Blackbody Radiation
Blackbody Radiation PHY293, PHY324 - TWO WEIGHTS PHY294 - ONE WEIGHT RECOMENDED READINGS 1) R. Harris: Modern Physics, Ch.3, pp. 74-75; Ch.9, pp.384-85. Addison Wesley, 2008. 2) Daniel V. Schroeder: Introduction to Thermal Physics, Ch.7. Addison Wesley Longman Publishing, 2000. 3) PASCO Instruction Manual and Experiment Guide for the Blackbody Radiation at https://www.pasco.com/file_downloads/Downloads_Manuals/Black-Body-Light-Source- Basic-Optics-Manual-OS-8542.pdf 4) Marcello Carla: “Stefan–Boltzmann law for the tungsten filament of a light bulb: Revisiting the experiment”. Am. J. Phys. V. 81 (7), 2013. http://studenti.fisica.unifi.it/~carla/varie/Stefan-Boltzmann_law_in_a_light_bulb.pdf INTRODUCTION All material objects emit electromagnetic radiation at a temperature above absolute zero. The radiation represents a conversion of a body's thermal energy into electromagnetic energy, and is therefore called thermal radiation. Conversely all matter absorbs electromagnetic radiation to some degree. An object that absorbs all radiation falling on it at all wavelengths is called a blackbody. It is well known that when an object, such as a lump of metal, is heated, it glows; first a dull red, then as it becomes hotter, a brighter red, then bright orange, then a brilliant white. Although the brightness varies from one material to another, the color (strictly spectral distribution) of the glow is essentially universal for all materials, and depends only on the temperature. In the idealized case, this is known as blackbody, or cavity, radiation. At low temperatures, the wavelengths of thermal radiation are mainly in infrared. As temperature increases, objects begin to glow red.
[Show full text]