Parallel Life History Evolution in Mouthbrooding Cichlids from the African Great Lakes

Total Page:16

File Type:pdf, Size:1020Kb

Parallel Life History Evolution in Mouthbrooding Cichlids from the African Great Lakes Parallel life history evolution in mouthbrooding cichlids from the African Great Lakes Fabrice Duponchelle*†‡§, Emmanuel Paradis†, Anthony J. Ribbink*¶, and George F. Turnerʈ *Southern African Development Conference/Global Environment Facility, Lake Malawi Biodiversity Conservation Project, P.O. Box 311 Salima, Malawi; †Institut de Recherche pour le De´veloppement (UR 175)/GAMET, BP 5095, 34196 Montpellier Cedex 1, France; ¶South African Institute for Aquatic Biodiversity, P Bag 1015, Grahamstown 6140, South Africa; and ʈSchool of Biological Sciences, Bangor University, Bangor LL57 2UW, Wales, United Kingdom Edited by John C. Avise, University of California, Irvine, CA, and approved August 20, 2008 (received for review March 7, 2008) The existence of ancient deep-water lakes provides an opportunity exceptional for pelagic teleost fish. Unusually, all known cichlid to study the independent adaptation of aquatic organisms to species provide parental care of eggs and young. Many species are pelagic, benthic, and rocky shore habitats. With improving reso- biparental substrate-spawners, whose eggs and young are guarded lution of their phylogenetic relationships, the many cichlid fish by both parents. Many other species are maternal mouthbrooders, species endemic to the African Great Lakes Malawi, Tanganyika, in which females pick up and brood eggs and larvae for a few weeks, and Victoria provide a significant resource for the comparative with some species even allowing independently feeding young to study of such evolutionary processes. Here, we show that cichlid return to the mouth when they are threatened with predation (17, lineages colonizing rocky shores and pelagic habitats in the dif- 23). All cichlid species from Lake Victoria and all except one from ferent lakes have independently evolved larger eggs and lower Lake Malawi are maternal mouthbrooders. Although nearly every fecundities than benthic lineages, suggesting parallel adaptive type of parental care is represented in Lake Tanganyika, all pelagic life-history evolution. By contrast, other pelagic teleost fishes in species and many of the rocky shore and benthic species are both marine and freshwater habitats, including African lakes, mouthbrooders [supporting information (SI) Table S1 and SI Text]. typically produce large numbers of very small eggs. Our results also Mouthbrooders typically produce fewer, larger eggs than substrate suggest that decreased fecundity and increased egg size not only spawners (17), and therefore, to avoid the confounding effect of the occurred independently in each lake but occurred independently in type of parental care on the ecological correlates of life-history the colonization of rocky and pelagic habitats. strategies, all species included in this study are mouthbrooders. We compared batch fecundities and egg sizes of cichlid fishes from parallelism ͉ phylogenetically controlled comparative analysis ͉ phylogeny pelagic, benthic, and rocky-shore habitats in all three lakes using new and published data. We adopted a two-step approach for data lucidating whether similar ecological specializations in closely analysis: first, testing for significant effects on the life-history traits Erelated lineages are the result of unique or repeated evolution- with linear models and then assessing whether significant effects ary events is of particular interest in the understanding of adaptive were confounded by phylogenetic nonindependence among species evolution (1, 2). The demonstration of parallel evolution of closely (24). The second step required the estimation of a phylogeny for the related yet phylogenetically distinct lineages in similar environ- species included in our dataset. The phylogeny of the Victorian ments provides strong evidence of evolution driven by natural cichlids is still poorly resolved (25), and DNA sequences were selection because genetic drift is unlikely to produce repeated available for few species for which we had life-history data. For evolution in the same direction (3, 4). Instances of parallelism Lakes Malawi and Tanganyika, we used comparative methods to abound in animal evolution (5), but most cases refer to morpho- account for the effect of phylogenetic relationships on life-history logical traits such as in cave amphipods (6–8), Anolis lizards (9), or correlations (26, 27) and Markovian models to reconstruct evolu- lake whitefish (10). Examples of repeated evolution of the same tionary transitions among habitats (28). life-history traits are scarcer, although a convincing case has been made for independent adaptations to predator-mediated mortality Results in several populations of Trinidadian guppies (11). To build such a Fecundities differed significantly among habitats and lakes (Fig. 1A case, one needs to demonstrate that multiple populations or species and Table 1), but the lack of a significant interaction indicated exposed to similar environments have evolved similar traits inde- similar contrasts among habitats in all three lakes. Controlling for pendently in different localities and evidence that the similarities phylogeny (Fig. 2A), the difference among lakes was no longer among populations are the product of the same sort of natural significant, which was expected because the haplochromine species selection (11). flocks of lakes Malawi and Victoria represent independent colo- The cichlid fishes of the East African Great Lakes represent an nizations (14), but the habitat effect remained significant. In the ideal model for the study of parallel evolution. An estimated analysis without phylogenetic correction, egg diameter varied sig- 660–1,319 species of cichlid fishes have been recorded from Lakes nificantly among both habitats and lakes (Fig. 1B and Table 1), but Malawi, Tanganyika, and Victoria, most endemic to a single lake again, the difference among lakes was confounded with phylogeny catchment (12). These species flocks are so rich that, collectively, (Fig. 2B). A significant interaction term, even after phylogenetic they provide the best example of rapid adaptive radiation in correction (Fig. 2B), indicated that the contrast among habitats was vertebrates (13–16). The independent radiations (14, 15) in the three lakes have produced very similar communities. Many of these species are habitat specialists, with most of them confined either to Author contributions: F.D. and A.J.R. designed research; F.D. performed research; F.D., E.P., rocky shores or to sand/mud bottoms (benthic), whereas a few are and G.F.T. analyzed data; and F.D., E.P., A.J.R., and G.F.T. wrote the paper. found in open water (pelagic) habitats (17). There are several well The authors declare no conflict of interest. documented examples of parallel evolution of morphology associ- This article is a PNAS Direct Submission. ated with independent colonization of similar habitats (18–20) as ‡Present address: 357 Calle Teruel, Miraflores, Lima 18, Peru. well as parallel evolution of coloration (21, 22). Here, we show that §To whom correspondence should be addressed. E-mail: [email protected]. parallel evolution of habitat specialization in East African Great This article contains supporting information online at www.pnas.org/cgi/content/full/ EVOLUTION Lake cichlids is further accompanied by hitherto undocumented 0802343105/DCSupplemental. parallel evolution of life-history traits and by a reproductive strategy © 2008 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0802343105 PNAS ͉ October 7, 2008 ͉ vol. 105 ͉ no. 40 ͉ 15475–15480 Downloaded by guest on September 30, 2021 ) 8000 8 Habitat Lake -1 A B A 7000 Benthic 7 6000 Pelagic 6 5000 Rock 4000 5 Frequency Frequency 3000 4 2000 0 50 100 150 0 204060 3 Egg (mm) diameter 1000 0.0 0.1 0.2 0.3 0.4 0.0 0.2 0.4 0.6 0.8 1.0 Relative fecundity (eggs.kg fecundity Relative 0 2 P values P values Tanganyika Malawi Victoria Tanganyika Malawi Victoria log(body mass) 8 2600 C ) 3 2200 7 .10 -1 1800 6 1400 Frequency 1000 5 050100150 600 4 0.00 0.10 0.20 0.30 200 P values 3 Egg diameter (mm) 5 Habitat Lake 4 2 B Relative fecundity (eggs.kg fecundity Relative 3 2 1 1 0 0 Frequency Frequency 0103050 020 60 100 Victoria (6) Victoria Malawi (12) Clupeidae (6) Clupeidae 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.8 1.0 Tanganyika (4) Lates stappersi Engraulidae (9) Scombridae (15) Leiognathidae (1) Leiognathidae Dussumieriidae (2) Dussumieriidae P values P values Limnothrissa miodon Engraulicypris sardella Stolothrissa tanganicae Rastrineobola argentea log(body mass) Habitat*Lake Marine Great lakes Great lakes pelagics non-cichlid pelagics pelagic cichlids Fig. 1. Pelagic cichlid fishes have lower fecundities (A) and larger eggs (B) than benthic and rocky shore cichlid fishes from the same lake, and (C) pelagic fishes of other families. Shown are means and standard errors, with the number of species in brackets. Data sources are in SI Text. Frequency Frequency 0204060 050100150 different between lakes. Egg size differences among habitats were 0.00 0.04 0.08 0.12 0.0 0.2 0.4 0.6 greatest in Tanganyika and least in Victoria (Fig. 1B). P values P values In all three lakes, pelagic species had the lowest fecundities and Fig. 2. Histograms of the P values from the GEE-based phylogenetically con- largest eggs, whereas benthic species had the highest fecundities and trolled comparative analyses for clutch size (A) and oocyte diameter (B). The smallest eggs (Fig. 1 A and B). Rock-dwelling species showed comparative analyses were repeated for the 200 bootstrap trees to assess intermediate
Recommended publications
  • Evolutionary History of Lake Tanganyika's Predatory Deepwater
    Hindawi Publishing Corporation International Journal of Evolutionary Biology Volume 2012, Article ID 716209, 10 pages doi:10.1155/2012/716209 Research Article Evolutionary History of Lake Tanganyika’s Predatory Deepwater Cichlids Paul C. Kirchberger, Kristina M. Sefc, Christian Sturmbauer, and Stephan Koblmuller¨ Department of Zoology, Karl-Franzens-University Graz, Universitatsplatz¨ 2, 8010 Graz, Austria Correspondence should be addressed to Stephan Koblmuller,¨ [email protected] Received 22 December 2011; Accepted 5 March 2012 Academic Editor: R. Craig Albertson Copyright © 2012 Paul C. Kirchberger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Hybridization among littoral cichlid species in Lake Tanganyika was inferred in several molecular phylogenetic studies. The phenomenon is generally attributed to the lake level-induced shoreline and habitat changes. These allow for allopatric divergence of geographically fragmented populations alternating with locally restricted secondary contact and introgression between incompletely isolated taxa. In contrast, the deepwater habitat is characterized by weak geographic structure and a high potential for gene flow, which may explain the lower species richness of deepwater than littoral lineages. For the same reason, divergent deepwater lineages should have evolved strong intrinsic reproductive isolation already in the incipient stages of diversification, and, consequently, hybridization among established lineages should have been less frequent than in littoral lineages. We test this hypothesis in the endemic Lake Tanganyika deepwater cichlid tribe Bathybatini by comparing phylogenetic trees of Hemibates and Bathybates species obtained with nuclear multilocus AFLP data with a phylogeny based on mitochondrial sequences.
    [Show full text]
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Review and Updated Checklist of Freshwater Fishes of Iran: Taxonomy, Distribution and Conservation Status
    Iran. J. Ichthyol. (March 2017), 4(Suppl. 1): 1–114 Received: October 18, 2016 © 2017 Iranian Society of Ichthyology Accepted: February 30, 2017 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2017 http://www.ijichthyol.org Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status Hamid Reza ESMAEILI1*, Hamidreza MEHRABAN1, Keivan ABBASI2, Yazdan KEIVANY3, Brian W. COAD4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran 2Inland Waters Aquaculture Research Center. Iranian Fisheries Sciences Research Institute. Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran 3Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan 84156-83111, Iran 4Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada *Email: [email protected] Abstract: This checklist aims to reviews and summarize the results of the systematic and zoogeographical research on the Iranian inland ichthyofauna that has been carried out for more than 200 years. Since the work of J.J. Heckel (1846-1849), the number of valid species has increased significantly and the systematic status of many of the species has changed, and reorganization and updating of the published information has become essential. Here we take the opportunity to provide a new and updated checklist of freshwater fishes of Iran based on literature and taxon occurrence data obtained from natural history and new fish collections. This article lists 288 species in 107 genera, 28 families, 22 orders and 3 classes reported from different Iranian basins. However, presence of 23 reported species in Iranian waters needs confirmation by specimens.
    [Show full text]
  • The Identity of Pseudotropheus Elongatus, with the Description of P. Longior from Mbamba Bay, Tanzania, and Notes on Genyochromis Mento (Teleostei: Cichlidae)
    97 Ichthyol. Explor. Freshwaters, Vol. 7, No.2, pp. 97-110,12 figs.,1 tab., September 1996 © 1996 by Verlag Dr. Friedrich Pfeil, Miinchen, FRG- ISSN 0936-9902 The identity of Pseudotropheus elongatus, with the description of P. longior from Mbamba Bay, Tanzania, and notes on Genyochromis mento (Teleostei: Cichlidae) Lothar Seegers * Although Pseudotropheus elongatus was originally described from Mbamba Bay, Tanzania, a species of the P. elongatus-complex from Nkhata Bay, Malawi, has been considered to be the typical P. elongatus. Collections from Mbamba Bay revealed that at least two elongate Pseudotropheus species co-occur. The two extant syntypes of P. elongatus belong to the two species from Mbamba Bay. The specimen pictured by Fryer (1956) is selected as lectotype. The other species is described here as P. longior, new species. A third elongate cichlid, frequent at Mbamba Bay, is Genyochromis menta; some observations on this fish are included. 1956 beschrieb Fryer Pseudotropheus elongatus von Mbamba Bay, Tanzania, wahrend in der Literatur bisher eine Form aus dem P. elongatus-Komplex von Nkhata Bay, Malawi, als P. elongatus im Sinne der Typen angesehen wurde. In Mbamba Bay gibt es zwei gestreckte Pseudotropheus-Arten. Die beiden existierenden Syntypen gehoren unterschiedlichen Taxa an, namlich jeweils einer der beiden bei Mbamba Bay vorkommenden gestreckten Pseudotropheus-Arten. Als Lectotypus fur P. elongatus wurde das Exemplar festgelegt, das von Fryer (1956) abgebildet wurde. Die andere Pseudotropheus-Art wird hier als Pseudotropheus longior n. sp. beschrieben. Eine dritte gestreckte Cichlidenart, die in Mbamba Bay haufig vorkommt, ist Genyochromis menta Trewavas, 1935. Zu dieser Art werden einige Beobachtungen mitgeteilt.
    [Show full text]
  • Fish, Various Invertebrates
    Zambezi Basin Wetlands Volume II : Chapters 7 - 11 - Contents i Back to links page CONTENTS VOLUME II Technical Reviews Page CHAPTER 7 : FRESHWATER FISHES .............................. 393 7.1 Introduction .................................................................... 393 7.2 The origin and zoogeography of Zambezian fishes ....... 393 7.3 Ichthyological regions of the Zambezi .......................... 404 7.4 Threats to biodiversity ................................................... 416 7.5 Wetlands of special interest .......................................... 432 7.6 Conservation and future directions ............................... 440 7.7 References ..................................................................... 443 TABLE 7.2: The fishes of the Zambezi River system .............. 449 APPENDIX 7.1 : Zambezi Delta Survey .................................. 461 CHAPTER 8 : FRESHWATER MOLLUSCS ................... 487 8.1 Introduction ................................................................. 487 8.2 Literature review ......................................................... 488 8.3 The Zambezi River basin ............................................ 489 8.4 The Molluscan fauna .................................................. 491 8.5 Biogeography ............................................................... 508 8.6 Biomphalaria, Bulinis and Schistosomiasis ................ 515 8.7 Conservation ................................................................ 516 8.8 Further investigations .................................................
    [Show full text]
  • A.'Afri<Lue" Rica . a Translation of Certain Extracts
    A translation of certain extracts from "Les genres des poissons d'eau douce de l'Afrique" (The genera of freshwater fish from Africa) by M. Poll (1957) Item Type monograph Authors Poll, M.; Mann, M.J. Publisher East African Freshwater Fisheries Research Organization Download date 06/10/2021 23:24:35 Link to Item http://hdl.handle.net/1834/34947 .. • ~t CCASION A translation of certain extracts from : "Les genres des poissons d'eau ) a.'Afri<lue" (The genera of freshwater fish from Africa) by M. POLL (1957) Ann. Mus. Roy. Congo BeIge. Serf So, Zool. 1-191 translated by M.J. Mann (Fisheries Research Officer) E.A.F.F.R.O. P.O. Box 343, Jinja , Uganda• December, 1967. • ' CONTENTS (Sections in lower case are not included in the transla tion) • Page., 'I!Ei.AN'SUWR f S TION••••••• 0 ••••• 0 • . 11 •••••••••••••••••••••••••••• • _ • •• I 1>. ~, ODUC TION •••••••••••.•••••••• 0 •••••••••••. •••••••••••••••• _ • ••••• . table of the classes, families and genera of represented in the freshwater of rica General characters of each family . GENERAL GEOGRAPHICAL DISTRIBUTION OF THE FISH FAUNA••••• e, . • •• 3 ..DISTRIBUTION OF FRESHWATER FISHES IN THE CONGO •••.•J.2 eE DIAGNOSTIC OF FISH ••••.•••••••••••••••••••••••••••••.• ••• 17 KEY FOR THE IDENTIFICATION OF FAMILIES OF AFRICAN FRESHWATER •• lS KEY FOR IDENTIFICATION OF GENERA OF AFRICAN FRESHWATER FISH•.•••• 21 Bibliography Index of figure s Index scientific names Map of African ichthyological r egions - CCAS10NAL PAPEo A translation of certain extracts from : "Les genres des poissons d'eau de·.a.'Afrique " (The genera of freshwater fish from Africa) by M. POLL (1957) Ann. Mus. Roy. Congo BeIge. Sere So, Zool.
    [Show full text]
  • Eco-Ethology of Shell-Dwelling Cichlids in Lake Tanganyika
    ECO-ETHOLOGY OF SHELL-DWELLING CICHLIDS IN LAKE TANGANYIKA THESIS Submitted in Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE of Rhodes University by IAN ROGER BILLS February 1996 'The more we get to know about the two greatest of the African Rift Valley Lakes, Tanganyika and Malawi, the more interesting and exciting they become.' L.C. Beadle (1974). A male Lamprologus ocel/alus displaying at a heterospecific intruder. ACKNOWLEDGMENTS The field work for this study was conducted part time whilst gworking for Chris and Jeane Blignaut, Cape Kachese Fisheries, Zambia. I am indebted to them for allowing me time off from work, fuel, boats, diving staff and equipment and their friendship through out this period. This study could not have been occured without their support. I also thank all the members of Cape Kachese Fisheries who helped with field work, in particular: Lackson Kachali, Hanold Musonda, Evans Chingambo, Luka Musonda, Whichway Mazimba, Rogers Mazimba and Mathew Chama. Chris and Jeane Blignaut provided funds for travel to South Africa and partially supported my work in Grahamstown. The permit for fish collection was granted by the Director of Fisheries, Mr. H.D.Mudenda. Many discussions were held with Mr. Martin Pearce, then the Chief Fisheries Officer at Mpulungu, my thanks to them both. The staff of the JLB Smith Institute and DIFS (Rhodes University) are thanked for help in many fields: Ms. Daksha Naran helped with computing and organisation of many tables and graphs; Mrs. S.E. Radloff (Statistics Department, Rhodes University) and Dr. Horst Kaiser gave advice on statistics; Mrs Nikki Kohly, Mrs Elaine Heemstra and Mr.
    [Show full text]
  • Spatial Models of Speciation 1.0Cm Modelos Espaciais De Especiação
    UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE BIOLOGIA CAROLINA LEMES NASCIMENTO COSTA SPATIAL MODELS OF SPECIATION MODELOS ESPACIAIS DE ESPECIAÇÃO CAMPINAS 2019 CAROLINA LEMES NASCIMENTO COSTA SPATIAL MODELS OF SPECIATION MODELOS ESPACIAIS DE ESPECIAÇÃO Thesis presented to the Institute of Biology of the University of Campinas in partial fulfill- ment of the requirements for the degree of Doc- tor in Ecology Tese apresentada ao Instituto de Biologia da Universidade Estadual de Campinas como parte dos requisitos exigidos para a obtenção do título de Doutora em Ecologia Orientador: Marcus Aloizio Martinez de Aguiar ESTE ARQUIVO DIGITAL CORRESPONDE À VERSÃO FINAL DA TESE DEFENDIDA PELA ALUNA CAROLINA LEMES NASCIMENTO COSTA, E ORIENTADA PELO PROF DR. MAR- CUS ALOIZIO MARTINEZ DE AGUIAR. CAMPINAS 2019 Ficha catalográfica Universidade Estadual de Campinas Biblioteca do Instituto de Biologia Mara Janaina de Oliveira - CRB 8/6972 Costa, Carolina Lemes Nascimento, 1989- C823s CosSpatial models of speciation / Carolina Lemes Nascimento Costa. – Campinas, SP : [s.n.], 2019. CosOrientador: Marcus Aloizio Martinez de Aguiar. CosTese (doutorado) – Universidade Estadual de Campinas, Instituto de Biologia. Cos1. Especiação. 2. Radiação adaptativa (Evolução). 3. Modelos biológicos. 4. Padrão espacial. 5. Macroevolução. I. Aguiar, Marcus Aloizio Martinez de, 1960-. II. Universidade Estadual de Campinas. Instituto de Biologia. III. Título. Informações para Biblioteca Digital Título em outro idioma: Modelos espaciais de especiação Palavras-chave em inglês: Speciation Adaptive radiation (Evolution) Biological models Spatial pattern Macroevolution Área de concentração: Ecologia Titulação: Doutora em Ecologia Banca examinadora: Marcus Aloizio Martinez de Aguiar [Orientador] Mathias Mistretta Pires Sabrina Borges Lino Araujo Rodrigo André Caetano Gustavo Burin Ferreira Data de defesa: 25-02-2019 Programa de Pós-Graduação: Ecologia Powered by TCPDF (www.tcpdf.org) Comissão Examinadora: Prof.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 30 April 2021 Order CICHLIFORMES (part 3 of 8) Family CICHLIDAE Cichlids (part 3 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Haplochromis through Konia) Haplochromis Hilgendorf 1888 haplo-, simple, proposed as a subgenus of Chromis with unnotched teeth (i.e., flattened and obliquely truncated teeth of H. obliquidens); Chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), then beginning to be used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Haplochromis acidens Greenwood 1967 acies, sharp edge or point; dens, teeth, referring to its sharp, needle-like teeth Haplochromis adolphifrederici (Boulenger 1914) in honor explorer Adolf Friederich (1873-1969), Duke of Mecklenburg, leader of the Deutsche Zentral-Afrika Expedition (1907-1908), during which type was collected Haplochromis aelocephalus Greenwood 1959 aiolos, shifting, changing, variable; cephalus, head, referring to wide range of variation in head shape Haplochromis aeneocolor Greenwood 1973 aeneus, brazen, referring to “brassy appearance” or coloration of adult males, a possible double entendre (per Erwin Schraml) referring to both “dull bronze” color exhibited by some specimens and to what
    [Show full text]
  • Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa)
    Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa/Niassa) by M.K. Oliver, Ph.D. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Checklist of the Cichlid Fishes of Lake Malawi (Lake Nyasa/Niassa) by Michael K. Oliver, Ph.D. Peabody Museum of Natural History, Yale University Updated 3 November 2018 First posted June 1999 The cichlids of Lake Malawi constitute the largest vertebrate species flock and largest lacustrine fish fauna on earth. This list includes all cichlid species, and the few subspecies, that have been formally described and named. Many–several hundred–additional endemic cichlid species are known but still undescribed, and this fact must be considered in assessing the biodiversity of the lake. Recent estimates of the total size of the lake’s cichlid fauna, counting both described and known but undescribed species, range from 700–843 species (Turner et al., 2001; Snoeks, 2001; Konings, 2007) or even 1000 species (Konings 2016). Additional undescribed species are still frequently being discovered, particularly in previously unexplored isolated locations and in deep water. The entire Lake Malawi cichlid metaflock is composed of two, possibly separate, endemic assemblages, the “Hap” group and the Mbuna group. Neither has been convincingly shown to be monophyletic. Membership in one or the other, or nonendemic status, is indicated in the checklist below for each genus, as is the type species of each endemic genus. The classification and synonymies are primarily based on the Catalog of Fishes with a few deviations. All synonymized genera and species should now be listed under their senior synonym. Nearly all species are endemic to L. Malawi, in some cases extending also into the upper Shiré River including Lake Malombe and even into the middle Shiré.
    [Show full text]
  • Indian and Madagascan Cichlids
    FAMILY Cichlidae Bonaparte, 1835 - cichlids SUBFAMILY Etroplinae Kullander, 1998 - Indian and Madagascan cichlids [=Etroplinae H] GENUS Etroplus Cuvier, in Cuvier & Valenciennes, 1830 - cichlids [=Chaetolabrus, Microgaster] Species Etroplus canarensis Day, 1877 - Canara pearlspot Species Etroplus suratensis (Bloch, 1790) - green chromide [=caris, meleagris] GENUS Paretroplus Bleeker, 1868 - cichlids [=Lamena] Species Paretroplus dambabe Sparks, 2002 - dambabe cichlid Species Paretroplus damii Bleeker, 1868 - damba Species Paretroplus gymnopreopercularis Sparks, 2008 - Sparks' cichlid Species Paretroplus kieneri Arnoult, 1960 - kotsovato Species Paretroplus lamenabe Sparks, 2008 - big red cichlid Species Paretroplus loisellei Sparks & Schelly, 2011 - Loiselle's cichlid Species Paretroplus maculatus Kiener & Mauge, 1966 - damba mipentina Species Paretroplus maromandia Sparks & Reinthal, 1999 - maromandia cichlid Species Paretroplus menarambo Allgayer, 1996 - pinstripe damba Species Paretroplus nourissati (Allgayer, 1998) - lamena Species Paretroplus petiti Pellegrin, 1929 - kotso Species Paretroplus polyactis Bleeker, 1878 - Bleeker's paretroplus Species Paretroplus tsimoly Stiassny et al., 2001 - tsimoly cichlid GENUS Pseudetroplus Bleeker, in G, 1862 - cichlids Species Pseudetroplus maculatus (Bloch, 1795) - orange chromide [=coruchi] SUBFAMILY Ptychochrominae Sparks, 2004 - Malagasy cichlids [=Ptychochrominae S2002] GENUS Katria Stiassny & Sparks, 2006 - cichlids Species Katria katria (Reinthal & Stiassny, 1997) - Katria cichlid GENUS
    [Show full text]
  • Master Document Template
    Copyright by Pamela Margaret Willis 2011 The Dissertation Committee for Pamela Margaret Willis Certifies that this is the approved version of the following dissertation: Mate Choice and Hybridization within Swordtail Fishes (Xiphophorus spp.) and Wood Warblers (family Parulidae) Committee: Michael J. Ryan, Supervisor Daniel I. Bolnick Ulrich G. Mueller Gil G. Rosenthal Michael C. Singer Mate Choice and Hybridization within Swordtail Fishes (Xiphophorus spp.) and Wood Warblers (family Parulidae) by Pamela Margaret Willis, B.S., M.S. Dissertation Presented to the Faculty of the Graduate School of The University of Texas at Austin in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy The University of Texas at Austin May, 2011 Dedication To Sparky Acknowledgements I am deeply indebted to my advisor, Mike Ryan, for his insight, guidance, patience, good humor, and unwavering support. I am also much indebted to Gil Rosenthal, who advised me as if I were one of his own students. I am very grateful. I had an excellent thesis committee - in addition to Mike and Gil, Dan Bolnick, Ulrich Mueller, and Mike Singer gave excellent advice and feedback. Karin Akre was my grad school support buddy in the last years of my PhD. I could not have done it without her. The Ecology, Evolution, and Behavior Program has provided a stimulating and supportive environment. Kim Hoke, Chad Smith, Nichole Bennett, Eben Gering, Barrett Klein, Ray Engezer, Frank Stearns, Frank Bronson, Hans Hoffman, and members of the Ryan lab deserve special mention. Thanks to my collaborators Beckie Symula and Irby Lovette on the warbler research.
    [Show full text]