Similar Morphologies of Cichlid Fish in Lakes Tanganyika and Malawi Are Due to Convergence Thomas D

Total Page:16

File Type:pdf, Size:1020Kb

Similar Morphologies of Cichlid Fish in Lakes Tanganyika and Malawi Are Due to Convergence Thomas D MOLECULAR PHYLOGENETICS AND EVOLUTION Vol. 2. No. 2, June. pp. 158-165. 1993 Similar Morphologies of Cichlid Fish in Lakes Tanganyika and Malawi Are Due to Convergence Thomas D. Kocher , * '1 Janet A. Conroy,* Kenneth R. McKaye,* and Jay R. Stauffer* * Department of Zoology, University of New Hampshire, Durham, New Hampshire 03824; t Appalachian Environmental Laboratory, University of Maryland, Frostburg, Maryland 21532; t School of Forest Resources, Pennsylvania State University, University Park, Pennsylvania 16802 Received March 22, 1993; revised June 29, 1993 ancestor for the Lake Victoria cichlid flock (Sage et al., The species flocks of cichlid fishes in the lakes of East 1984; Meyer et al., 1990). The mechanisms by which Africa are the most spectacular example of adaptive so many species have arisen in such a short time, radiation among living vertebrates. Similar highly de­ within closed lake basins, are a fascinating subject for rived morphologies are found among species in differ­ research. ent lakes. These similarities have been variously inter­ A separate, monophyletic origin for the species flock preted either as evidence for migration of ancestral in each lake has often been assumed, partly because species between the lakes, or of striking convergence of the high levels of endemicity found in the cichlid of morphology. To distinguish among these competing fauna, and partly because of the ancient and isolated hypotheses we sequenced a portion of the mitochon­ history of each lake (Fryer and lies, 1972). The lake drial UNA control region from six pairs of morphologi­ basins have arisen separately by a gradual lengthen­ cally similar taxa from Lakes Malawi and Tanganyika. ing and deepening of the East African rift (Malawi Our results clearly indicate a separate origin of these and Tanganyika) or by tilting of the Tanzanian shield morphologies in the two lakes. They also suggest that (Victoria). Each lake now drains through a separate the Tanganyikan radiation is relatively old, and that the species flocks in lakes Malawi and Victoria are de­ river, which effectively isolates extant lacustrine rived from one of the ancient lineages found in Lake forms. Suggestions persist, however, that some lakes Tanganyika. These findings have important implica­ may have been connected at various times through in­ tions for understanding the pattern of morphological termediate lakes (e.g., the connection of lakes Malawi and behavioral evolution in these fish, e 1993 Academ ic and Tanganyika through Lake Rukwa; Banister and ProsH. Inc. Clarke, 1980), or by stream capture (Greenwood, 1974). All of this leads to the conclusion that geologic evidence is not sufficient to determine whether the INTRODUCTION flocks evolved separately in each lake. Morphological taxonomists have failed to reach a The explosive speciation of cichlid fish in the lakes consensus concerning relationships of fish in different of East Africa has long been a focus for controversy lakes. Regan (1920) created a basal dichotomy between among evolutionary theorists (Mayr, 1963; Fryer and “haplochromine” and “tilapiine” lineages based on the lies, 1972). Lake Malawi, with over 400 species of en­ shape of the neurocranial apophysis. Implied in this demic cichlid, has more species of fish than any other distinction were numerous instances of morphological lake in the world. Lakes Victoria 0200 species) and convergence between certain tilapiine species from Tanganyika 0 1 7 0 species) run a close second and Lake Tanganyika with haplochromine species from third. These species probably arose in a relatively lakes Malawi and Victoria. Myers (1936), while gener­ short period of time. Recent geological studies suggest ally accepting the idea of a separate origin of the fishes that Lake Tanganyika is no more than 12 MY old (Co­ in each flock, suggested that the Tanganyikan genus hen et al., 1993), while Lake Malawi is thought to be Petrochromis and Lake Malawi Pseudotropheus were considerably more recent, probably less than 2 MY old so similar that the genera should be merged. Trewavas (Banister and Clarke, 1980). Several authors have sug­ (1949), while studying the Malawi flock, reaffirmed Re­ gested an extremely recent (<200,000 years) common gan’s hypothesis of a separate origin of the fish in dif­ ferent lakes and this view has been promulgated by ‘ To whom correspondence should be addressed. Fax: (603) 862- most workers since (Fryer and lies, 1972). 3784. E-mail: t_ kocherft/ unhh.unh.edu. A series of papers by Greenwood (1978, 1979, 1980) 1055-7903 93 $5.00 158 Copyright £ 1993 by Academic Press. Inc. All rights of reproduction in any form reserved. HISTORY OK AFRICAN RIFT LAKE CICHLID FISH 159 and colleagues (Stiassny, 1981) exposed inconsisten­ idochromis (T) display a strong horizontal striping cies in the characters used by others to demonstrate reminiscent of Melanochromis auratus (M). the close relationship of fish within each lake. Neither Most specimens were collected by the authors the structure of the apophysis, squamation and shape directly from nature: Bathybates sp. Boulenger; Cyr- of the caudal fin, nor the structure of anal fin spots is tocara moorii Boulenger; Lobochilotes labiatus Bou­ consistent among the members of a single flock. Even­ lenger; Melanochromis auratus (Boulenger); Placido­ tually, Greenwood (1983, p. 209) concluded “that the chromis milomo (Oliver); Petrotilapia sp.; Rhampho­ species flocks of lakes Victoria, Malawi and Tangan­ chromis sp. Several Tanganyikan specimens were yika are each composed of several distinct lineages, provided by Mireille Shreyen (Fishes of Burundi, Bu­ and that members of at least some lineages occur in jumbura): Cyphotilapia frontosa (Boulenger); Petroch­ more than one lake.” The search for morphological romis orthognathus Matthes; Tropheus moorii var. characters useful for cladistic analyses has continued. Moba Boulenger. Two species common in the aquarium Despite the morphological diversity of these fishes, trade were purchased from dealers in the United however, few synapomorphic characters exist for re­ States: Julidochromis regani Poll and Pseudotropheus solving phylogeny (Stiassny, 1991). Repatterning of zebra (Boulenger). All vouchers will be deposited in cichlids has mostly occurred by changes in relative the Pennsylvania State University Museum. growth rate among structures (Strauss, 1984). In any case, construction of phylogenies from morphological DNA Methods characters creates a tautology for studies of the evolu­ DNA was extracted from tissues of frozen or ethanol- tion of these traits. An independent set of characters preserved specimens using standard proteinase K is required. digestion and phenol extraction protocols (Kocher Kornfield (1991), on the basis of allozyme characters, et al., 1989). Amplifications were performed in 50-iil suggested that Cyphotilapia frontosa of Lake Tangan­ volumes of 0.67 M Tris (pH 8.8), 2 m u MgCl2, 1 d im yika was more closely related to members of the Ma­ of each dNTP, 5 |a m of each primer, 1-1000 ng of tem­ lawi flock than to other Tanganyikan species tested. plate DNA and 1.5 units Taq polymerase (Perkin To date, this has been the only test of the relationship Elmer-Cetus). The primers used were THR between Malawi and Tanganyikan cichlids using mo­ (5-AGCTCAGCGCCAGAGCGCCGGTCTTGTAAA-3 lecular characters. and TDKD (5'-CCTGAAGTAGGAACCAGATG-3'). We have used the sequence of nucleotides in mito­ The temperature profile for 30-40 cycles of double­ chondrial DNA to test the independent origin hypothe­ stranded amplification was 93°C for 30 s, 50°C for 60 sis. These characters are expected to evolve indepen­ s and 72°C for 120 s. Amplified products were sepa­ dently from the genes which control the morphology of rated on a 1% LMP agarose gel. Desired fragments these fishes. The recency of the East African cichlid were purified from the gel by hot phenol extraction and radiations (Sage et al., 1984) led us to sequence a rap­ precipitation with isopropanol. The DNA (approxi­ idly evolving portion of the mitochondrial genome, the mately 0.5 (jLg) was resuspended in 20-40 nl of dH20 control or D-loop region. and 10-12 ji.1 sequenced using the TAQ DyeDeoxy Ter­ minator cycle sequencing protocol (Applied Biosys­ MATERIALS AND METHODS tems). Centri-Sep columns (Princeton Separations) were used to remove unincorporated nucleotides prior Sources of DNA to loading on an automated sequencer (373A, Applied We chose six pairs of morphologically similar fishes Biosystems). to illustrate the range of morphological and behavioral similarities of species in lakes Malawi and Tanganyika Phylogenetic Analyses (Fig. 1). Petrochromis (Tanganyika) and Petrotilapia Sequence alignment was performed using the se­ (Malawi) share a highly developed rasping jaw mor­ quential algorithm of the program PILEUP (Devereux phology and were considered by Fryer and lies (1972) et al., 1984). A gap penalty of 1 and a gap length pen­ to represent one of the most remarkable similarities alty of 0.3 were used, but the alignment was not partic­ in the two fauna. The morphology and ecology of the ularly sensitive to variations in these parameters. No elongate predator Bathybates (T) closely mimics that manual adjustments of the alignment were performed. of Rhamphochromis (M). The fleshy lips of Lobochilotes Minimum length networks relating the taxa were (T) closely resemble the fat lips of Placidochromis mi- found using the branch and bound algorithm of PAUP lomo (M). Tropheus (T) and Pseudotropheus (M) are (Swofford, 1992). Statistical significance of particu­ morphologically and behaviorally similar taxa which lar groupings was estimated by branch and bound live over rock substrates. Cyphotilapia frontosa (T) has searches of 2000 bootstrap samples from the original an enlarged nuchal hump which is also found in Cyrto- data set. For the tree relating 16 taxa, computational cara moorii (M). Some species of the rock-dwelling Jul- limitations prevented the examination of a large num­ 160 KOCHER ET AL. FIG. 1. Six pairs of morphologically similar cichlids from Lakes Tanganyika and Malawi. Tanganyikan fish are in the left column, Malawi fish in the right.
Recommended publications
  • Evolutionary History of Lake Tanganyika's Predatory Deepwater
    Hindawi Publishing Corporation International Journal of Evolutionary Biology Volume 2012, Article ID 716209, 10 pages doi:10.1155/2012/716209 Research Article Evolutionary History of Lake Tanganyika’s Predatory Deepwater Cichlids Paul C. Kirchberger, Kristina M. Sefc, Christian Sturmbauer, and Stephan Koblmuller¨ Department of Zoology, Karl-Franzens-University Graz, Universitatsplatz¨ 2, 8010 Graz, Austria Correspondence should be addressed to Stephan Koblmuller,¨ [email protected] Received 22 December 2011; Accepted 5 March 2012 Academic Editor: R. Craig Albertson Copyright © 2012 Paul C. Kirchberger et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Hybridization among littoral cichlid species in Lake Tanganyika was inferred in several molecular phylogenetic studies. The phenomenon is generally attributed to the lake level-induced shoreline and habitat changes. These allow for allopatric divergence of geographically fragmented populations alternating with locally restricted secondary contact and introgression between incompletely isolated taxa. In contrast, the deepwater habitat is characterized by weak geographic structure and a high potential for gene flow, which may explain the lower species richness of deepwater than littoral lineages. For the same reason, divergent deepwater lineages should have evolved strong intrinsic reproductive isolation already in the incipient stages of diversification, and, consequently, hybridization among established lineages should have been less frequent than in littoral lineages. We test this hypothesis in the endemic Lake Tanganyika deepwater cichlid tribe Bathybatini by comparing phylogenetic trees of Hemibates and Bathybates species obtained with nuclear multilocus AFLP data with a phylogeny based on mitochondrial sequences.
    [Show full text]
  • 1 Exon Probe Sets and Bioinformatics Pipelines for All Levels of Fish Phylogenomics
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exon probe sets and bioinformatics pipelines for all levels of fish phylogenomics 2 3 Lily C. Hughes1,2,3,*, Guillermo Ortí1,3, Hadeel Saad1, Chenhong Li4, William T. White5, Carole 4 C. Baldwin3, Keith A. Crandall1,2, Dahiana Arcila3,6,7, and Ricardo Betancur-R.7 5 6 1 Department of Biological Sciences, George Washington University, Washington, D.C., U.S.A. 7 2 Computational Biology Institute, Milken Institute of Public Health, George Washington 8 University, Washington, D.C., U.S.A. 9 3 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian 10 Institution, Washington, D.C., U.S.A. 11 4 College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China 12 5 CSIRO Australian National Fish Collection, National Research Collections of Australia, 13 Hobart, TAS, Australia 14 6 Sam Noble Oklahoma Museum of Natural History, Norman, O.K., U.S.A. 15 7 Department of Biology, University of Oklahoma, Norman, O.K., U.S.A. 16 17 *Corresponding author: Lily C. Hughes, [email protected]. 18 Current address: Department of Organismal Biology and Anatomy, University of Chicago, 19 Chicago, IL. 20 21 Keywords: Actinopterygii, Protein coding, Systematics, Phylogenetics, Evolution, Target 22 capture 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020.
    [Show full text]
  • Hohonu Volume 5 (PDF)
    HOHONU 2007 VOLUME 5 A JOURNAL OF ACADEMIC WRITING This publication is available in alternate format upon request. TheUniversity of Hawai‘i is an Equal Opportunity Affirmative Action Institution. VOLUME 5 Hohonu 2 0 0 7 Academic Journal University of Hawai‘i at Hilo • Hawai‘i Community College Hohonu is publication funded by University of Hawai‘i at Hilo and Hawai‘i Community College student fees. All production and printing costs are administered by: University of Hawai‘i at Hilo/Hawai‘i Community College Board of Student Publications 200 W. Kawili Street Hilo, Hawai‘i 96720-4091 Phone: (808) 933-8823 Web: www.uhh.hawaii.edu/campuscenter/bosp All rights revert to the witers upon publication. All requests for reproduction and other propositions should be directed to writers. ii d d d d d d d d d d d d d d d d d d d d d d Table of Contents 1............................ A Fish in the Hand is Worth Two on the Net: Don’t Make me Think…different, by Piper Seldon 4..............................................................................................Abortion: Murder-Or Removal of Tissue?, by Dane Inouye 9...............................An Etymology of Four English Words, with Reference to both Grimm’s Law and Verner’s Law by Piper Seldon 11................................Artifacts and Native Burial Rights: Where do We Draw the Line?, by Jacqueline Van Blarcon 14..........................................................................................Ayahuasca: Earth’s Wisdom Revealed, by Jennifer Francisco 16......................................Beak of the Fish: What Cichlid Flocks Reveal About Speciation Processes, by Holly Jessop 26................................................................................. Climatic Effects of the 1815 Eruption of Tambora, by Jacob Smith 33...........................Columnar Joints: An Examination of Features, Formation and Cooling Models, by Mary Mathis 36....................
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 3) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 6.0 - 30 April 2021 Order CICHLIFORMES (part 3 of 8) Family CICHLIDAE Cichlids (part 3 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Haplochromis through Konia) Haplochromis Hilgendorf 1888 haplo-, simple, proposed as a subgenus of Chromis with unnotched teeth (i.e., flattened and obliquely truncated teeth of H. obliquidens); Chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), then beginning to be used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Haplochromis acidens Greenwood 1967 acies, sharp edge or point; dens, teeth, referring to its sharp, needle-like teeth Haplochromis adolphifrederici (Boulenger 1914) in honor explorer Adolf Friederich (1873-1969), Duke of Mecklenburg, leader of the Deutsche Zentral-Afrika Expedition (1907-1908), during which type was collected Haplochromis aelocephalus Greenwood 1959 aiolos, shifting, changing, variable; cephalus, head, referring to wide range of variation in head shape Haplochromis aeneocolor Greenwood 1973 aeneus, brazen, referring to “brassy appearance” or coloration of adult males, a possible double entendre (per Erwin Schraml) referring to both “dull bronze” color exhibited by some specimens and to what
    [Show full text]
  • Chambo: Is It Taste Or Something Else? Preference and Acceptability
    Aqua-Fish Tech.. E f * . twit. ;Vs>: 2, iV.v. ii/fV? Chambo: Is it taste or something else? Preference and acceptability of roasted, fried and boiled Oreochrontis spp, (Chambo), Rhamphochromis spp (Ncheni) and Bagrus me- ridionalis (Kampango) from Lake Malawi 'K. Kaunda,, 2D. Maliro, 3M. Mphepo, 4S. Khaila SL. Kamanga, 6A, Mwangwela & '(). Cliapotoka ' Aquaculture and Fisheries Science Department, Bunda College Box 219, Lilongwe : Rural Development Department, Bunda College, Box 219 Lilongwe 1 World Vision International, Box 2050, Blantyre 4 Centre for Research and Development, Bunda College, Box 219 Lilongwe. Malawi 5 Animal Science Department, Bunda College, Box 219 Lilongwe Abstract A study to determine preference and acceptability of roasted, fried and boiled Oreochromis spp, (Chambo), Rhamphochromis spp (Ncheni) and Bagrus meridional is (Kampango) from Lake Malawi was conducted in Oc­ tober 2002, at Bunda College. A sensory panel of 73 people from Bunda College community responded to a structured questionnaire and carried out a sensory evaluation on unidentified fish samples to determine the most preferred fish species. Results from a structured questionnaire showed that Chambo was the most pre­ ferred species at the market, while the sensory evaluation revealed that most people (65% and 93%) ranked Ncheni as first choice for taste and preference, respectively. Results suggest that while people perceive Chambo as the best fish and hence escalating its demand and therefore its price, Chambo may not be the best in terms of taste. Introduction naires were administered to an untrained sensory The bulk of fish in Malawi is supplied front Lakes panel composed of 73 members. The panellists com­ Malawi and Malombe.
    [Show full text]
  • Towards a Regional Information Base for Lake Tanganyika Research
    RESEARCH FOR THE MANAGEMENT OF THE FISHERIES ON LAKE GCP/RAF/271/FIN-TD/Ol(En) TANGANYIKA GCP/RAF/271/FIN-TD/01 (En) January 1992 TOWARDS A REGIONAL INFORMATION BASE FOR LAKE TANGANYIKA RESEARCH by J. Eric Reynolds FINNISH INTERNATIONAL DEVELOPMENT AGENCY FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bujumbura, January 1992 The conclusions and recommendations given in this and other reports in the Research for the Management of the Fisheries on Lake Tanganyika Project series are those considered appropriate at the time of preparation. They may be modified in the light of further knowledge gained at subsequent stages of the Project. The designations employed and the presentation of material in this publication do not imply the expression of any opinion on the part of FAO or FINNIDA concerning the legal status of any country, territory, city or area, or concerning the determination of its frontiers or boundaries. PREFACE The Research for the Management of the Fisheries on Lake Tanganyika project (Tanganyika Research) became fully operational in January 1992. It is executed by the Food and Agriculture organization of the United Nations (FAO) and funded by the Finnish International Development Agency (FINNIDA). This project aims at the determination of the biological basis for fish production on Lake Tanganyika, in order to permit the formulation of a coherent lake-wide fisheries management policy for the four riparian States (Burundi, Tanzania, Zaïre and Zambia). Particular attention will be also given to the reinforcement of the skills and physical facilities of the fisheries research units in all four beneficiary countries as well as to the buildup of effective coordination mechanisms to ensure full collaboration between the Governments concerned.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • A Small Cichlid Species Flock from the Upper Miocene (9–10 MYA)
    Hydrobiologia https://doi.org/10.1007/s10750-020-04358-z (0123456789().,-volV)(0123456789().,-volV) ADVANCES IN CICHLID RESEARCH IV A small cichlid species flock from the Upper Miocene (9–10 MYA) of Central Kenya Melanie Altner . Bettina Reichenbacher Received: 22 March 2020 / Revised: 16 June 2020 / Accepted: 13 July 2020 Ó The Author(s) 2020 Abstract Fossil cichlids from East Africa offer indicate that they represent an ancient small species unique insights into the evolutionary history and flock. Possible modern analogues of palaeolake Waril ancient diversity of the family on the African conti- and its species flock are discussed. The three species nent. Here we present three fossil species of the extinct of Baringochromis may have begun to subdivide haplotilapiine cichlid Baringochromis gen. nov. from their initial habitat by trophic differentiation. Possible the upper Miocene of the palaeolake Waril in Central sources of food could have been plant remains and Kenya, based on the analysis of a total of 78 articulated insects, as their fossilized remains are known from the skeletons. Baringochromis senutae sp. nov., B. same place where Baringochromis was found. sonyii sp. nov. and B. tallamae sp. nov. are super- ficially similar, but differ from each other in oral-tooth Keywords Cichlid fossils Á Pseudocrenilabrinae Á dentition and morphometric characters related to the Palaeolake Á Small species flock Á Late Miocene head, dorsal fin base and body depth. These findings Guest editors: S. Koblmu¨ller, R. C. Albertson, M. J. Genner, Introduction K. M. Sefc & T. Takahashi / Advances in Cichlid Research IV: Behavior, Ecology and Evolutionary Biology. The tropical freshwater fish family Cichlidae and its Electronic supplementary material The online version of estimated 2285 species is famous for its high degree of this article (https://doi.org/10.1007/s10750-020-04358-z) con- phenotypic diversity, trophic adaptations and special- tains supplementary material, which is available to authorized users.
    [Show full text]
  • Hered 347 Master..Hered 347 .. Page702
    Heredity 80 (1998) 702–714 Received 3 June 1997 Phylogeny of African cichlid fishes as revealed by molecular markers WERNER E. MAYER*, HERBERT TICHY & JAN KLEIN Max-Planck-Institut f¨ur Biologie, Abteilung Immungenetik, Corrensstr. 42, D-72076 T¨ubingen, Germany The species flocks of cichlid fish in the three great East African Lakes, Victoria, Malawi, and Tanganyika, have arisen in each lake by explosive adaptive radiation. Various questions concerning their phylogeny have not yet been answered. In particular, the identity of the ancestral founder species and the monophyletic origin of the haplochromine cichlids from the East African lakes have not been established conclusively. In the present study, we used the anonymous nuclear DNA marker DXTU1 as a step towards answering these questions. A 280 bp-fragment of the DXTU1 locus was amplified by the polymerase chain reaction from East African lacustrine species, the East African riverine cichlid species Haplochromis bloyeti, H. burtoni and H. sparsidens, and other African cichlids. Sequencing revealed several indels and substitutions that were used as cladistically informative markers to support a phylogenetic tree constructed by the neighbor-joining method. The topology, although not supported by high bootstrap values, corresponds well to the geographical distribution and previous classifica- tion of the cichlids. Markers could be defined that: (i) differentiate East African from West African cichlids; (ii) distinguish the riverine and Lake Victoria/Malawi haplochromines from Lake Tanganyika cichlids; and (iii) indicate the existence of a monophyletic Lake Victoria cichlid superflock which includes haplochromines from satellite lakes and East African rivers. In order to resolve further the relationship of East African riverine and lacustrine species, mtDNA cytochrome b and control region segments were sequenced.
    [Show full text]
  • Identification and Biology of Diplotaxodon, Rhamphochromis and Pallidochromis
    190 Diplotaxodon, Rhamphochromis & Pallidochromis / Turner et al. Identification and Biology of Diplotaxodon, Rhamphochromis and Pallidochromis George F. Turner, Rosanna L. Robinson, Paul W. Shaw & Gary R. Carvalho Abstract Introduction We present preliminary morphological and mo- The genera Rhamphochromis Regan, 1922 and lecular taxonomic studies of the genera Rhampho- Diplotaxodon Trewavas, 1935 include the most chromis, Diplotaxodon and Pallidochromis, along with pelagic of Lake Malawi’s cichlids (Turner, 1996). notes on their identification, distribution and ecol- Pallidochromis Turner, 1994, a more benthic form, is ogy. We suggest that Rhamphochromis is comprised also considered in this chapter, as it appears mor- of eight to ten species: R. longiceps, R. woodi, R. phologically intermediate between Diplotaxodon macrophthalmus, R. esox, possibly R. ferox and four and Rhamphochromis (Turner 1994a). Rhampho- or five undescribed species. We suggest that R. chromis species are streamlined elongated predators lucius and R. brevis may be junior synonyms of R. of fish and zooplankton. They usually have large woodi. We also believe that Rhamphochromis teeth and jaws. Diplotaxodon comprises a heteroge- leptosoma and R. melanotus are junior synonyms of neous mix of small-toothed silvery species with R. esox. We consider that the two types of R. ferox upwardly-angled jaws. The genus includes zoo- are not conspecific and we designate a lectotype. planktivores and predators of small pelagic fish. However, we have not yet been able to positively The genus Rhamphochromis was described by identify this species from recent collections. Regan (1922), who took the type species as Diplotaxodon may contain anything from 11 to 22 or Rhamphochromis longiceps (Günther, 1864).
    [Show full text]
  • Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye
    Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality Lambert Niyoyitungiye To cite this version: Lambert Niyoyitungiye. Limnological Study of Lake Tanganyika, Africa with Special Emphasis on Piscicultural Potentiality. Biodiversity and Ecology. Assam University Silchar (Inde), 2019. English. tel-02536191 HAL Id: tel-02536191 https://hal.archives-ouvertes.fr/tel-02536191 Submitted on 9 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. “LIMNOLOGICAL STUDY OF LAKE TANGANYIKA, AFRICA WITH SPECIAL EMPHASIS ON PISCICULTURAL POTENTIALITY” A THESIS SUBMITTED TO ASSAM UNIVERSITY FOR PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN LIFE SCIENCE AND BIOINFORMATICS By Lambert Niyoyitungiye (Ph.D. Registration No.Ph.D/3038/2016) Department of Life Science and Bioinformatics School of Life Sciences Assam University Silchar - 788011 India Under the Supervision of Dr.Anirudha Giri from Assam University, Silchar & Co-Supervision of Prof. Bhanu Prakash Mishra from Mizoram University, Aizawl Defence date: 17 September, 2019 To Almighty and merciful God & To My beloved parents with love i MEMBERS OF EXAMINATION BOARD iv Contents Niyoyitungiye, 2019 CONTENTS Page Numbers CHAPTER-I INTRODUCTION .............................................................. 1-7 I.1 Background and Motivation of the Study ..........................................
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 30 April 2021 Order CICHLIFORMES (part 2 of 8) Family CICHLIDAE Cichlids (part 2 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Abactochromis through Greenwoodochromis) Abactochromis Oliver & Arnegard 2010 abactus, driven away, banished or expelled, referring to both the solitary, wandering and apparently non-territorial habits of living individuals, and to the authors’ removal of its one species from Melanochromis, the genus in which it was originally described, where it mistakenly remained for 75 years; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Abactochromis labrosus (Trewavas 1935) thick-lipped, referring to lips produced into pointed lobes Allochromis Greenwood 1980 allos, different or strange, referring to unusual tooth shape and dental pattern, and to its lepidophagous habits; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Allochromis welcommei (Greenwood 1966) in honor of Robin Welcomme, fisheries biologist, East African Freshwater Fisheries Research Organization (Jinja, Uganda), who collected type and supplied ecological and other data Alticorpus Stauffer & McKaye 1988 altus, deep; corpus, body, referring to relatively deep body of all species Alticorpus geoffreyi Snoeks & Walapa 2004 in honor of British carcinologist, ecologist and ichthyologist Geoffrey Fryer (b.
    [Show full text]