Process Filtration & Water Treatment

Total Page:16

File Type:pdf, Size:1020Kb

Process Filtration & Water Treatment Process Filtration & Water Treatment Solutions for Chemical Production Contents ContentsFiltration for Chemicals ............................................ 3 Simplified Setup at a Chemical Plant ...................... 4 Raw Material Filtration Raw Material Filtration ............................................... 6 Recommended Products ........................................... 7 Clarification Stage Chemical Clarification ................................................. 8 Recommended Products ........................................... 9 Final Filtration Final Chemical Filtration .......................................... 10 Recommended Products ......................................... 11 Process Water and Boiler Feed Setup Process Water and Boiler Feed Setup ................... 12 Chemical Compatibility ............................................ 14 For T&C's, Terms of Use and Copyright, please see www.fileder.co.uk For T&C's, Terms of Use and Copyright, please visit www.fileder.co.uk Filtration for Chemicals Filtration is all important in the market of chemical and petrochemical production, ensuring product quality and lowering production costs. Over 4 decades, Fileder has been working within these industries learning the key challenges and developing a vast product portfolio, able to tackle even the most challenging requirements. Chemicals for Filtration Chemical plants are highly sensitive to contaminants and the quality of raw materials used to produce the desired chemical can influence this. Even the smallest fluctuation in what has been accepted as standard may significantly impact the final product quality, consequently influencing production and maintenance costs. Efficient filtration is therefore mandatory for any chemical plant as it can both mitigate these risks and ensure the brand reputation remains intact. The Challenges In this guide we will focus on the challenges most commonly CHEMICAL INDUSTRY: CHEMICAL faced within the chemicals industry, including: • Unwanted particulate that affects the chemical in service • Visual effects from contaminants • Pure water dilution and feed water purification • Removal of elements leaching from onsite systems affecting the product • Control of bacterial contamination • Control of gelatinous, congealed lumps in viscous products • Final product appearance and quality • Site facilities including boiler efficiency Typical Technologies Applied Bag Depth Surface Softening Reverse UV Systems For T&C's, Terms of Use and Copyright, please visit www.fileder.co.uk Filtration Filtration Filtration Osmosis www.fileder.co.uk • 01622 691886 • [email protected] 3 Simplified Filtration Setup at a Chemical Plant Raw Water Tank Organics & Hardness Removal Particle Removal Chlorine Removal PWS Softener SFH-SPC + SSP SFH-SPC + SCB-S Tank Vent Filter PPPTFE Ultraviolet Disinfection SUV-S Particle Removal SFH-SPC + SSP Boiler Feed Purified Water Storage Tank Process Water & Boiler Feed Setup Raw Material Filtration Clarification Stage Final Filtration Final Filter Bulk Filling Packaging (Polishing) Key Machine PFH-SPC + PPP There are many possible filtration processes and configurations that could be applied within the common stages of chemical production. Whether this includes filtration of raw materials to prevent bacteria contamination in storage tanks, production of pure water for boiler feed and wash water, or clarification and final product filtration. The Fileder product portfolio covers all these requirements, offering excellent performance and product reliability throughout. The production of chemicals can generate contamination at any stage during the process. It is therefore important to ensure that filtration technology is not only applied to filter raw materials but also later, protecting all downstream chemical processes . 4 www.fileder.co.uk • 01622 691886 • [email protected] Simplified Filtration Setup at a Chemical Plant Raw Component Tank DI Water Bulk Particulate RO Water System Production Removal SRO-SYS SV-FK + Resin SBH-SPC + EBSN Mixer Reactor Bacterial Grade Filter PFH-SPC + PPPES Wash Water Finer Particulate Bulk Particulate Storage Tank Removal Filter Removal SFH-SPC +SSP97 SBH-SPC + PBP Raw Materials Final Filtration Clarification www.fileder.co.uk • 01622 691886 • [email protected] 5 Raw Material Filtration The range of raw materials requiring filtration can be vast, ranging from solvents, acids and bases to complex chemicals; but in their simplest form, raw materials need to be filtered so that bulk and smaller particles are removed from the product. Fileder recommends that the applied strategy should involve more than just one filtration stage and this could include either bag or depth filtration technology, depending on the loading volumes being filtered. If the correct filtration method is initially applied, it will ultimately minimise the need for filtration and added costs at a later stage. Fileder Recommended Setup * High Loading Low Loading Bag Technology 1-1,000μm Depth Technology 1-100μm Inox Stainless Steel Bag Housing Inox Stainless Steel Housing SBH-SPC SBH-SPC & SFH-SPC Bulk Particle Finer Grade Bulk Particle Finer Grade Removal Filtration Removal Filtration Economic Bag Standard Bag Standard Bag Spun Filter Range EBSN SBP SBP SSP * Full range details can be found in our product brochures. Check chemical compatibility chart to ensure products are suitable for use in application. 6 www.fileder.co.uk • 01622 691886 • [email protected] Recommended Products Featured Product • Reduced change, waste and process downtime • Service life increased with dual layer staged media • Broad chemical compatibility Raw Material Filtration Material Raw Standard Bag Range (1-100 micron) The all-welded seam construction of the SPECTRUM felt bag filter offers two benefits. It helps prevent contamination bypass associated with the pin holes found in stitched bags, and is as compatible with the chemical as the bag itself. • Flanged and threaded port options available • V-band clamp as standard, swingbolt options avilable • Available in large diameter configurations • Enhanced dirt holding capacity TruDepth Standard Spun Standard Bag Housing Polypropylene SSP (1-20 micron) SBH-SPC The SSP offers more precise filtration; a higher surface area and an Providing an effective solution for high flow rates and enhanced dirt holding capacity, graded density and mini-grooved bulk solid removal ; with high dirt loading capabilities, construction. Available in large diameter configurations as the SSP-BB. systems and processes can stay online for longer. www.fileder.co.uk • 01622 691886 • [email protected] 7 Clarification Stage The clarification stage is normally performed later in the manufacturing process, before preparation of the product for final filtration and packaging. As with the raw materials stage, clarification also includes particle removal, in this instance finer particulate. Multiple filtration stages may be required here to achieve the final filtration goal. Typically, a cascade of filtration will be used, utilising lower efficiency filters to remove larger contaminants, followed by higher efficiency pleated filters to remove finer particulate or suspensions. The Premier bag filters (PBP) feature a multi-layered construction, which ensures high levels of dirt holding, whilst the microfibre media and flanged neck lessen the risk of particle bypass. Fileder Recommended Setup * Bag Technology Depth/Spun Range Pleated 0.5-1,000μm 1-10μm 0.1-100μm Inox Stainless Steel Bag Housing Inox Standard Multi-Round Inox Standard Multi-Round SBH-SPC Filter Housing Filter Housing SFH-SPC SFH-SPC Bulk Particle Finer Particle Finer Particle High Removal Removal/Haze Removal Efficiency Nylon Bags Premier Bag Depth or High Premier Pleat Efficency Spun EBSN PBP PPP SSP97 * Full range details can be found in our product brochures. Check chemical compatibility chart to ensure products are suitable for use in application. 8 www.fileder.co.uk • 01622 691886 • [email protected] Recommended Products Featured Product • 95-99% efficiency • Four layers of media • Thermally bonded construction, Stage Clarification glue/adhesive free PPP Premier Pleat Polypropylene • 316L Stainless Steel (1-10 micron) construction Inert polypropylene is resistant to a variety of chemicals. With some • Universal cartridge adaptor accepts double open-ended and depth characteristics and a 95-99% efficient filtration layer, this cartridge 222 fittings has a high dirt holding capacity with effective contaminant removal. • Fitted with gauge ports and drain ports • Adjustable top-plate for added flexibility and security • High efficiency filtration • Graded density construction • 100% polypropylene TruDepth High Efficiency Spun Multi-Cartridge Housing SSP97 (1-10 micron) SFH-SPC The SSP97 delivers exceptional 97% efficiency, with a low clean Designed for the most demanding, aggressive pressure drop. Finer fibres used in the construction create a more environments and applications, these multi-cartridge accurate level of filtration, whilst maintaining a high dirt holding capacity. stainless steel housings provide durability and reliability. www.fileder.co.uk • 01622 691886 • [email protected] 9 Final Chemical Filtration Final filtration is the key and most critical stage of the manufacturing process. The quality of the final product depends on the effectiveness of the filtration employed here. The goal is to remove any particles that will affect the final product quality, and there can be wide variations in
Recommended publications
  • Chemical Process Modeling in Modelica
    Chemical Process Modeling in Modelica Ali Baharev Arnold Neumaier Fakultät für Mathematik, Universität Wien Nordbergstraße 15, A-1090 Wien, Austria Abstract model creation involves only high-level operations on a GUI; low-level coding is not required. This is the Chemical process models are highly structured. Infor- desired way of input. Not surprisingly, this is also mation on how the hierarchical components are con- how it is implemented in commercial chemical process nected helps to solve the model efficiently. Our ulti- simulators such as Aspen PlusR , Aspen HYSYSR or mate goal is to develop structure-driven optimization CHEMCAD R . methods for solving nonlinear programming problems Nonlinear system of equations are generally solved (NLP). The structural information retrieved from the using optimization techniques. AMPL (FOURER et al. JModelica environment will play an important role in [12]) is the de facto standard for model representation the development of our novel optimization methods. and exchange in the optimization community. Many Foundations of a Modelica library for general-purpose solvers for solving nonlinear programming (NLP) chemical process modeling have been built. Multi- problems are interfaced with the AMPL environment. ple steady-states in ideal two-product distillation were We are aiming to create a ‘Modelica to AMPL’ con- computed as a proof of concept. The Modelica source verter. One could use the Modelica toolchain to create code is available at the project homepage. The issues the models conveniently on a GUI. After exporting the encountered during modeling may be valuable to the Modelica model in AMPL format, the already existing Modelica language designers. software environments (solvers with AMPL interface, Keywords: separation, distillation column, tearing AMPL scripts) can be used.
    [Show full text]
  • A Second Life for Reciprocating Compressors Compressor Upgrade and Revamp Index
    A second life for reciprocating compressors Compressor upgrade and revamp Index HOERBIGER upgrade and revamp dated compressors in ways that are tailored to the existing and future requirements in your industry. This increases the efficiency, reliability and environmental soundness of your compression system. Simply select the application most appropriate for your industry and we will provide more information to allow you to see the benefit of our services for yourself. Nr Industry Gas Compressor Country Short Description 1 Refinery N2 Nuovo Pignone Germany Manufacture cylinder and install reconditioned compressor 2 Refinery H2 Dresser-Rand Germany Increase capacity and install HydroCOM and RecipCOM 3 Refinery H2 Borsig Hungary Increase capacity 4 Chemical Plant Air Halberg Germany Engineer and manufacture crankcase 5 Refinery Natural gas Borsig UAE Engineer and manufacture crankcase and cylinder 6 Refinery CO2 Nuovo Pignone UK Old cylinder cracked: new cylinder designed / manufactured / installed 7 Chemical Plant H2, N2, Dujardin & France Engineer and manufacture piston and rod CO, CH4 Clark 8 Chemical Plant C2H4 Nuovo Pignone France Upgrade control to HydroCOM 9 Technical Gases N2 Burckhardt Switzer- Solve bearing problems: new crosshead Plant land 10 Natural Gas Plant Natural gas Borsig Germany Convert to new operating/process conditions 11 Refinery H2, CH4 Worthington Italy Install reconditioned compressor 12 Refinery H2 MB Halberstadt Germany Cylinder corrosion problems: new cylinder designed / manufactured / installed 13 Natural Gas
    [Show full text]
  • Introduction to Separation Processes What Is Separation and Separation Processes ?
    Introduction to Separation Processes What is Separation and Separation Processes ? • Separate (definition from a dictionary) - to isolate from a mixture; [extract] - to divide into constituent parts • Separation process - In chemistry and chemical engineering, a separation process is used to transform a mixture of substances into two or more distinct products. - The specific separation design may vary depending on what chemicals are being separated, but the basic design principles for a given separation method are always the same. Separations • Separations includes – Enrichment - Concentration – Purification - Refining – Isolation • Separations are important to chemist & chemical engineers – Chemist: analytical separation methods, small-scale preparative separation techniques – Chemical engineers: economical, large scale separation methods Why Separation Processes are Important ? • Almost every element or compound is found naturally in an impure state such as a mixture of two or more substances. Many times the need to separate it into its individual components arises. • A typical chemical plant is a chemical reactor surrounded by separators. Separators Products Reactor Separator Raw materials Separation and purification By-products • Chemical plants commonly have 50-90% of their capital invested in separation equipments. Why Separation is Difficult to Occur? • Second law of thermodynamics - Substances are tend to mix together naturally and spontaneously - All natural processes take place to increase the entropy, or randomness, of the universe
    [Show full text]
  • 7 Secrets to a Well-Run Plant a Guide for Plant Managers and Operations Staff
    WHITE PAPER Making Confident Decisions in Operations: 7 Secrets to a Well-Run Plant A Guide for Plant Managers and Operations Staff Terumi Okano, Aspen Technology, Inc. Have you ever received a call in the middle of the night because of a plant operational crisis? The production engineer responsible for the process is already onsite but they really need your advice and will likely also need support from the process engineering team. You can almost see the lost revenue growing as the plant drifts further from its Key Performance Indicators (KPIs). Detailed simulation models are likely already used by the process engineering or modeling team who support your plant in solving these kinds of complex process issues. Your production engineers certainly don’t have the time to learn new software to build detailed models. What you may not know is that sophisticated modeling technology can be accessed by your team through an easy-to- use, Microsoft Excel® interface. Model-based decision-making can apply to plants of nearly every type ranging from ethylene to polymers, fertilizers and specialty chemicals. The following seven secrets explain how building a model-based culture in your plant will bring clarity and continuous improvements to plant operations. Secret #1: Conceptual design models can assist plant operations. Do you know how or where the design work was done for your chemical plant? If you are able to find the conceptual design work that was completed with process simulation software, you’re already one step ahead. If it’s been decades since the plant was built and there is no design work 1to be found, start with asking for simulation models of problematic pieces of equipment or a section of your process that can be unreliable.
    [Show full text]
  • The Sequential-Clustered Method for Dynamic Chemical Plant Simulation
    Con~purers them. Engng, Vol. 14, No. 2. pp. 161-177, 1990 0098-I 354/90 %3.00 + 0.00 Printed an Great Britain. All rights reserved Copyright 6 1990 Pergamon Press plc THE SEQUENTIAL-CLUSTERED METHOD FOR DYNAMIC CHEMICAL PLANT SIMULATION J. C. FAGLEY’ and B. CARNAHAN* ‘B. P. America Research and Development Co., Cleveland, OH 44128, U.S.A. ‘Department of Chemical Engineering, The University of Michigan, Ann Arbor, Ml 48109, U.S.A. (Rrreiwd 28 May 1987; final revision received 26 June 1989; received for publicarion 11 July 1989) Abstract-We describe the design, development and testing of a prototype simulator to study problems associated with robust and efficient solution of dynamic process problems, particularly for systems with models containing moderately to very stiff ordinary differential equations and associated algebraic equations. A new predictor-corrector integration strategy and modular dynamic simulator architecture allow for simultaneous treatment of equations arising from individual modules (equipment units), clusters of modules, or in the limit, all modules associated with a process. This “sequential-clustered” method allows for sequential and simultaneous modular integration as extreme cases. Testing of the simulator using simple but nontrivial plant models indicates that the clustered integration strategy is often the best choice, with good accuracy, reasonable execution time and moderate storage requirements. INTRODUCTION simulator and includes results of tests on simulator performance. Direct numerical comparisons of Two major stumbling blocks in the development alternative integration strategies are given for some of robust dynamic chemical process simulators are: relatively simple test plants. Conclusions and recom- (1) mathematical models for many important equip- mendations drawn from our experiences should be ment types give rise to quite large systems of ordinary of interest to other workers developing dynamic differential equations (ODES); and (2) these ODE simulation software.
    [Show full text]
  • Brazilian Petrochemical Cluster
    Brazilian Petrochemical Cluster Akerele, Toyosi; Barboza, Marden; Faria, Diogo; Gopaul, Lavan; Pares, David. Prof. Laura Alfaro. Harvard Kennedy School / Harvard Business School. May 2017. Rise in Government Debt: Inflation: • From 51% of GDP in 2013 to 70% in 2016 6% (2013) 10% (2016) • Brazilian Bonds downgraded to ”junk” (September 2015) Benchmark Interest Rate: 7% (2013) 14% (2016) Economic interventions (from 2010); • Uncertainty among producer and Industry Confidence Index: investors 58% (2013) 35% (2015) Administered prices (2006 to 2016) • Gasoline prices +44% • Minimum Wage +168% Unemployment: 5.4% (2013) 11.5% (2016) Investigations and corruption scandals: • Accusations against the President and political allies; Economic contraction (∆ GDP): • Public Protests (starting in 2013): 2014 2015 2016 • Dilma impeached (August, 2016) -0.3% -1.9% -2.5% Refineries are chemical plants that transform crude oil into oil products Crude oil Refinery Oil products Raw oil as produced, with Chemical plant with Fuels and chemical varying qualities: varying complexity, feedstocks with varying . Density: lighter oil according to: market values, such as: yield higher valued . Oil quality: lower oil . Diesel products quality can demand more . LPG . Sulfur content: sweet complex refineries . Jet fuel (low sulfur) oil can be . Mix of products: more . Naphtha refined simpler complex refineries can . Fuel Oil refineries yield higher valued . Asphalt products 3 Timeline First First Petroleum Petrobras is Pro Alcohol Refinery in reserve Stablished Program
    [Show full text]
  • Chemical Reaction Engineering A. Sarath Babu
    CHEMICAL REACTION ENGINEERING A. SARATH BABU 1 Course No. Ch.E – 326 CHEMICAL REACTION ENGINEERING Periods/ Week : 4 Credits: 4 Examination Teacher Assessment: Marks: 20 Sessionals: 2 Hrs Marks: 30 End Semester: 3 Hrs Marks : 50 1. KINETICS OF HOMOGENEOUS REACTIONS 2. CONVERSION AND REACTOR SIZING 3. ANALYSIS OF RATE DATA 4. ISOTHERMAL REACTOR DESIGN 5. CATALYSIS AND CATALYTIC RECTORS 6. ADIABATIC TUBULAR REACTOR DESIGN 7. NON-IDEAL REACTORS 2 TEXT BOOKS 1. Elements of Chemical Reaction Engineering - Scott Fogler H 2. Chemical Reaction Engineering - Octave Levenspiel 3. Introduction to Chemical Reaction Engineering & Kinetics, Ronald W. Missen, Charles A. Mims, Bradley A. Saville 4. Fundamentals of Chemical Reaction Engineering – Charles D. Holland, Rayford G. Anthony 5. Chemical Reactor Analysis – R. E. Hays 6. Chemical Reactor Design and operation – K. R. Westerterp, Van Swaaij and A. A. C. M. Beenackers 7. The Engineering of Chemical Reactions – Lanny D. Schmidt 8. An Introduction to Chemical Engineering Kinetics and Reactor Design – Charles G. Hill, Jr. 9. Chemical Reactor Design, Optimization and Scaleup – E. Bruce Nauman 3 10.Reaction Kinetics and Reactor Design – John B. Butt Without chemical reaction our world would be a barren planet. No life of any sort would exist. There would be no fire for warmth and cooking, no iron and steel to make even the crudest implements, no synthetic fibers for clothing, and no engines to power our vehicles. One feature that distinguishes the chemical engineer from others is the ability to analyze systems in which chemical reactions occur and to apply the results of the analysis in a manner that benefits society.
    [Show full text]
  • Student-Designed Case Studies for Chemical Reaction Engineering Course Projects
    Choose Your Own Kinetics Adventure: Student-Designed Case Studies for Chemical Reaction Engineering Course Projects Ashlee N. Ford Versypt School of Chemical Engineering, Oklahoma State University Abstract This paper presents an innovative approach for a chemical reaction engineering course project. The project tasks students to conduct the preliminary design of a reactor or series of reactors to produce a chemical product of their choice. The constraints on this open-ended “choose your own project” are that the chosen process must involve a catalyst, multiple reactions, and heat transfer. The students must use published kinetics and physical property data from the literature, heat and mass balances, and software to complete their design. Students work in groups and write a report summarizing their findings. The activity connects course concepts to real world applications and requires students to design their own case studies through exploring the research and patent literature. These aspects engage students in topics they are interested in while simultaneously relieving the burden off of faculty for constructing new projects each course offering. Introduction Problem-based learning and laboratory experiments are common teaching methods for the undergraduate kinetics and reaction engineering courses in chemical engineering (Silverstein 2011). However, these approaches typically are concentrated on one course topic at a time. Most problems that can be found in the common reaction engineering textbooks, such as Folger’s text that is widely used in the field (Silverstein 2011), tend to focus on topics related only to isolated segments of the text. For example, a problem involving a catalytic rate law can only be found in the few chapters dealing explicitly with catalysis.
    [Show full text]
  • Chemical Engineering Vocabulary
    Chemical Engineering Vocabulary Maximilian Lackner Download free books at MAXIMILIAN LACKNER CHEMICAL ENGINEERING VOCABULARY Download free eBooks at bookboon.com 2 Chemical Engineering Vocabulary 1st edition © 2016 Maximilian Lackner & bookboon.com ISBN 978-87-403-1427-4 Download free eBooks at bookboon.com 3 CHEMICAL ENGINEERING VOCABULARY a.u. (sci.) Acronym/Abbreviation referral: see arbitrary units A/P (econ.) Acronym/Abbreviation referral: see accounts payable A/R (econ.) Acronym/Abbreviation referral: see accounts receivable abrasive (eng.) Calcium carbonate can be used as abrasive, for example as “polishing agent” in toothpaste. absorbance (chem.) In contrast to absorption, the absorbance A is directly proportional to the concentration of the absorbing species. A is calculated as ln (l0/l) with l0 being the initial and l the transmitted light intensity, respectively. absorption (chem.) The absorption of light is often called attenuation and must not be mixed up with adsorption, an effect at the surface of a solid or liquid. Absorption of liquids and gases means that they diffuse into a liquid or solid. abstract (sci.) An abstract is a summary of a scientific piece of work. AC (eng.) Acronym/Abbreviation referral: see alternating current academic (sci.) The Royal Society, which was founded in 1660, was the first academic society. acceleration (eng.) In SI units, acceleration is measured in meters/second Download free eBooks at bookboon.com 4 CHEMICAL ENGINEERING VOCABULARY accompanying element (chem.) After precipitation, the thallium had to be separated from the accompanying elements. TI (atomic number 81) is highly toxic and can be found in rat poisons and insecticides. accounting (econ.) Working in accounting requires paying attention to details.
    [Show full text]
  • Colloid Polishing Filter Method - Filter Flow Technology, Inc
    EPA/540/R-94/501 May 1995 Colloid Polishing Filter Method - Filter Flow Technology, Inc. Innovative Technology Evaluation Report RISK REDUCTION ENGINEERING LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CINCINNATI, OHIO 45268 @ Printed on Recycled Paper Notice The information in this document has been prepared for the U.S. Environmental Protection Agency’s (EPA) Superfund Innovative Technology Evaluation (SITE) program under Contract No. 68-CO-0047. This document has been subjected to EPA’s peer and administrative reviews and has been approved for publication as an EPA document. Mention of trade names or commercial products does not constitute an endorsement or recommendation for use. ii Foreword The Superfund Innovative Technology Evaluation (SITE) program was authorized by the Superfund Amendments and Reauthorization Act of 1986. The program is administered by the U.S. Environmental Protection Agency (EPA) Office of Research and Development. The purpose of the SITE program is to accelerate the development and use of innovative cleanup technologies applicable to Superfund and other hazardous waste sites. This purpose is accomplished through technology demonstrations designed to provide performance and cost data on selected technologies. This project consisted of a demonstration conducted under the SITE program to evaluate the Colloid Polishing Filter Method technology developed by Filter Flow Technology, Inc.The technology demonstration was conducted at a U.S. Department of Energy site. This Innovative Technology Evaluation Report provides an interpretation of the data and discusses the potential applicability of the technology. A limited number of copies of this report will be available at no charge from EPA’s Center for Environmental Research Information, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268,513-569-7562..Requests should include the EPA document number found on the report’s cover.
    [Show full text]
  • Chemical Plant
    CHEMICAL PLANT BASF Chemical Plant Portsmouth Site in the West Norfolk area of Portsmouth, Virginia, United States. The plant is served by the Commonwealth Railway. A chemical plant is an industrial process plant that manufactures (or otherwise processes) chemicals, usually on a large scale. The general objective of a chemical plant is to create new material wealth via the chemical or biological transformation and or separation of materials.[1] Chemical plants use special equipment, units, and technology in the processes. Other kinds of plants, such as polymer, pharmaceutical, food, and some beverage production facilities, power plants, oil refineries or other refineries, natural gas processing and biochemical plants, water and wastewater treatment, and pollution control equipment use many technologies which have similarities to chemical plant technology such as fluid systems. Some would consider an oil refinery or a pharmaceutical or polymer manufacturer to be effectively a chemical plant. Petrochemical plants (plants using petroleum as a raw material) are usually located adjacent to an oil refinery to minimize transportation costs for the feedstocks produced by the refinery. Specialty chemical plants are usually much smaller and not as sensitive to location. Chemical processes Chemical plants typically use chemical processes, which are detailed industrial- scale methods, to produce the chemicals. The same chemical process can be used at more than one chemical plant, with possibly differently scaled capacities at each plant. Also, a chemical plant at a site may be constructed to utilize more than one chemical process. A chemical plant commonly has usually large vessels or sections called units that are interconnected by piping or other material-moving equipment which can carry streams of material.
    [Show full text]
  • Greenhouse-Gases-From-Oil-Gas-And-Petrochemical-Production.Xlsx
    ACKNOWLEDGEMENTS Written and Researched By Courtney Bernhardt and Alexandra Shaykevich of the Environmental Integrity Project. THE ENVIRONMENTAL INTEGRITY PROJECT The Environmental Integrity Project (http://www.environmentalintegrity.org) is a nonpartisan, nonprofit organization established in March of 2002 by former EPA enforcement attorneys to advocate for effective enforcement of environmental laws. EIP has three goals: 1) to provide objective analyses of how the failure to enforce or implement environmental laws increases pollution and affects public health; 2) to hold federal and state agencies, as well as individual corporations, accountable for failing to enforce or comply with environmental laws; and 3) to help local communities obtain the protection of environmental laws. CONTACTS: For questions about this report, please contact: Tom Pelton, Environmental Integrity Project, (202) 888-2703 or [email protected] PHOTO CREDITS: Cover photo: Valero at night, Port Arthur, Texas, Garth Lenz iLCP. President Donald J. Trump participates in a walking tour of Cameron LNG Export Terminal Tuesday, May 14, 2019, in Hackberry, La., Flickr/The White House. Deer Park refinery, Garth Lenz iLCP. 2 Greenhouse Gases from Oil, Gas, and Petrochemical Production Executive Summary n less than a decade, fracking and other new drilling techniques have turned the United States into the largest producer of oil and gas in the world. Historically a fossil fuel importer, the U.S. is now on the cusp of becoming a net fossil fuel exporter. This I surge of oil and gas production has led to a significant rise in greenhouse gases from the oil, gas, and petrochemical sectors. This report examines the growth of greenhouse gas emissions from three sectors, based on data reported to the U.S.
    [Show full text]