Industrial Separation Processes Also of Interest
Total Page:16
File Type:pdf, Size:1020Kb
De Gruyter Graduate De Haan · Bosch Industrial Separation Processes Also of Interest Industrial Chemistry Benvenuto, 2014 ISBN 978-3-11-029589-4, e-ISBN 978-3-11-029590-0 Engineering Catalysis Murzin, 2013 ISBN 978-3-11-028336-5, e-ISBN 978-3-11-028337-2 Micro Process Engineering - Explained Fundamentals, Devices, Applications Dittmeyer, Brandner, Kraut, Pfeifer, 2013 ISBN 978-3-11-026538-5, e-ISBN 978-3-11-026635-1 Biorefinery From Biomass to Chemicals and Fuels Aresta, Dibenedetto, Dumeignil (Eds.), 2012 ISBN 978-3-11-026023-6, e-ISBN 978-3-11-026028-1 Green Processing and Synthesis Hessel, Volker (Editor-in-Chief) ISSN 2191-9542, e-ISSN 2191-9550 Reviews in Chemical Engineering Luss, Dan/Brauner, Neima (Editors-in-Chief) ISSN 0167-8299, e-ISSN 2191-0235 André B. de Haan · Hans Bosch Industrial Separation Processes Fundamentals DE GRUYTER Authors Prof. Dr. Ir. André B. de Haan Dr. Ir. Hans Bosch Eindhoven University of Technology University of Twente Dpt. of Chemical Engineering and Faculty of Science & Technology Chemistry Drienerlolaan 5 PO Box 513 7522 NB Enschede 5600 MB Eindhoven Netherlands Netherlands [email protected] [email protected] This book has 222 figures and 18 tables. ISBN 978-3-11-030669-9 e-ISBN 978-3-11-030672-9 Library of Congress Cataloging-in-Publication Data A CIP catalog record for this book has been applied for at the Library of Congress. Bibliographic information published by the Deutsche Nationalbibliothek The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.dnb.de. © 2013 Walter de Gruyter GmbH, Berlin/Boston. The publisher, together with the authors and editors, has taken great pains to ensure that all information presented in this work (programs, applications, amounts, dosages, etc.) reflects the standard of knowl- edge at the time of publication. Despite careful manuscript preparation and proof correction, errors can nevertheless occur. Authors, editors and publisher disclaim all responsibility and for any errors or omis- sions or liability for the results obtained from use of the information, or parts thereof, contained in this work. Typesetting: META Systems GmbH, Wustermark Printing and binding: Hubert & Co. GmbH & Co. KG, Göttingen ♾ Printed on acid-free paper Printed in Germany www.degruyter.com Preface This textbook is written originally to support the graduate course “Separation Technology” at the University of Twente and has been later also used at Eindhoven University of Technology and other institutions of higher education. Our main objective is to present an overview of the fundamentals underlying the most frequently used industrial separation methods. We focus on their physical principles and the basic computation methods that are required to assess their technical and economical feasibility for a given application. Thus, design calculations are limited to those required for the development of conceptual process schemes. To keep computational time within the limits of our course structure, most examples and exercises of homogeneous mixtures are limited to binary mixtures. The textbook is organized into three main parts. Separation processes for homogeneous mixtures are treated in the parts on equilibrium based molecular separations (Chapters 2–5) and rate-controlled molecular separations (Chapters 6–8). The part on mechanical separation technology presents in Chapters 9–11 an overview of the most important techniques for the separation of heterogeneous mixtures. In each chapter a short overview is given of the most commonly used equipment types. Only for gas-liquid contactors Chapter 4 goes into more detail about their design an operation because they are the most commonly used industrial contactors. Unique is Chapter 12, which considers the selection of an appropriate separation process for a given separation task. The design of separation processes can only be learned by doing. The most important aspects are the combination of the right material balances with the thermodynamic equilibrium relations and mass transport equations. To support you in applying the presented material, we have included exercises at the end of each chapter. Short answers are given at the end of this book; detailed solutions are given in a separate solution manual that is available at http://dx.doi.org/ 10.1515/9783110306729_suppl. In the preparation of this book, a number of colleagues provided valuable comments and suggestions. Among these, we wish to acknowledge Wytze Meindersma (Eindhoven University of Technology), Boelo Schuur (University Twente) and Nieck Benes (University Twente). May, 2013 André B. de Haan Hans Bosch Contents 1 Characteristics of separation processes 1.1 Significance of separations ............................ 1 1.2 Characteristics of separation processes ..................... 4 1.2.1 Categorization ................................... 4 1.2.2 Separating agents ................................. 4 1.2.3 Separation factors ................................. 6 1.3 Industrial separation methods .......................... 7 1.3.1 Exploitable properties ............................... 7 1.3.2 Important molecular separations ......................... 9 1.4 Inherent selectivities ............................... 11 1.4.1 Equilibrium based processes ........................... 11 1.4.2 Rate controlled processes ............................. 12 2 Evaporation and distillation 2.1 Separation by evaporation ............................ 15 2.1.1 Introduction .................................... 15 2.1.2 Vapor-liquid equilibria .............................. 16 2.2 Separation by single-stage partial evaporation ................. 21 2.2.1 Differential distillation .............................. 21 2.2.2 Flash distillation .................................. 22 2.2.2.1 Specifying T and L/V ............................... 24 2.2.2.2 Specifying T and ptot ............................... 25 2.3 Multistage distillation ............................... 26 2.3.1 Distillation cascades ................................ 26 2.3.2 Column distillation ................................ 27 2.3.3 Feasible distillation conditions .......................... 29 2.3.4 External column balances ............................ 29 2.4 McCabe-Thiele analysis .............................. 30 2.4.1 Internal balances .................................. 30 2.4.1.1 Rectifying section ................................. 31 2.4.1.2 Stripping section .................................. 32 2.4.1.3 Feed stage considerations ............................. 33 2.4.1.4 Feed line ...................................... 35 2.4.2 Required number of equilibrium stages .................... 36 2.4.2.1 Graphical determination of stages and location of feed stage ........ 36 2.4.2.2 Limiting conditions ................................ 37 viii Contents 2.4.2.3 Fenske and underwood equations ........................ 40 2.4.2.4 Use of murphree efficiency ........................... 42 2.4.3 Energy requirements ............................... 43 2.5 Advanced distillation techniques ........................ 44 2.5.1 Batch distillation .................................. 44 2.5.2 Continuous separation of multiple product mixtures ............. 45 2.5.3 Separation of azeotropes ............................. 46 3 Absorption and stripping 3.1 Introduction .................................... 53 3.2 The aim of absorption .............................. 55 3.3 General design approach ............................. 56 3.4 Absorption and stripping equilibria ....................... 57 3.4.1 Gaseous solute solubilities ............................ 57 3.4.2 Minimum absorbent flow ............................. 59 3.5 Absorber and stripper design .......................... 60 3.5.1 Operating lines for absorption .......................... 60 3.5.2 Stripping analysis ................................. 64 3.5.3 Analytical kremser solution ........................... 65 3.6 Industrial absorbers ................................ 68 3.6.1 Packed columns .................................. 69 3.6.2 Plate columns ................................... 70 3.6.3 Spray and bubble columns ............................ 70 3.6.4 Comparison of absorption columns ....................... 71 4 General design of gas/liquid contactors 4.1 Introduction .................................... 77 4.2 Modeling mass-transfer .............................. 77 4.3 Plate columns ................................... 83 4.3.1 Dimensioning a tray column ........................... 85 4.3.2 Height of a tray column ............................. 86 4.3.3 Diameter of a tray column ............................ 91 4.4 Packed columns .................................. 97 4.4.1 Random packing .................................. 98 4.4.2 Structured packing ................................. 99 4.4.3 Dimensioning a packed column ......................... 100 4.4.4 Height of a packed column ............................ 101 4.4.5 Minimum column diameter ........................... 104 4.4.6 Pressure drop .................................... 106 4.5 Criteria for column selection ........................... 107 Contents ix 5 Liquid-liquid extraction 5.1 Liquid-liquid extraction .............................. 111 5.1.1 Introduction .................................... 111 5.1.2 Liquid-liquid equilibria .............................. 113 5.1.3 Solvent selection .................................. 115 5.2 Extraction