite).
    [Show full text]
  • UC Riverside UC Riverside Electronic Theses and Dissertations
    UC Riverside UC Riverside Electronic Theses and Dissertations Title Enhancement of Membrane Filtration Process via Nanomaterial Coatings for the Generation of Electrostatic Forces, Oil Barriers, and Joule Heating Permalink https://escholarship.org/uc/item/2j776395 Author Dudchenko, Alexander Vladimirovich Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE Enhancement of Membrane Filtration Processes via Nanomaterial Coatings for the Generation of Electrostatic Forces, Oil Barriers, and Joule Heating A Dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemical and Environmental Engineering by Alexander Vladimirovich Dudchenko December 2016 Dissertation Committee: Dr. David Jassby, Chairperson Dr. Sharon Walker Dr. Jinyong Liu Copyright by Alexander Vladimirovich Dudchenko 2016 The Dissertation of Alexander Vladimirovich Dudchenko is approved: __________________________________________________________ __________________________________________________________ __________________________________________________________ Committee Chairperson University of California, Riverside ACKNOWLEDGMENTS I would like to thank my adviser Dr. David Jassby for his mentorship and guidance, which grew me as an individual and a professional. His sage advice, patience, and passion for research have left a great imprint on my life and will continue to have lasting influence in the
    [Show full text]
  • Electrofiltration of Solutions of Amino Acids Or Peptides
    Lait (1995) 75, 105-115 105 © Elsevier/INRA Original article Electrofiltration of solutions of amino acids or peptides G Daufin 1, FL Kerhervé 1, P Aimar 2, D Mollé 1, J Léonll ", F Nau 3 1 Laboratoire de Recherches de Technologie Laitière, INRA, 65, rue de Saint-Brieuc, 35042 Rennes Cedex; 2 Laboratoire de Génie Chimique, CNRS, 118, route de Narbonne, 31062 Toulouse Cedex; 3 Chaire de Technologie Alimentaire, ENSAR, 65, rue de Saint-Brieuc, 35042 Rennes Cedex, France (Received 7 September 1994; accepted 5 December 1994) Summary - Enhanced transfer according to the isoelectric point (pl) of amino acids and peptides (molecular mass 130-6 000 9 mol-1) was achieved using laboratory filtration in the presence of an elec- tric field. The permeate was enriched with arginine and lysine of negative electrophoretic mobility, while the retentate was enriched with the amino acid characterized by the lowest pl value, aspartic acid. A model which assumes no retention of amino acids by ultrafiltration (UF) membranes describes rea- sonably weil their transmission to the permeate. The peptide mixture permeate was enriched with peptides which were either positively or negatively charged according to the electric field direction. The effect was significant even under low electric field. The model did not quantily satisfactorily the experi- mental transmission probably because of significant retention of sorne peptides by the ultrafiltration mem- branes. The present study shows that electrofiltration (EF) may be a useful and efficient process for achieving selective separation of charged biological molecules provided that further work is aimed at a better understanding of which mechanisms rule the retention in EF and of the effect of process vari- ables (flux, electric field, conductivity, charge of the molecules).
    [Show full text]
  • Industrial Separation Processes Also of Interest
    De Gruyter Graduate De Haan · Bosch Industrial Separation Processes Also of Interest Industrial Chemistry Benvenuto, 2014 ISBN 978-3-11-029589-4, e-ISBN 978-3-11-029590-0 Engineering Catalysis Murzin, 2013 ISBN 978-3-11-028336-5, e-ISBN 978-3-11-028337-2 Micro Process Engineering - Explained Fundamentals, Devices, Applications Dittmeyer, Brandner, Kraut, Pfeifer, 2013 ISBN 978-3-11-026538-5, e-ISBN 978-3-11-026635-1 Biorefinery From Biomass to Chemicals and Fuels Aresta, Dibenedetto, Dumeignil (Eds.), 2012 ISBN 978-3-11-026023-6, e-ISBN 978-3-11-026028-1 Green Processing and Synthesis Hessel, Volker (Editor-in-Chief) ISSN 2191-9542, e-ISSN 2191-9550 Reviews in Chemical Engineering Luss, Dan/Brauner, Neima (Editors-in-Chief) ISSN 0167-8299, e-ISSN 2191-0235 André B. de Haan · Hans Bosch Industrial Separation Processes Fundamentals DE GRUYTER Authors Prof. Dr. Ir. André B. de Haan Dr. Ir. Hans Bosch Eindhoven University of Technology University of Twente Dpt. of Chemical Engineering and Faculty of Science & Technology Chemistry Drienerlolaan 5 PO Box 513 7522 NB Enschede 5600 MB Eindhoven Netherlands Netherlands [email protected] [email protected] This book has 222 figures and 18 tables. ISBN 978-3-11-030669-9 e-ISBN 978-3-11-030672-9 Library of Congress Cataloging-in-Publication Data A CIP catalog record for this book has been applied for at the Library of Congress. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.dnb.de.
    [Show full text]
  • Chromatography and Separation Science 2003 – Ahuja
    CHROMATOGRAPHYAND SEPARATION SCIENCE This is Volume 4 of SEPARATION SCIENCE AND TECHNOLOGY A reference series edited by Satinder Ahuja CHROMATOGRAPHY AND SEPARATION SCIENCE Satinder Ahuja Ahuja Consulting Calabash, North Carolina Amsterdam Boston London New York Oxford Paris San Diego San Francisco Singapore Sydney Tokyo This book is printed on acid-free paper. s1 Copyright ß 2003 Elsevier Science (USA) All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system, without permission in writing from the Publisher. The appearance of the code at the bottom of the first page of a chapter in this book indicates the Publisher’s consent that copies of the chapter may be made for personal or internal use of specific clients. This consent is given on the condition, however, that the copier pay the stated per copy fee through the Copyright Clearance Center, Inc. (222 Rosewood Drive, Danvers, Massachusetts 01923), for copying beyond that permitted by Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to other kinds of copying, such as copying for general distribution, for advertising or promotional purposes, for creating new collective works, or for resale. Copy fees for pre-2003 chapters are as shown on the title pages. If no fee code appears on the title page, the copy fee is the same as for current chapters. $35.00 Explicit permission from Academic Press is not required to reproduce a maximum of two figures or tables from an Academic Press chapter in another scientific or research publication provided that the material has not been credited to another source and that full credit to the Academic Press chapter is given.
    [Show full text]
  • Manuscript Anlauf
    Chapter 2 Mechanical solid-liquid separation processes and techniques Contents 2.1 Introduction and overview 2.2 Density separation 2.2.1 Froth flotation 2.2.2 Sedimentation 2.3 Filtration 2.3.1 Cake filtration 2.3.2 Sieving and blocking filtration 2.3.3 Crossflow micro and ultra filtration 2.3.4 Depth and precoat filtration 2.4 Enhancement of separation processes by additional electric or magnetic forces 2.5 Mechanical/thermal hybrid processes 2.6 Superordinate aspects of efficient solid-liquid separation processes 2.6.1 Mode of apparatus operation 2.6.2 Combination of separation apparatuses 2.6.3 Suspension pre-treatment methods 2.7 Notation 2.8 References 1 EVA-STAR (Elektronisches Volltextarchiv – Scientific Articles Repository) http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025219 2.1 Introduction and overview The more or less entire separation of a suspension into the continuous liquid and the disperse solid phase can be realized in principle by thermal or mechanical means. One important aspect of modern drying technology consists in the integration of the process steps before and behind the thermal dryer to gain an overall optimal process design. Thus the mechanical liquid separation as an important process step, which is located upstream the thermal dryer and should be discussed here in more detail. The thermal drying procedures are not discussed further on in this chapter. As a rule the thermal methods are usually quite energy-intensive compared with the mechanical liquid separation because they require a phase transition from the liquid to the gaseous aggregate state and the appropriate vaporization enthalpy must be raised.
    [Show full text]
  • The Application of Electrocoagulation Process for Wastewater Treatment and for the Separation and Purification of Biological Media Nidal Fayad
    The application of electrocoagulation process for wastewater treatment and for the separation and purification of biological media Nidal Fayad To cite this version: Nidal Fayad. The application of electrocoagulation process for wastewater treatment and for the sep- aration and purification of biological media. Chemical and Process Engineering. Université Clermont Auvergne, 2017. English. NNT : 2017CLFAC024. tel-01719756 HAL Id: tel-01719756 https://tel.archives-ouvertes.fr/tel-01719756 Submitted on 28 Feb 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. R ECOLE DOCTORALE SCIENCES POUR L’INGENIEUR DE CLERMONT-FERRAND T h è s e NIDAL FAYAD ! " D O C T E U R D’ U N I V E R S I T É L R "#$%"$#"#$#&#$' #"$ $$##"$($#&"')"%* ! # $ ! %&' !! %( )! '* Mme GENESTE Florence, DR CNRS, Université de Rennes 1 Président M. TAHA Samir, Professeur, Université Libanaise, Liban Rapporteur Mme. POCHAT-BOHATIER Céline, MCF HDR, IEM, Université de Montpellier Rapporteur M. VIAL Christophe, Professeur, UCA, Institut Pascal, Clermont-Ferrand Directeur de thèse M. AUDONNET Fabrice, MCF HDR, UCA, Institut Pascal, Clermont-Ferrand Directeur de thèse ii R +, +-+./, + .,R0 . ,.1+-23../ + 4 * $",- - 5 " 4 ,. .- /,-6 .+0.0 The application of electrocoagulation process for wastewater treatment and for the separation and purification of biological media ()""/0"/1234516 &)(#+(7/ # 1 0-3! 7 8.
    [Show full text]
  • Electrically Enhanced Ultrafiltration of Industrial Enzyme Solutions
    Downloaded from orbit.dtu.dk on: Oct 05, 2021 Electrically Enhanced Ultrafiltration of Industrial Enzyme Solutions Enevoldsen, Ann Dorrit Publication date: 2007 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Enevoldsen, A. D. (2007). Electrically Enhanced Ultrafiltration of Industrial Enzyme Solutions. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Electrically enhanced ultrafiltration of industrial enzyme solutions Ann Dorrit Enevoldsen PhD Thesis November 2007 T U D D C E Supervisors: Gunnar Jonsson and Ernst Hansen Copyright © Ann Dorrit Enevoldsen, 2007 ISBN 978-91435-64-1 Printed by Frydenberg a/s, Copenhagen, Denmark Preface 1 This industrial PhD thesis is the outcome of 3 2 years’study. The project was done in collaboration with the Department of Chemical engineering at the Technical University of Denmark and the Recovery Pilot Plant at Novozymes A/S under the supervision of Associated Professor Gunnar Jonsson and Ernst Hansen.
    [Show full text]
  • Download Here
    1 ELECTROPHORESIS Electrophoresis is a general term that describe the migration and separation of charge particles under the influence of an electric field. The particle may be simple ions, complex macromolecules and colloids or particulate matter- either living cells such as bacteria or inert material such as oil emulsion, droplet and clay. If a foreign phase which is charge, is subjected to a potential gradient, the foreign phase will migrate through the continuous medium to the cathode or anode according to the sign of charge on the particles. This phenomenon is called electrophoresis. Migration can occur also in a non-uniform alternative current, provided the particles are polarisable, and its transport phenomenon is called dielectrophoresis. Some of the techniques result in complete separation of the component into distinct zone, this is referred to as zone electrophoresis. Electrophoresis is the most useful separation techniques for the analysis and characterization of complex biological mixture of protein. The analysis of protein mixture was first established by Tiselius in 1937. His separation of serum proteins into four major component are serum albumin , alpha, beta and gama- globulins. Electrophoresis is to relate the experimentally measurable electrophoretic velocity to move fundamental parameter of ions interactions, charge and structure in the neighbourhood of charge particles or surface. The theory of the electric double layer deals with these parameters and is necessitated by the colloidal particle create their own ionic environment, being much larger and having a higher charge than small ions. The most useful criterion for classification is whether electrophoresis is carried out in free solution or non supporting media.
    [Show full text]