Properties of Electromagnetic Waves Any Electromagnetic Wave Must Satisfy Four Basic Conditions: 1

Total Page:16

File Type:pdf, Size:1020Kb

Properties of Electromagnetic Waves Any Electromagnetic Wave Must Satisfy Four Basic Conditions: 1 Chapter 34 Electromagnetic Waves The Goal of the Entire Course Maxwell’s Equations: Maxwell’s Equations James Clerk Maxwell •1831 – 1879 •Scottish theoretical physicist •Developed the electromagnetic theory of light •His successful interpretation of the electromagnetic field resulted in the field equations that bear his name. •Also developed and explained – Kinetic theory of gases – Nature of Saturn’s rings – Color vision Start at 12:50 https://www.learner.org/vod/vod_window.html?pid=604 Correcting Ampere’s Law Two surfaces S1 and S2 near the plate of a capacitor are bounded by the same path P. Ampere’s Law states that But it is zero on S2 since there is no conduction current through it. This is a contradiction. Maxwell fixed it by introducing the displacement current: Fig. 34-1, p. 984 Maxwell hypothesized that a changing electric field creates an induced magnetic field. Induced Fields . An increasing solenoid current causes an increasing magnetic field, which induces a circular electric field. An increasing capacitor charge causes an increasing electric field, which induces a circular magnetic field. Slide 34-50 Displacement Current d d(EA)d(q / ε) 1 dq E 0 dt dt dt ε0 dt dq d ε E dt0 dt The displacement current is equal to the conduction current!!! Bsd μ I μ ε I o o o d Maxwell’s Equations The First Unified Field Theory In his unified theory of electromagnetism, Maxwell showed that electromagnetic waves are a natural consequence of the fundamental laws expressed in these four equations: q EABAdd 0 εo dd Edd s BE B s μ I μ ε dto o o dt QuickCheck 34.4 The electric field is increasing. Which is the induced magnetic field? E. There’s no induced field in this case. Slide 34-48 QuickCheck 34.4 The electric field is increasing. Which is the induced magnetic field? E. There’s no induced field in this case. Slide 34-49 We want to get EM Waves!! A sinusoidal electromagnetic wave moves in the positive x direction with a speed c. Fig. 34-8, p. 990 Need Some1-C Vector Calculus Put Maxwell’s Equations in Vector Form Put Maxwell’s Equations in Vector Form 1st : Maxwell’s Equations in Free Space No charges or conduction currents: EABAdd 0 0 dd Edd s BE B s με dtoo dt Divergence: EB 0 0 BE Curl: EB με tt00 2nd: Take the Curl of Faraday’s and Ampere’s Laws Changing E Field Produces B field and visa versa EB xt Changing E Field Produces B field and visa versa EB xt 3rd: Derive EM Wave Equations From Maxwell’s equations applied to empty space, the following can be derived: 2EEBB 2 2 2 μ ε and μ ε x2o o t 2 x 2 o o t 2 These are one dimensional wave equations of the standard form: With wave speed: 1 vc μεoo 4: Solutions are waves! The simplest solution to the partial differential equations is a sinusoidal wave: E(x,t) = Emax cos (kx – ωt) B(x,t) = Bmax cos (kx – ωt) E ω max c Bkmax The angular wave number is k = 2π/λ λ is the wavelength ωπ2 ƒ The angular frequency is ω = 2πƒ λcƒ ƒ is the wave frequency k 2πλ The EM Spectrum •Note the overlap between types of waves •Visible light is a small portion of the spectrum. •Types are distinguished by frequency or wavelength Section 34.7 Energy of Light 106 eV 104 eV 12 eV 40eV KeV MeV Energy to ionize atom or molecule: 10-1000eV Electromagnetic Waves Factoids •Mechanical waves require the presence of a medium. •Electromagnetic waves can propagate through empty space. •Maxwell’s equations form the theoretical basis of all electromagnetic waves that propagate through space at the speed of light. •Hertz confirmed Maxwell’s prediction when he generated and detected electromagnetic waves in 1887. •Electromagnetic waves are generated by oscillating electric charges. – The waves radiated from the oscillating charges can be detected at great distances. •Electromagnetic waves carry energy and momentum. •Electromagnetic waves cover many frequencies. Summary: Properties of Electromagnetic Waves Any electromagnetic wave must satisfy four basic conditions: 1. The fields E and B and are perpendicular to the direction of propagation vem.Thus an electromagnetic wave is a transverse wave. 2. E and B are perpendicular to each other in a manner such that E × B is in the direction of vem. 3. The wave travels in vacuum at speed vem = c 4. E = cB at any point on the wave. Properties of Electromagnetic Waves The energy flow of an electromagnetic wave is described by the Poynting vector defined as The magnitude of the Poynting vector is The intensity of an electromagnetic wave whose electric field amplitude is E0 is Energy Density •The energy density, u, is the energy per unit volume. 2 •For the electric field, uE= ½ εoE 2 •For the magnetic field, uB = ½ μoB •Since B = E/c and 2 1 2 B uuB E εE o 22μo The instantaneous energy density associated with the magnetic field of an em wave equals the instantaneous energy density associated with the electric field. In a given volume, the energy is shared equally by the two fields. Intensity and Energy Density The intensity (brightness) of an EM wave equals the average energy density multiplied by the speed of light. It is also proportional to the Amplitude squared of the wave! •The total instantaneous energy density is the sum of the energy densities associated with each field. 2 2 u =uE + uB = εoE = B / μo •When this is averaged over one or more cycles, the total average becomes 2 2 2 uavg = εo(E )avg = ½ εoE max = B max / 2μo I = Savg = cuavg 2 2 2 uavg = εo(E )avg = ½ εoE max = B max / 2μo E max c Bmax 2 2 2 uavg = εo(E )avg = ½ εoE max = B max / 2μo QuickCheck 34.5 To double the intensity of an electromagnetic wave, you should increase the amplitude of the electric field by a factor of A. 0.5. B. 0.707. C. 1.414. D. 2. E. 4. Slide 34-61 QuickCheck 34.5 To double the intensity of an electromagnetic wave, you should increase the amplitude of the electric field by a factor of A. 0.5. B. 0.707. C. 1.414. D. 2. E. 4 Slide 34-62 QuickCheck 34.6 An electromagnetic plane wave is coming toward you, out of the screen. At one instant, the electric field looks as shown. Which is the wave’s magnetic field at this instant? E. The magnetic field is instantaneously zero. © 2013 Pearson Education, Inc. Slide 34-63 QuickCheck 34.6 An electromagnetic plane wave is coming toward you, out of the screen. At one instant, the electric field looks as shown. Which is the wave’s magnetic field at this instant? is in the direction of motion. E. The magnetic field is instantaneously zero. © 2013 Pearson Education, Inc. Slide 34-64 QuickCheck 34.7 In which direction is this electro-magnetic wave traveling? A. Up. B. Down. C. Into the screen. D. Out of the screen. E. These are not allowable fields for an electromagnetic wave. © 2013 Pearson Education, Inc. Slide 34-65 QuickCheck 34.7 In which direction is this electro-magnetic wave traveling? A. Up. is in the direction of motion. B. Down. C. Into the screen. D. Out of the screen. E. These are not allowable fields for an electromagnetic wave. © 2013 Pearson Education, Inc. Slide 34-66 Radiation Pressure It’s interesting to consider the force of an electromagnetic wave exerted on an object per unit area, which is called the radiation pressure prad. The radiation pressure on an object that absorbs all the light is IS av g where I is the intensity of the light wave. For a perfectly reflecting surface, p = 2I/c=2S/c Radiation Pressure . Electromagnetic waves transfer not only energy but also momentum. Suppose we shine a beam of light on an object that completely absorbs the light energy. The momentum transfer will exert an average radiation pressure on the surface: Artist’s conception of a future spacecraft powered by radiation pressure from where I is the intensity the sun. of the light wave. Slide 34-70 Radiation Pressure What is the maximum radiation pressure exerted by sunlight in space (S = 1350 W/m2) on a highly polished silver surface? For a perfectly reflecting surface, p = 2I/c=2S/c Accelerating Charges All forms of the various types of EM waves are produced by the same phenomenon – accelerating charges. Oscillating Charges Radio & Microwave Frequency of EM wave is the same as the frequency of oscillation. Heinrich Rudolf Hertz •1857 – 1894 •German physicist •First to generate and detect electromagnetic waves in a laboratory setting •The most important discoveries were in 1887. •He also showed other wave aspects of light. Section 34.2 Hertz’s Experiment •From a circuit viewpoint, this is equivalent to an LC circuit. •Sparks were induced across the gap of the receiving electrodes when the frequency of the receiver was adjusted to match that of the transmitter. •In a series of other experiments, Hertz also showed that the radiation generated by this equipment exhibited wave properties. – Interference, diffraction, reflection, refraction and polarization •He also measured the speed of the radiation. – It was close to the known value of the speed of light. Production of EM Waves by an Antenna •This is a half-wave antenna. •Two conducting rods are connected to a source of alternating voltage. •The length of each rod is one-quarter of the wavelength of the radiation to be emitted.
Recommended publications
  • Section 22-3: Energy, Momentum and Radiation Pressure
    Answer to Essential Question 22.2: (a) To find the wavelength, we can combine the equation with the fact that the speed of light in air is 3.00 " 108 m/s. Thus, a frequency of 1 " 1018 Hz corresponds to a wavelength of 3 " 10-10 m, while a frequency of 90.9 MHz corresponds to a wavelength of 3.30 m. (b) Using Equation 22.2, with c = 3.00 " 108 m/s, gives an amplitude of . 22-3 Energy, Momentum and Radiation Pressure All waves carry energy, and electromagnetic waves are no exception. We often characterize the energy carried by a wave in terms of its intensity, which is the power per unit area. At a particular point in space that the wave is moving past, the intensity varies as the electric and magnetic fields at the point oscillate. It is generally most useful to focus on the average intensity, which is given by: . (Eq. 22.3: The average intensity in an EM wave) Note that Equations 22.2 and 22.3 can be combined, so the average intensity can be calculated using only the amplitude of the electric field or only the amplitude of the magnetic field. Momentum and radiation pressure As we will discuss later in the book, there is no mass associated with light, or with any EM wave. Despite this, an electromagnetic wave carries momentum. The momentum of an EM wave is the energy carried by the wave divided by the speed of light. If an EM wave is absorbed by an object, or it reflects from an object, the wave will transfer momentum to the object.
    [Show full text]
  • The Human Ear  Hearing, Sound Intensity and Loudness Levels
    UIUC Physics 406 Acoustical Physics of Music The Human Ear Hearing, Sound Intensity and Loudness Levels We’ve been discussing the generation of sounds, so now we’ll discuss the perception of sounds. Human Senses: The astounding ~ 4 billion year evolution of living organisms on this planet, from the earliest single-cell life form(s) to the present day, with our current abilities to hear / see / smell / taste / feel / etc. – all are the result of the evolutionary forces of nature associated with “survival of the fittest” – i.e. it is evolutionarily{very} beneficial for us to be able to hear/perceive the natural sounds that do exist in the environment – it helps us to locate/find food/keep from becoming food, etc., just as vision/sight enables us to perceive objects in our 3-D environment, the ability to move /locomote through the environment enhances our ability to find food/keep from becoming food; Our sense of balance, via a stereo-pair (!) of semi-circular canals (= inertial guidance system!) helps us respond to 3-D inertial forces (e.g. gravity) and maintain our balance/avoid injury, etc. Our sense of taste & smell warn us of things that are bad to eat and/or breathe… Human Perception of Sound: * The human ear responds to disturbances/temporal variations in pressure. Amazingly sensitive! It has more than 6 orders of magnitude in dynamic range of pressure sensitivity (12 orders of magnitude in sound intensity, I p2) and 3 orders of magnitude in frequency (20 Hz – 20 KHz)! * Existence of 2 ears (stereo!) greatly enhances 3-D localization of sounds, and also the determination of pitch (i.e.
    [Show full text]
  • Reflection and Refraction of Light
    Reflection and refraction When light hits a surface, one or more of three things may happen. The light may be reflected back from the surface, transmitted through the material (in which case it will deviate from its initial direction, a process known as refraction) or absorbed by the material if it is not transparent at the wavelength of the incident light. 1. Reflection and refraction Reflection and refraction are governed by two very simple laws. We consider a light wave travelling through medium 1 and striking medium 2. We define the angle of incidence θ as the angle between the incident ray and the normal to the surface (a vector pointing out perpendicular to the surface). For reflection, the reflected ray lies in the plane of incidence, and θ1’ = θ1 For refraction, the refracted ray lies in the plane of incidence, and n1sinθ1 = n2sinθ2 (this expression is called Snell’s law). In the above equations, ni is a dimensionless constant known as the θ1 θ1’ index of refraction or refractive index of medium i. In addition to reflection determining the angle of refraction, n also determines the speed of the light wave in the medium, v = c/n. Just as θ1 is the angle between refraction θ2 the incident ray and the surface normal outside the medium, θ2 is the angle between the transmitted ray and the surface normal inside the medium (i.e. pointing out from the other side of the surface to the original surface normal) 2. Total internal reflection A consequence of Snell’s law is a phenomenon known as total internal reflection.
    [Show full text]
  • Chapter 12: Physics of Ultrasound
    Chapter 12: Physics of Ultrasound Slide set of 54 slides based on the Chapter authored by J.C. Lacefield of the IAEA publication (ISBN 978-92-0-131010-1): Diagnostic Radiology Physics: A Handbook for Teachers and Students Objective: To familiarize students with Physics or Ultrasound, commonly used in diagnostic imaging modality. Slide set prepared by E.Okuno (S. Paulo, Brazil, Institute of Physics of S. Paulo University) IAEA International Atomic Energy Agency Chapter 12. TABLE OF CONTENTS 12.1. Introduction 12.2. Ultrasonic Plane Waves 12.3. Ultrasonic Properties of Biological Tissue 12.4. Ultrasonic Transduction 12.5. Doppler Physics 12.6. Biological Effects of Ultrasound IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,2 12.1. INTRODUCTION • Ultrasound is the most commonly used diagnostic imaging modality, accounting for approximately 25% of all imaging examinations performed worldwide nowadays • Ultrasound is an acoustic wave with frequencies greater than the maximum frequency audible to humans, which is 20 kHz IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,3 12.1. INTRODUCTION • Diagnostic imaging is generally performed using ultrasound in the frequency range from 2 to 15 MHz • The choice of frequency is dictated by a trade-off between spatial resolution and penetration depth, since higher frequency waves can be focused more tightly but are attenuated more rapidly by tissue The information in an ultrasonic image is influenced by the physical processes underlying propagation, reflection and attenuation of ultrasound waves in tissue IAEA Diagnostic Radiology Physics: a Handbook for Teachers and Students – chapter 12,4 12.1.
    [Show full text]
  • Light Penetration and Light Intensity in Sandy Marine Sediments Measured with Irradiance and Scalar Irradiance Fiber-Optic Microprobes
    MARINE ECOLOGY PROGRESS SERIES Vol. 105: 139-148,1994 Published February I7 Mar. Ecol. Prog. Ser. 1 Light penetration and light intensity in sandy marine sediments measured with irradiance and scalar irradiance fiber-optic microprobes Michael Kiihl', Carsten ~assen~,Bo Barker JOrgensenl 'Max Planck Institute for Marine Microbiology, Fahrenheitstr. 1. D-28359 Bremen. Germany 'Department of Microbial Ecology, Institute of Biological Sciences, University of Aarhus, Ny Munkegade Building 540, DK-8000 Aarhus C, Denmark ABSTRACT: Fiber-optic microprobes for determining irradiance and scalar irradiance were used for light measurements in sandy sediments of different particle size. Intense scattering caused a maximum integral light intensity [photon scalar ~rradiance,E"(400 to 700 nm) and Eo(700 to 880 nm)]at the sedi- ment surface ranging from 180% of incident collimated light in the coarsest sediment (250 to 500 pm grain size) up to 280% in the finest sediment (<63 pm grain me).The thickness of the upper sediment layer in which scalar irradiance was higher than the incident quantum flux on the sediment surface increased with grain size from <0.3mm in the f~nestto > 1 mm in the coarsest sediments. Below 1 mm, light was attenuated exponentially with depth in all sediments. Light attenuation coefficients decreased with increasing particle size, and infrared light penetrated deeper than visible light in all sediments. Attenuation spectra of scalar irradiance exhibited the strongest attenuation at 450 to 500 nm, and a continuous decrease in attenuation coefficent towards the longer wavelengths was observed. Measurements of downwelling irradiance underestimated the total quantum flux available. i.e.
    [Show full text]
  • Radiometry of Light Emitting Diodes Table of Contents
    TECHNICAL GUIDE THE RADIOMETRY OF LIGHT EMITTING DIODES TABLE OF CONTENTS 1.0 Introduction . .1 2.0 What is an LED? . .1 2.1 Device Physics and Package Design . .1 2.2 Electrical Properties . .3 2.2.1 Operation at Constant Current . .3 2.2.2 Modulated or Multiplexed Operation . .3 2.2.3 Single-Shot Operation . .3 3.0 Optical Characteristics of LEDs . .3 3.1 Spectral Properties of Light Emitting Diodes . .3 3.2 Comparison of Photometers and Spectroradiometers . .5 3.3 Color and Dominant Wavelength . .6 3.4 Influence of Temperature on Radiation . .6 4.0 Radiometric and Photopic Measurements . .7 4.1 Luminous and Radiant Intensity . .7 4.2 CIE 127 . .9 4.3 Spatial Distribution Characteristics . .10 4.4 Luminous Flux and Radiant Flux . .11 5.0 Terminology . .12 5.1 Radiometric Quantities . .12 5.2 Photometric Quantities . .12 6.0 References . .13 1.0 INTRODUCTION Almost everyone is familiar with light-emitting diodes (LEDs) from their use as indicator lights and numeric displays on consumer electronic devices. The low output and lack of color options of LEDs limited the technology to these uses for some time. New LED materials and improved production processes have produced bright LEDs in colors throughout the visible spectrum, including white light. With efficacies greater than incandescent (and approaching that of fluorescent lamps) along with their durability, small size, and light weight, LEDs are finding their way into many new applications within the lighting community. These new applications have placed increasingly stringent demands on the optical characterization of LEDs, which serves as the fundamental baseline for product quality and product design.
    [Show full text]
  • Chapter 14 Interference and Diffraction
    Chapter 14 Interference and Diffraction 14.1 Superposition of Waves.................................................................................... 14-2 14.2 Young’s Double-Slit Experiment ..................................................................... 14-4 Example 14.1: Double-Slit Experiment................................................................ 14-7 14.3 Intensity Distribution ........................................................................................ 14-8 Example 14.2: Intensity of Three-Slit Interference ............................................ 14-11 14.4 Diffraction....................................................................................................... 14-13 14.5 Single-Slit Diffraction..................................................................................... 14-13 Example 14.3: Single-Slit Diffraction ................................................................ 14-15 14.6 Intensity of Single-Slit Diffraction ................................................................. 14-16 14.7 Intensity of Double-Slit Diffraction Patterns.................................................. 14-19 14.8 Diffraction Grating ......................................................................................... 14-20 14.9 Summary......................................................................................................... 14-22 14.10 Appendix: Computing the Total Electric Field............................................. 14-23 14.11 Solved Problems ..........................................................................................
    [Show full text]
  • Chapter 2 Nature of Radiation
    CHAPTER 2 NATURE OF RADIATION 2.1 Remote Sensing of Radiation Energy transfer from one place to another is accomplished by any one of three processes. Conduction is the transfer of kinetic energy of atoms or molecules (heat) by contact among molecules travelling at varying speeds. Convection is the physical displacement of matter in gases or liquids. Radiation is the process whereby energy is transferred across space without the necessity of transfer medium (in contrast with conduction and convection). The observation of a target by a device separated by some distance is the act of remote sensing (for example ears sensing acoustic waves are remote sensors). Remote sensing with satellites for meteorological research has been largely confined to passive detection of radiation emanating from the earth/atmosphere system. All satellite remote sensing systems involve the measurement of electromagnetic radiation. Electromagnetic radiation has the properties of both waves and discrete particles, although the two are never manifest simultaneously. 2.2 Basic Units All forms of electromagnetic radiation travel in a vacuum at the same velocity, which is approximately 3 x 10**10 cm/sec and is denoted by the letter c. Electromagnetic radiation is usually quantified according to its wave-like properties, which include intensity and wavelength. For many applications it is sufficient to consider electromagnetic waves as being a continuous train of sinusoidal shapes. If radiation has only one colour, it is said to be monochromatic. The colour of any particular kind of radiation is designated by its frequency, which is the number of waves passing a given point in one second and is represented by the letter f (with units of cycles/sec or Hertz).
    [Show full text]
  • Intensity of Sound
    01/02 Intensity - 1 INTENSITY OF SOUND The objectives of this experiment are: • To understand the concept of sound intensity and how it is measured. • To learn how to operate a Sound Level Meter APPARATUS: Radio Shack Sound Level Meter, meterstick, function generator, headphones. INTRODUCTION Sound energy is conveyed to our ears (or instruments) by means of a wave motion through some medium (gas, liquid, or solid). At any given point in the medium the energy content of the wave disturbance varies as the square of the amplitude of the wave motion. That is, if the amplitude of the oscillation is doubled the energy of the wave motion is quadrupled. The common method in gauging this energy transport is to measure the rate at which energy is passing a certain point. This concept involves sound intensity. Consider an area that is normal to the direction of the sound waves. If the area is a unit, namely one square meter, the quantity of sound energy expressed in Joules that passes through the unit area in one second defines the sound intensity. Recall the time rate of energy transfer is called "power". Thus, sound intensity is the power per square meter. The common unit of power is the watt ( 1w = 1 Joules/s). Normally, sound intensity is measured as a relative ratio to some standard intensity, Io. The response of the human ear to sound waves follows closely to a logarithmic function of the form R = k log I , where R is the response to a sound that has an intensity of I, and k is a constant of proportionality .
    [Show full text]
  • Radiometry and Photometry
    Radiometry and Photometry Wei-Chih Wang Department of Power Mechanical Engineering National TsingHua University W. Wang Materials Covered • Radiometry - Radiant Flux - Radiant Intensity - Irradiance - Radiance • Photometry - luminous Flux - luminous Intensity - Illuminance - luminance Conversion from radiometric and photometric W. Wang Radiometry Radiometry is the detection and measurement of light waves in the optical portion of the electromagnetic spectrum which is further divided into ultraviolet, visible, and infrared light. Example of a typical radiometer 3 W. Wang Photometry All light measurement is considered radiometry with photometry being a special subset of radiometry weighted for a typical human eye response. Example of a typical photometer 4 W. Wang Human Eyes Figure shows a schematic illustration of the human eye (Encyclopedia Britannica, 1994). The inside of the eyeball is clad by the retina, which is the light-sensitive part of the eye. The illustration also shows the fovea, a cone-rich central region of the retina which affords the high acuteness of central vision. Figure also shows the cell structure of the retina including the light-sensitive rod cells and cone cells. Also shown are the ganglion cells and nerve fibers that transmit the visual information to the brain. Rod cells are more abundant and more light sensitive than cone cells. Rods are 5 sensitive over the entire visible spectrum. W. Wang There are three types of cone cells, namely cone cells sensitive in the red, green, and blue spectral range. The approximate spectral sensitivity functions of the rods and three types or cones are shown in the figure above 6 W. Wang Eye sensitivity function The conversion between radiometric and photometric units is provided by the luminous efficiency function or eye sensitivity function, V(λ).
    [Show full text]
  • The Nature of Light I
    PHYS 320 Lecture 3 The Nature of Light I Jiong Qiu Wenda Cao MSU Physics Department NJIT Physics Department Courtesy: Prof. Jiong Qiu 9/22/15 Outline q How fast does light travel? How can this speed be measured? q How is the light from an ordinary light bulb different from the light emitted by a neon sign? q How can astronomers measure the temperatures of the Sun and stars? q How can astronomers tell what distant celestial objects are made of? q How can we tell if a celestial object is approaching us or receding from us? Light travels with a very high speed q Galileo first tried but failed to measure the speed of light . He concluded that the speed of light is very high. q In 1675, Roemer first proved that light does not travel instantaneously from his observations of the eclipses of Jupiter’s moons. q Modern technologies are able to find the speed of light; in an empty space: c = 3.00 x 108 m/s one of the most important numbers in modern physical sciences! Ex.1: The distance between the Sun and the Earth is 1AU (= 1.5x1011m). (a) how long does it take the light to travel from the Sun to an observer on the Earth? (b) A concord airplane has a speed of 600 m/ s; how long does it take a traveler on a Concord airplane to travel from the Earth to the Sun? Ex.2: A lunar laser ranging retro-reflector array was planted on the Moon on July 21, 1969, by the crew of the Apollo 11.
    [Show full text]
  • Studies of Instruments for Measuring Radiant Energy in Absolute Value: an Absolute Thermopile
    . STUDIES OF INSTRUMENTS FOR MEASURING RADIANT ENERGY IN ABSOLUTE VALUE: AN ABSOLUTE THERMOPILE W. W. Coblentz and W. B. Emerson CONTENTS Page. I. Introduction 504 II. Apparatus and methods 505 1. The radiometer 505 2 Construction of the receivers 506 3. Thermopile and galvanometer 511 4. Water-cooled shutter and diaphragm 513 5. The radiator 515 6. The assembled apparatus 516 7. Method of making observations 518 8. Method of reduction of data 520 9. Corrections for diffuse reflection from the receiver 522 10. Accuracy attainable 525 III. Experimental Data 530 Receiver No. 1 542 Receiver No. 2 542 Receiver No. 3 542 Receiver No. 4 542 Receiver No. 5 543 Receiver No. 6 543 Receiver No. 7 544 Receiver No. 8 545 Receiver No. 9 545 Receiver No. 10 546 Receiver No. 11 546 Receiver No. 12 • 547 Receiver No. 13 ,. 548 IV. Summary 548 503 504 Bulletin 0} the Bureau 0} Standards [vu. 12 I. INTRODUCTION One of the chief needs in the measurement of radiant energy is a reliable radiometer which evaluates the observations in absolute measure. Such an instrument should be a primary one, capable of measuring radiant energy directly. Because of the lack of such a primary instrument, a calibration of radiometers against a standard of radiation is advocated; and such standards of radia- tion have been prepared * by this Bureau. There are several apparently trustworthy methods for making measurements of radiation in absolute value. One of the problems undertaken in this Bureau is the study of various instruments used in making these absolute measurements ; and the purpose of the present paper is to report on the results obtained with one of these instruments.
    [Show full text]