The Identity of Pseudotropheus Elongatus, with the Description of P. Longior from Mbamba Bay, Tanzania, and Notes on Genyochromis Mento (Teleostei: Cichlidae)

Total Page:16

File Type:pdf, Size:1020Kb

The Identity of Pseudotropheus Elongatus, with the Description of P. Longior from Mbamba Bay, Tanzania, and Notes on Genyochromis Mento (Teleostei: Cichlidae) 97 Ichthyol. Explor. Freshwaters, Vol. 7, No.2, pp. 97-110,12 figs.,1 tab., September 1996 © 1996 by Verlag Dr. Friedrich Pfeil, Miinchen, FRG- ISSN 0936-9902 The identity of Pseudotropheus elongatus, with the description of P. longior from Mbamba Bay, Tanzania, and notes on Genyochromis mento (Teleostei: Cichlidae) Lothar Seegers * Although Pseudotropheus elongatus was originally described from Mbamba Bay, Tanzania, a species of the P. elongatus-complex from Nkhata Bay, Malawi, has been considered to be the typical P. elongatus. Collections from Mbamba Bay revealed that at least two elongate Pseudotropheus species co-occur. The two extant syntypes of P. elongatus belong to the two species from Mbamba Bay. The specimen pictured by Fryer (1956) is selected as lectotype. The other species is described here as P. longior, new species. A third elongate cichlid, frequent at Mbamba Bay, is Genyochromis menta; some observations on this fish are included. 1956 beschrieb Fryer Pseudotropheus elongatus von Mbamba Bay, Tanzania, wahrend in der Literatur bisher eine Form aus dem P. elongatus-Komplex von Nkhata Bay, Malawi, als P. elongatus im Sinne der Typen angesehen wurde. In Mbamba Bay gibt es zwei gestreckte Pseudotropheus-Arten. Die beiden existierenden Syntypen gehoren unterschiedlichen Taxa an, namlich jeweils einer der beiden bei Mbamba Bay vorkommenden gestreckten Pseudotropheus-Arten. Als Lectotypus fur P. elongatus wurde das Exemplar festgelegt, das von Fryer (1956) abgebildet wurde. Die andere Pseudotropheus-Art wird hier als Pseudotropheus longior n. sp. beschrieben. Eine dritte gestreckte Cichlidenart, die in Mbamba Bay haufig vorkommt, ist Genyochromis menta Trewavas, 1935. Zu dieser Art werden einige Beobachtungen mitgeteilt. Introduction the exceptions of Fryer and Staeck, the collec­ tions of the present author are the first from this In modern times, with few exceptions (Fryer, part of the lake since those of Fulleborn. 1956; Staeck, 1976), systematic research on the Ribbink et al. (1983) and others showed that fishes of Lake Malawi has been done mostly in many cichlids of Lake Malawi, especially the the Malawian waters. Since the time of Fulleborn 'mbuna' (Chitonga name for a group of rock at the end of the last century (not 1925-26 as frequenting cichlids defined by Ribbink et al., suggested by Konings, 1994: 24; see Paepke & 1983), very often are restricted to a limited area, Seegers, 1995) there has been only very limited sometimes not more than a few kilometers of research in the Tanzanian waters of Lake Nyassa rocky shore or a little island. It would be inter­ (as the lake is widely called in Tanzania). With esting, therefore, to know if there are species in * Grenzstraf5e 47 b, D-46535 Dinslaken, Germany. Ichthyol. Explor. Freshwaters, Vol. 7, No.2 98 Fig. 1. The type locality ofPseudotropheus elongatus andP .longior south ofMbamba Bay. To the left of the sandy shore is Chinyangi Point; Mbamba Bay is situated behind that landmark. In the foreground some rocks whereP. elongatus and P. longior were collected. the Tanzanian waters of the lake which are dif­ lateral view shows the highest point of the body ferent from those known from the Malawian at the origin of the dorsal fin. From this point shores and to determine their distribution. the body gets more and more slender to reach Unfortunately, there is a serious misunder­ the least depth at the caudal peduncle. The draw­ standing about the identity of P. elongatus. Not ing of Fryer does not show such a gentle de­ only Ribbink et al. (1983: 189), but all authors in crease of the body depth, but in his fish the the scientific and aquarium literature (Staeck, greatest body depth is near the end of the pelvic 1988: 83; Stauffer, 1988; Konings, 1989) consider fins (at about the middle of the body). Finally, a fish from Nkhata Bay as P. elongatus in the the fins disagree, especially the dorsal fin which sense of the types. is much deeper in the drawing of Fryer and has Fryer (1956) described four 'mbunas': Pseu­ a different shape, and the caudal fin, which has dotropheus minutus, P. elongatus, P. fuscoides and a concave margin in Fryer's drawing, whereas Labidochromis caeruleus. While the drawings of the margin of the caudal fin in Ribbink et al. is P. minutus and L. caeruleus coincide with the liv­ not concave but truncate or slightly convex and ing fish, this is not the case with P. elongatus. much more rounded. In conclusion either the First of all, the forehead is much too curved and drawing in Fryer (1956) is very crude (which the mouth is large and slightly subterminal. The contradicts the accuracy of the drawings of at lips are much thicker than those shown in the least P. minutus and L. caeruleus), or the illus­ drawing in Ribbink et al. (1983: 183). The diam­ trated species is not identical with the F. elongatus eter of the eye is strikingly large. Moreover, the of subsequent authors including Ribbink et al. body is rather deep in relation to its length. The (1983). drawing of P. elongatus in Ribbink et al. (1983) in Seegers: Pseudotropheus elongatus and P. longior 99 Because of all these contradictions, it was 64). Collections were made at some rocks at the desirable to collect at the type locality of P. elon­ northern end of the bay where the road to Liuli gatus and to compare that material with the types. leaves the village and from about 1,000 m south In fact, the text in Fryer (1956: 85) is not of the landspit of Chinyangi-Point which is situ­ unequivocal: 'Occurrence: The three specimens ated in the south of Mbamba Bay. Further collec­ of this species from which the above description tions were made at Maunyuni Rocks, located was prepared were collected at Mbamba Bay on approximately 700 m off shore to the west of the eastern shore of the lake. Three juvenile Chinyangi Point and from a small bay with a specimens have also been collected on the west­ rocky shore at the western side of Ngkuyo Is­ ern shore, at Nkata Bay'. Following of numer­ land, a small island about 6 km southeast of ous discussions with colleagues, I interpret the Mbamba Bay. Most of the material was collected first sentence as a designation of syntypes ac­ south of Chinyangi Point and at Maunyuni Rocks. cording to ICZN art. 72 (a) (i), (b) (i) and espe­ Live fishes were taken to Germany and used for cially (vi). The 'three juvenile specimens' which color notes, photography or behavioral studies. 'have also been collected' in my opinion are Standard length (SL) is used throughout. mentioned separately from those from which External counts and measurements widely fol­ the description was prepared. This 'separate low Barel et al. (1977). Scales in the lateral line mention of the latter expressly excludes them series are counted as described in Trewavas from the type series.' [ICZN art. 72 (b) (vi)]. In (1983: 39). All counts and measurements were this interpretation, the type locality of the made on the left side of the fish where possible. syntypes used in the original description is The material is deposited in the Natural Mbamba Bay; the Nkhata Bay specimens thus History Museum, London (BMNH) and the cannot be regarded as types. If, however, the text Zoologisches Museum der Humboldt Uni­ is interpreted as not excluding of the Nkhata Bay versitat, Berlin (ZMB). specimens, then these specimens would also belong to the syntype series and both localities would constitute the type locality. Beside from Pseudotropheus elongatus Fryer these technical and theoretical discussions the (Figs. 2a, 3a, 4a, 5, 6) fact is that Fryer deposited only two syntypes of P. elongatus from Mbamba Bay in a museum; Material examined. BMNH 1956.9.4:1 (Fig. 3 top, Nkhata Bay specimens never were deposited as 4 top), lectotype (present designation), male (?) types or non-types (see below). 65.9 mm SL; 76.4 mm TL; Mbamba Bay, L. Nyasa, Ribbink et al. (1983) were able to show that Tanzania; G. Fryer. - BMNH 1995.8.15:1-5, there are several populations in Lake Malawi 5 spms., 74.9-95.2 mm SL; Tanzania, Lake Nyassa which resemble P. elongatus from Nkhata Bay, or Malawi, about 1,000 m south of Chinyangi­ Malawi. Ribbink et al. (1983) recognize 24 differ­ Point, south of Mbamba Bay (TZ 90/117); col­ ent populations or even species. Since their lected alive April1990, preserved December 1990; publication, some of these populations have been B. Kilian & L. Seegers. - BMNH 1995.8.15: 6-8, formally described (Stauffer, 1988). The species 3 spms., 41.7-56.9 mm SL; same data, preserved to which these populations are compared is in the field.- ZMB 32.558,5 spms., 59.3-70.3 mm P. elongatus Fryer, 1956. It is the purpose of this SL; same data, preserved in the field. paper to redescribe this basic form to avoid further confusion. Diagnosis. A rock-dwelling cichlid ('mbuna') of the genus Pseudotropheus which is morpho­ logically similar to the relatively short and com­ Material and methods pact species of the P. elongatus complex as de­ fined by Ribbink et al. (1983). It is distinguished Fishes were collected by chasing them into a from most species of this complex by the com­ monofilament net (10m x 1m x 0.4cm mesh size) bination of the following characters: its deep and removed with a hand net at Mbamba Bay, and short body (body depth 27.7-31.4% SL), the Tanzania, in April, 1990. Mbamba Bay consists convex forehead profile and the coloration con­ of a shallow sandy beach, but is surrounded by sisting of 7-8 blue vertical bars on a dark brown rocky shores (Fig.
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • Phylogeny of a Rapidly Evolving Clade: the Cichlid Fishes of Lake Malawi
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5107–5110, April 1999 Evolution Phylogeny of a rapidly evolving clade: The cichlid fishes of Lake Malawi, East Africa (adaptive radiationysexual selectionyspeciationyamplified fragment length polymorphismylineage sorting) R. C. ALBERTSON,J.A.MARKERT,P.D.DANLEY, AND T. D. KOCHER† Department of Zoology and Program in Genetics, University of New Hampshire, Durham, NH 03824 Communicated by John C. Avise, University of Georgia, Athens, GA, March 12, 1999 (received for review December 17, 1998) ABSTRACT Lake Malawi contains a flock of >500 spe- sponsible for speciation, then we expect that sister taxa will cies of cichlid fish that have evolved from a common ancestor frequently differ in color pattern but not morphology. within the last million years. The rapid diversification of this Most attempts to determine the relationships among cichlid group has been attributed to morphological adaptation and to species have used morphological characters, which may be sexual selection, but the relative timing and importance of prone to convergence (8). Molecular sequences normally these mechanisms is not known. A phylogeny of the group provide the independent estimate of phylogeny needed to infer would help identify the role each mechanism has played in the evolutionary mechanisms. The Lake Malawi cichlids, however, evolution of the flock. Previous attempts to reconstruct the are speciating faster than alleles can become fixed within a relationships among these taxa using molecular methods have species (9, 10). The coalescence of mtDNA haplotypes found been frustrated by the persistence of ancestral polymorphisms within populations predates the origin of many species (11). In within species.
    [Show full text]
  • Kenyi Cichlid (Maylandia Lombardoi) Ecological Risk Screening Summary
    Kenyi Cichlid (Maylandia lombardoi) Ecological Risk Screening Summary U.S. Fish and Wildlife Service, April 2011 Revised, July 2018 Web Version, 8/3/2018 Photo: Ged~commonswiki. Public domain. Available: https://commons.wikimedia.org/wiki/File:Maylandia_lombardoi.jpg. (July 2018). 1 Native Range and Status in the United States Native Range From Kasembe (2017): “Endemic to Lake Malawi. Occurs at Mbenji Island and Nkhomo reef [Malawi].” From Froese and Pauly (2018): “Africa: Endemic to Mbenji Island, Lake Malawi [Malawi].” 1 Status in the United States This species has not been reported as introduced or established in the United States. This species is in trade in the United States. From Imperial Tropicals (2018): “Kenyi Cichlid (Pseudotropheus lombardoi) […] $ 7.99 […] UNSEXED 1” FISH” Means of Introductions in the United States This species has not been reported as introduced or established in the United States. Remarks There is taxonomic uncertainty concerning Maylandia lombardoi. Because it has recently been grouped in the genera Metriaclima and Pseudotropheus, these names were also used when searching for information in preparation of this assessment. From Kasembe (2017): “This species previously appeared on the IUCN Red List in the genus Maylandia but is now considered valid in the genus Metriaclima (Konings 2016, Stauffer et al. 2016).” From Seriously Fish (2018): “There is ongoing debate as to the true genus of this species, it having been variously grouped in both Maylandia and Metriaclima, as well as the currently valid Pseudotropheus.
    [Show full text]
  • Indian and Madagascan Cichlids
    FAMILY Cichlidae Bonaparte, 1835 - cichlids SUBFAMILY Etroplinae Kullander, 1998 - Indian and Madagascan cichlids [=Etroplinae H] GENUS Etroplus Cuvier, in Cuvier & Valenciennes, 1830 - cichlids [=Chaetolabrus, Microgaster] Species Etroplus canarensis Day, 1877 - Canara pearlspot Species Etroplus suratensis (Bloch, 1790) - green chromide [=caris, meleagris] GENUS Paretroplus Bleeker, 1868 - cichlids [=Lamena] Species Paretroplus dambabe Sparks, 2002 - dambabe cichlid Species Paretroplus damii Bleeker, 1868 - damba Species Paretroplus gymnopreopercularis Sparks, 2008 - Sparks' cichlid Species Paretroplus kieneri Arnoult, 1960 - kotsovato Species Paretroplus lamenabe Sparks, 2008 - big red cichlid Species Paretroplus loisellei Sparks & Schelly, 2011 - Loiselle's cichlid Species Paretroplus maculatus Kiener & Mauge, 1966 - damba mipentina Species Paretroplus maromandia Sparks & Reinthal, 1999 - maromandia cichlid Species Paretroplus menarambo Allgayer, 1996 - pinstripe damba Species Paretroplus nourissati (Allgayer, 1998) - lamena Species Paretroplus petiti Pellegrin, 1929 - kotso Species Paretroplus polyactis Bleeker, 1878 - Bleeker's paretroplus Species Paretroplus tsimoly Stiassny et al., 2001 - tsimoly cichlid GENUS Pseudetroplus Bleeker, in G, 1862 - cichlids Species Pseudetroplus maculatus (Bloch, 1795) - orange chromide [=coruchi] SUBFAMILY Ptychochrominae Sparks, 2004 - Malagasy cichlids [=Ptychochrominae S2002] GENUS Katria Stiassny & Sparks, 2006 - cichlids Species Katria katria (Reinthal & Stiassny, 1997) - Katria cichlid GENUS
    [Show full text]
  • Species Composition and Invasion Risks of Alien Ornamental Freshwater
    www.nature.com/scientificreports OPEN Species composition and invasion risks of alien ornamental freshwater fshes from pet stores in Klang Valley, Malaysia Abdulwakil Olawale Saba1,2, Ahmad Ismail1, Syaizwan Zahmir Zulkifi1, Muhammad Rasul Abdullah Halim3, Noor Azrizal Abdul Wahid4 & Mohammad Noor Azmai Amal1* The ornamental fsh trade has been considered as one of the most important routes of invasive alien fsh introduction into native freshwater ecosystems. Therefore, the species composition and invasion risks of fsh species from 60 freshwater fsh pet stores in Klang Valley, Malaysia were studied. A checklist of taxa belonging to 18 orders, 53 families, and 251 species of alien fshes was documented. Fish Invasiveness Screening Test (FIST) showed that seven (30.43%), eight (34.78%) and eight (34.78%) species were considered to be high, medium and low invasion risks, respectively. After the calibration of the Fish Invasiveness Screening Kit (FISK) v2 using the Receiver Operating Characteristics, a threshold value of 17 for distinguishing between invasive and non-invasive fshes was identifed. As a result, nine species (39.13%) were of high invasion risk. In this study, we found that non-native fshes dominated (85.66%) the freshwater ornamental trade in Klang Valley, while FISK is a more robust tool in assessing the risk of invasion, and for the most part, its outcome was commensurate with FIST. This study, for the frst time, revealed the number of high-risk ornamental fsh species that give an awareness of possible future invasion if unmonitored in Klang Valley, Malaysia. As a global hobby, fshkeeping is cherished by both young and old people.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 5) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 10.0 - 11 May 2021 Order CICHLIFORMES (part 5 of 8) Family CICHLIDAE Cichlids (part 5 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Palaeoplex through Yssichromis) Palaeoplex Schedel, Kupriyanov, Katongo & Schliewen 2020 palaeoplex, a key concept in geoecodynamics representing the total genomic variation of a given species in a given landscape, the analysis of which theoretically allows for the reconstruction of that species’ history; since the distribution of P. palimpsest is tied to an ancient landscape (upper Congo River drainage, Zambia), the name refers to its potential to elucidate the complex landscape evolution of that region via its palaeoplex Palaeoplex palimpsest Schedel, Kupriyanov, Katongo & Schliewen 2020 named for how its palaeoplex (see genus) is like a palimpsest (a parchment manuscript page, common in medieval times that has been overwritten after layers of old handwritten letters had been scraped off, in which the old letters are often still visible), revealing how changes in its landscape and/or ecological conditions affected gene flow and left genetic signatures by overwriting the genome several times, whereas remnants of more ancient genomic signatures still persist in the background; this has led to contrasting hypotheses regarding this cichlid’s phylogenetic position Pallidochromis Turner 1994 pallidus, pale, referring to pale coloration of all specimens observed at the time; chromis, a name
    [Show full text]
  • Patterns and Process During the Diversification of the Cichlid Fishes in Lake Malawi, Africa Michael R
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Fall 2006 Patterns and process during the diversification of the cichlid fishes in Lake Malawi, Africa Michael R. Kidd University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Kidd, Michael R., "Patterns and process during the diversification of the cichlid fishes in Lake Malawi, Africa" (2006). Doctoral Dissertations. 342. https://scholars.unh.edu/dissertation/342 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. PATTERNS AND PROCESS DURING THE DIVERSIFICATION OF THE CICHLID FISHES IN LAKE MALAWI, AFRICA BY MICHAEL R. KIDD BA, Williams College, 1991 DISSERTATION Submitted to the University of New Hampshire In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Zoology September, 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3231355 Copyright 2006 by Kidd, Michael R. All rights reserved. INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted.
    [Show full text]
  • View/Download
    CICHLIFORMES: Cichlidae (part 2) · 1 The ETYFish Project © Christopher Scharpf and Kenneth J. Lazara COMMENTS: v. 4.0 - 30 April 2021 Order CICHLIFORMES (part 2 of 8) Family CICHLIDAE Cichlids (part 2 of 7) Subfamily Pseudocrenilabrinae African Cichlids (Abactochromis through Greenwoodochromis) Abactochromis Oliver & Arnegard 2010 abactus, driven away, banished or expelled, referring to both the solitary, wandering and apparently non-territorial habits of living individuals, and to the authors’ removal of its one species from Melanochromis, the genus in which it was originally described, where it mistakenly remained for 75 years; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Abactochromis labrosus (Trewavas 1935) thick-lipped, referring to lips produced into pointed lobes Allochromis Greenwood 1980 allos, different or strange, referring to unusual tooth shape and dental pattern, and to its lepidophagous habits; chromis, a name dating to Aristotle, possibly derived from chroemo (to neigh), referring to a drum (Sciaenidae) and its ability to make noise, later expanded to embrace cichlids, damselfishes, dottybacks and wrasses (all perch-like fishes once thought to be related), often used in the names of African cichlid genera following Chromis (now Oreochromis) mossambicus Peters 1852 Allochromis welcommei (Greenwood 1966) in honor of Robin Welcomme, fisheries biologist, East African Freshwater Fisheries Research Organization (Jinja, Uganda), who collected type and supplied ecological and other data Alticorpus Stauffer & McKaye 1988 altus, deep; corpus, body, referring to relatively deep body of all species Alticorpus geoffreyi Snoeks & Walapa 2004 in honor of British carcinologist, ecologist and ichthyologist Geoffrey Fryer (b.
    [Show full text]
  • NAME Ad Konings BOOK Back to Nature Malawi 2Nd Edition $75.8 Ad Konings BOOK Tanganjika Cichlids 3Rd Edition NEW !! $174.9 Ad Ko
    NAME Ad Konings BOOK Back to Nature Malawi 2nd Edition $75.8 Ad Konings BOOK Tanganjika Cichlids 3rd Edition NEW !! $174.9 Ad Konings BOOK The Cichlids of Lake Malawi National Park NEW $105.1 Ad Konings BOOK Tropheus in their natural habitat $92.3 Aristochromis christyi 12 - 13 cm $56.5 Aristochromis christyi 13 - 17 cm NICE $75.8 Aristochromis christyi 4 - 5 cm $17.9 Aristochromis christyi 7 - 8 cm $23.0 Aulonocara baenschi Benga 5 - 6 cm $19.3 Aulonocara baenschi Benga 8 - 10 cm $40.4 Aulonocara chitande Nkatha Bay yellow head 8 - 10 cm $44.6 Aulonocara ethelwynnae 7 - 10 cm RARE $40.4 Aulonocara gertrudae Nkanda 7 - 10 cm RARE $34.9 Aulonocara hansbaenschi Chiloelo 8 - 11 cm $40.4 Aulonocara hansbaenschi red flash 4 - 5 cm $17.1 Aulonocara hansbaenschi red flash 8 - 11 cm $40.9 Aulonocara hueseri 3 - 4 cm $17.5 Aulonocara hueseri 8 - 10 cm $40.4 Aulonocara jacobfreibergi Cape Maclear 8 - 10 cm $40.4 Aulonocara jacobfreibergi Otter Point 7 - 10 cm F1 ! $40.4 Aulonocara jacobfreibergi Tsano Rock 4 - 5 cm F1 ! $21.1 Aulonocara kandeensis blue orchid 6 - 7 cm $25.3 Aulonocara korneliae 6 - 7 cm $25.3 Aulonocara maleri Chipoka 8 - 10 cm $40.9 Aulonocara maleri maleri 8 - 11 cm $40.9 Aulonocara maylandi 4 - 5 cm $17.0 Aulonocara maylandi 6 - 7 cm $25.3 Aulonocara maylandi 8 - 10 cm $40.4 Aulonocara nyassae Mazinzi 3 - 5 cm F1! VERY RARE $24.8 Aulonocara rostratum 4 - 6 cm RARE $20.5 Aulonocara rostratum 7 - 9 cm RARE $34.9 Aulonocara rostratum dwarf 7 - 9 cm NEW $34.9 Aulonocara rostratum dwarf 9 - 12 cm NEW $40.4 Aulonocara saulosi 4 - 5 cm $18.4 Aulonocara spec.
    [Show full text]
  • Capsicum Annuum) on Growth Performance, Coloration, Histology and Protection Against Aeromonas Sobria in Yellow Tail Cichlid, Pseudotropheus Acei
    Acta Aquatica Turcica E-ISSN: 2651-5474 15(3), 340-346 (2019) DOI: https://doi.org/10.22392/actaquatr.529007 The Effects of Dietary Administration with High Level Red Pepper (Capsicum annuum) on Growth Performance, Coloration, Histology and Protection Against Aeromonas sobria in Yellow Tail Cichlid, Pseudotropheus acei Nalan Özgür YİĞİT1 , Seval BAHADIR KOCA1 , Özlem ÖZMEN2 , Behire Işıl DİDİNEN1 , Seçil METİN1* 1Isparta Applied Sciences University, Eğirdir Fisheries Faculty, Isparta, Turkey 2Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Pathology, Burdur, Turkey Corresponding Author: [email protected] Research Article Received 19 February 2019; Accepted 24 April 2019; Release date 15 September 2019. How to Cite: Yiğit, N. Ö., Bahadır Koca, S., Özmen, Ö., Didinen, B. I., & Metin, S. (2019). The effects of dietary administration with high level red pepper (Capsicum annuum) on growth performance, coloration, histology and protection against Aeromonas sobria in yellow tail cichlid, Pseudotropheus acei. Acta Aquatica Turcica, 15(3), 340-346. https://doi.org/10.22392/actaquatr.529007 Abstract The present study was conducted to determine the effects of high level red pepper supplementation to diet on the growth performance, coloration, histology, intestinal microflora and protection against Aeromonas sobria in yellow tail cichlid (Pseudotropheus acei). Two isonitrogenous (37% crude protein) and isocaloric (3831 kcall/kg Gross energy) experimental diets were prepared by adding of 15% pepper meal to control diet. The feeding trial was conducted in triplicate for 90 day in aquariums (80 L). At the beginning of the experiment, twenty fish (initial weight 0.06 g) were stocked into each aquarium. The end of the experiment, fish fed red pepper supplemented to diets did not have any marked effect on the weight gain, feed conversion ratio, specific growth rate and survival.
    [Show full text]
  • Chromosome Differentiation Patterns During Cichlid Fish Evolution
    Poletto et al. BMC Genetics 2010, 11:50 http://www.biomedcentral.com/1471-2156/11/50 RESEARCH ARTICLE Open Access ChromosomeResearch article differentiation patterns during cichlid fish evolution Andréia B Poletto1, Irani A Ferreira1, Diogo C Cabral-de-Mello1, Rafael T Nakajima1, Juliana Mazzuchelli1, Heraldo B Ribeiro1, Paulo C Venere2, Mauro Nirchio3, Thomas D Kocher4 and Cesar Martins*1 Abstract Background: Cichlid fishes have been the subject of increasing scientific interest because of their rapid adaptive radiation which has led to an extensive ecological diversity and their enormous importance to tropical and subtropical aquaculture. To increase our understanding of chromosome evolution among cichlid species, karyotypes of one Asian, 22 African, and 30 South American cichlid species were investigated, and chromosomal data of the family was reviewed. Results: Although there is extensive variation in the karyotypes of cichlid fishes (from 2n = 32 to 2n = 60 chromosomes), the modal chromosome number for South American species was 2n = 48 and the modal number for the African ones was 2n = 44. The only Asian species analyzed, Etroplus maculatus, was observed to have 46 chromosomes. The presence of one or two macro B chromosomes was detected in two African species. The cytogenetic mapping of 18S ribosomal RNA (18S rRNA) gene revealed a variable number of clusters among species varying from two to six. Conclusions: The karyotype diversification of cichlids seems to have occurred through several chromosomal rearrangements involving fissions, fusions and inversions. It was possible to identify karyotype markers for the subfamilies Pseudocrenilabrinae (African) and Cichlinae (American). The karyotype analyses did not clarify the phylogenetic relationship among the Cichlinae tribes.
    [Show full text]
  • Attachment 1
    ZB13.6 TORONTO ZOO ANIMAL LIVES WITH PURPOSE INSTITUTIONAL ANIMAL PLAN 2020 OUR MISSION: Our Toronto Zoo - Connecting animals, people and conservation science to fight extinction OUR VISION: A world where wildlife and wild spaces thrive TABLE OF CONTENTS EXECUTIVE SUMMARY ....................................................................................................................... 3 Position Statement ............................................................................................................................. 4 A Living Plan ...................................................................................................................................... 4 Species Scoring and Selection Criteria .............................................................................................. 5 Themes and Storylines ....................................................................................................................... 7 African Rainforest Pavilion .................................................................................................................... 9 African Savanna .................................................................................................................................. 13 Indo-Malaya Pavilion ........................................................................................................................... 16 Eurasia Wilds ......................................................................................................................................
    [Show full text]