Blackbody Radiation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Lecture 26
PHYS 445 Lecture 26 - Black-body radiation I 26 - 1 Lecture 26 - Black-body radiation I What's Important: · number density · energy density Text: Reif In our previous discussion of photons, we established that the mean number of photons with energy i is 1 n = (26.1) i eß i - 1 Here, the questions that we want to address about photons are: · what is their number density · what is their energy density · what is their pressure? Number density n Eq. (26.1) is written in the language of discrete states. The first thing we need to do is replace the sum by an integral over photon momentum states: 3 S i ® ò d p Of course, it isn't quite this simple because the density-of-states issue that we introduced before: for every spin state there is one phase space state for every h 3, so the proper replacement more like 3 3 3 S i ® (1/h ) ò d p ò d r The units now work: the left hand side is a number, and so is the right hand side. But this expression ignores spin - it just deals with the states in phase space. For every photon momentum, there are two ways of arranging its polarization (i.e., the orientation of its electric or magnetic field vectors): where the photon momentum vector is perpendicular to the plane. Thus, we have 3 3 3 S i ® (2/h ) ò d p ò d r. (26.2) Assuming that our system is spatially uniform, the position integral can be replaced by the volume ò d 3r = V. -
Blackbody Radiation: (Vibrational Energies of Atoms in Solid Produce BB Radiation)
Independent study in physics The Thermodynamic Interaction of Light with Matter Mirna Alhanash Project in Physics Uppsala University Contents Abstract ................................................................................................................................................................................ 3 Introduction ......................................................................................................................................................................... 3 Blackbody Radiation: (vibrational energies of atoms in solid produce BB radiation) .................................... 4 Stefan-Boltzmann .............................................................................................................................................................. 6 Wien displacement law..................................................................................................................................................... 7 Photoelectric effect ......................................................................................................................................................... 12 Frequency dependence/Atom model & electron excitation .................................................................................. 12 Why we see colours ....................................................................................................................................................... 14 Optical properties of materials: .................................................................................................................................. -
Lecture 17 : the Cosmic Microwave Background
Let’s think about the early Universe… Lecture 17 : The Cosmic ! From Hubble’s observations, we know the Universe is Microwave Background expanding ! This can be understood theoretically in terms of solutions of GR equations !Discovery of the Cosmic Microwave ! Earlier in time, all the matter must have been Background (ch 14) squeezed more tightly together ! If crushed together at high enough density, the galaxies, stars, etc could not exist as we see them now -- everything must have been different! !The Hot Big Bang This week: read Chapter 12/14 in textbook 4/15/14 1 4/15/14 3 Let’s think about the early Universe… Let’s think about the early Universe… ! From Hubble’s observations, we know the Universe is ! From Hubble’s observations, we know the Universe is expanding expanding ! This can be understood theoretically in terms of solutions of ! This can be understood theoretically in terms of solutions of GR equations GR equations ! Earlier in time, all the matter must have been squeezed more tightly together ! If crushed together at high enough density, the galaxies, stars, etc could not exist as we see them now -- everything must have been different! ! What was the Universe like long, long ago? ! What were the original contents? ! What were the early conditions like? ! What physical processes occurred under those conditions? ! How did changes over time result in the contents and structure we see today? 4/15/14 2 4/15/14 4 The Poetic Version ! In a brilliant flash about fourteen billion years ago, time and matter were born in a single instant of creation. -
151545957.Pdf
Universit´ede Montr´eal Towards a Philosophical Reconstruction of the Dialogue between Modern Physics and Advaita Ved¯anta: An Inquiry into the Concepts of ¯ak¯a´sa, Vacuum and Reality par Jonathan Duquette Facult´ede th´eologie et de sciences des religions Th`ese pr´esent´ee `ala Facult´edes ´etudes sup´erieures en vue de l’obtention du grade de Philosophiae Doctor (Ph.D.) en sciences des religions Septembre 2010 c Jonathan Duquette, 2010 Universit´ede Montr´eal Facult´edes ´etudes sup´erieures et postdoctorales Cette th`ese intitul´ee: Towards A Philosophical Reconstruction of the Dialogue between Modern Physics and Advaita Ved¯anta: An Inquiry into the Concepts of ¯ak¯a´sa, Vacuum and Reality pr´esent´ee par: Jonathan Duquette a ´et´e´evalu´ee par un jury compos´edes personnes suivantes: Patrice Brodeur, pr´esident-rapporteur Trichur S. Rukmani, directrice de recherche Normand Mousseau, codirecteur de recherche Solange Lefebvre, membre du jury Varadaraja Raman, examinateur externe Karine Bates, repr´esentante du doyen de la FESP ii Abstract Toward the end of the 19th century, the Hindu monk and reformer Swami Vivekananda claimed that modern science was inevitably converging towards Advaita Ved¯anta, an important philosophico-religious system in Hinduism. In the decades that followed, in the midst of the revolution occasioned by the emergence of Einstein’s relativity and quantum physics, a growing number of authors claimed to discover striking “par- allels” between Advaita Ved¯anta and modern physics. Such claims of convergence have continued to the present day, especially in relation to quantum physics. In this dissertation, an attempt is made to critically examine such claims by engaging a de- tailed comparative analysis of two concepts: ¯ak¯a´sa in Advaita Ved¯anta and vacuum in quantum physics. -
Kelvin's Clouds
Kelvin’s clouds Oliver Passon∗ July 1, 2021 Abstract In 1900 Lord Kelvin identified two problems for 19th century physics, two“clouds” as he puts it: the relative motion of the ether with respect to massive objects, and Maxwell-Boltzmann’s theorem on the equipartition of energy. These issues were eventually solved by the theory of special relativity and by quantum mechanics. In modern quotations, the content of Kelvin’s lecture is almost always distorted and misrepresented. For example, it is commonly claimed that Kelvin was concerned about the UV- catastrophe of the Rayleigh-Jeans law, while his lecture actually makes no reference at all to blackbody radiation. I rectify these mistakes and explore reasons for their occurrence. 1 Introduction In 1900, Lord Kelvin, born as William Thomson, delivered a lecture in which he identified two problems for physics at the turn of the 20th century: the question of the existence of ether and the equipartition theorem. The solution for these two clouds was eventually achieved by the theory of special relativity and by quantum mechanics [1]. Understandably, these prophetic remarks are often quoted in popular science books or in the introductory sections of textbooks on modern physics. A typical example is found in the textbook by Tipler and Llewellyn [2]: [...] as there were already vexing cracks in the foundation of what we now refer to as classical physics. Two of these were described by Lord Kelvin, in his famous Baltimore Lectures in 1900, as the “two clouds” on the horizon of twentieth-century physics: the failure of arXiv:2106.16033v1 [physics.hist-ph] 30 Jun 2021 theory to account for the radiation spectrum emitted by a blackbody and the inexplicable results of the Michelson-Morley experiment. -
Measurement of the Cosmic Microwave Background Radiation at 19 Ghz
Measurement of the Cosmic Microwave Background Radiation at 19 GHz 1 Introduction Measurements of the Cosmic Microwave Background (CMB) radiation dominate modern experimental cosmology: there is no greater source of information about the early universe, and no other single discovery has had a greater impact on the theories of the formation of the cosmos. Observation of the CMB confirmed the Big Bang model of the origin of our universe and gave us a look into the distant past, long before the formation of the very first stars and galaxies. In this lab, we seek to recreate this founding pillar of modern physics. The experiment consists of a temperature measurement of the CMB, which is actually “light” left over from the Big Bang. A radiometer is used to measure the intensity of the sky signal at 19 GHz from the roof of the physics building. A specially designed horn antenna allows you to observe microwave noise from isolated patches of sky, without interference from the relatively hot (and high noise) ground. The radiometer amplifies the power from the horn by a factor of a billion. You will calibrate the radiometer to reduce systematic effects: a cryogenically cooled reference load is periodically measured to catch changes in the gain of the amplifier circuit over time. 2 Overview 2.1 History The first observation of the CMB occurred at the Crawford Hill NJ location of Bell Labs in 1965. Arno Penzias and Robert Wilson, intending to do research in radio astronomy at 21 cm wavelength using a special horn antenna designed for satellite communications, noticed a background noise signal in all of their radiometric measurements. -
Note-A-Rific: Blackbody Radiation
Note-A-Rific: Blackbody Radiation What is Blackbody How to Calculate Peak Failure of Classical Radiation Wavelength Physics What is Blackbody Radiation? As thermal energy is added to an object to heat it up, the object will emit radiation at various wavelengths. • All objects emit radiation at an intensity equal to its temperature (in degrees Kelvin, see Glossary) to the fourth power. 4 Intensity = T o At room temperatures, we are not aware of objects emitting radiation because it’s at such a low intensity. o At higher temperatures there is enough infrared radiation that we can feel it. o At still higher temperatures (about 1000K) we can actually see the object glowing red o At temperatures above 2000K, objects glow yellowish or white hot. No real object will absorb all radiation falling on it, nor will it re-emit all of the energy it absorbs. • Instead physicists came up with a theoretical model called a Blackbody. • A blackbody absorbs all radiation falling on it, and then releases all that energy as radiation in the form of EM waves. • As the temperature of a blackbody increases, it will emit more and more intense radiation. • At the same time, as the temperature increases, most of the radiation is released at higher and higher frequencies (lower and lower wavelengths). • The frequency at which the emitted radiation is at the highest intensity is called the peak frequency or (more typically) the peak wavelength. • This explains why an object at room temperature does not emit much radiation, and what radiation it does emit is at higher wavelengths, like infrared. -
Black Body Radiation
BLACK BODY RADIATION hemispherical Stefan-Boltzmann law This law states that the energy radiated from a black body is proportional to the fourth power of the absolute temperature. Wien Displacement Law FormulaThe Wien's Displacement Law provides the wavelength where the spectral radiance has maximum value. This law states that the black body radiation curve for different temperatures peaks at a wavelength inversely proportional to the temperature. Maximum wavelength = Wien's displacement constant / Temperature The equation is: λmax= b/T Where: λmax: The peak of the wavelength b: Wien's displacement constant. (2.9*10(−3) m K) T: Absolute Temperature in Kelvin. Emissive power The value of the Stefan-Boltzmann constant is approximately 5.67 x 10 -8 watt per meter squared per kelvin to the fourth (W · m -2 · K -4 ). If the radiation emitted normal to the surface and the energy density of radiation is u, then emissive power of the surface E=c u If the radiation is diffuse Emitted uniformly in all directions 1 E= 푐푢 4 Thermal radiation exerts pressure on the surface on which they are Incident. If the intensity of directed beam of radiations incident normally to The surface is I 퐼 Then Pressure P=u= 푐 If the radiation is diffused 1 P= 푢 3 The value of the constant is approximately 1.366 kilowatts per square metre. When the emissivity of non-black surface is constant at all temperatures and throughout the entire range of wavelength, the surface is called Gray Body. PROBLEMS 1. The temperature of a person’s skin is 350 C. -
Blackbody Radiation and the Quantization of Energy
Blackbody Radiation and the Quantization of Energy Energy quantization, the noncontinuous nature of energy,was discovered from observing radiant energy from blackb o dies. A blackbody absorbs electromagnetic EM energy eciently. An ideal blackb o dy absorbs all electromagnetic energy that b ears up on it. Ecient absorb ers of energy also are ecient emitters or else they would heat up without limit. Energy radiated from blackb o dies was studied b ecause the characteristics of the radiation are indep endent of the material constitution of the blackb o dy. Therefore, conclusions reached by the study of energy radiated from blackb o dies do not require quali cations related to the material studied. If you heat up a go o d absorb er emitter of EM energy, it will radiate energy with total p ower p er unit area prop ortional to the fourth p ower of temp erature in degrees Kelvin. This is the Stefan - Boltzmann law: 4 R = T ; 8 2 4 where the Stefan constant =5:6703 10 W/m K . This lawwas rst prop osed by Josef Stefan in 1879 and studied theoretically by Boltzmann a few years later, so it is named after b oth of them. The EM energy emitted from a blackb o dy actually dep ends strongly on the wavelength, , of the energy. Thus, radiantpower is a function of wavelength, R , and total p ower p er unit area is simply an integral over all wavelengths: Z R = R d: 1 The function R is called the blackbody spectrum. Recall that ! 2 c = f = ! =2f k = k The blackb o dy sp ectrum is di erent for di erent temp eratures, but has the same general shap e as the solid lines in Figure 1 show. -
Class 12 I : Blackbody Spectra
Class 12 Spectra and the structure of atoms Blackbody spectra and Wien’s law Emission and absorption lines Structure of atoms and the Bohr model I : Blackbody spectra Definition : The spectrum of an object is the distribution of its observed electromagnetic radiation as a function of wavelength or frequency Particularly important example… A blackbody spectrum is that emitted from an idealized dense object in “thermal equilibrium” You don’t have to memorize this! h=6.626x10-34 J/s -23 kB=1.38x10 J/K c=speed of light T=temperature 1 2 Actual spectrum of the Sun compared to a black body 3 Properties of blackbody radiation… The spectrum peaks at Wien’s law The total power emitted per unit surface area of the emitting body is given by finding the area under the blackbody curve… answer is Stephan-Boltzmann Law σ =5.67X10-8 W/m2/K4 (Stephan-Boltzmann constant) II : Emission and absorption line spectra A blackbody spectrum is an example of a continuum spectrum… it is smooth as a function of wavelength Line spectra: An absorption line is a sharp dip in a (continuum) spectrum An emission line is a sharp spike in a spectrum Both phenomena are caused by the interaction of photons with atoms… each atoms imprints a distinct set of lines in a spectrum The precise pattern of emission/absorption lines tells you about the mix of elements as well as temperature and density 4 Solar spectrum… lots of absorption lines 5 Kirchhoffs laws: A solid, liquid or dense gas produces a continuous (blackbody) spectrum A tenuous gas seen against a hot -
Peter Scicluna – Systematic Effects in Dust-Mass Determinations
The other side of the equation Systematic effects in the determination of dust masses Peter Scicluna ASIAA JCMT Users’ Meeting, Nanjing, 13th February 2017 Peter Scicluna JCMT Users’ Meeting, Nanjing, 13th February 2017 1 / 9 Done for LMC (Reibel+ 2012), SMC (Srinivasan+2016) Total dust mass ∼ integrated dust production over Hubble time What about dust destruction? Dust growth in the ISM? Are the masses really correct? The dust budget crisis: locally Measure dust masses in FIR/sub-mm Measure dust production in MIR Gordon et al., 2014 Peter Scicluna JCMT Users’ Meeting, Nanjing, 13th February 2017 2 / 9 What about dust destruction? Dust growth in the ISM? Are the masses really correct? The dust budget crisis: locally Measure dust masses in FIR/sub-mm Measure dust production in MIR Done for LMC (Reibel+ 2012), SMC (Srinivasan+2016) Total dust mass ∼ integrated dust production over Hubble time Gordon et al., 2014 Peter Scicluna JCMT Users’ Meeting, Nanjing, 13th February 2017 2 / 9 Dust growth in the ISM? Are the masses really correct? The dust budget crisis: locally Measure dust masses in FIR/sub-mm Measure dust production in MIR Done for LMC (Reibel+ 2012), SMC (Srinivasan+2016) Total dust mass ∼ integrated dust production over Hubble time What about dust destruction? Gordon et al., 2014 Peter Scicluna JCMT Users’ Meeting, Nanjing, 13th February 2017 2 / 9 How important are supernovae? Are there even enough metals yet? Dust growth in the ISM? Are the masses really correct? The dust budget crisis: at high redshift Rowlands et al., 2014 Measure -
Blackbody Radiation
Blackbody Radiation PHY293, PHY324 - TWO WEIGHTS PHY294 - ONE WEIGHT RECOMENDED READINGS 1) R. Harris: Modern Physics, Ch.3, pp. 74-75; Ch.9, pp.384-85. Addison Wesley, 2008. 2) Daniel V. Schroeder: Introduction to Thermal Physics, Ch.7. Addison Wesley Longman Publishing, 2000. 3) PASCO Instruction Manual and Experiment Guide for the Blackbody Radiation at https://www.pasco.com/file_downloads/Downloads_Manuals/Black-Body-Light-Source- Basic-Optics-Manual-OS-8542.pdf 4) Marcello Carla: “Stefan–Boltzmann law for the tungsten filament of a light bulb: Revisiting the experiment”. Am. J. Phys. V. 81 (7), 2013. http://studenti.fisica.unifi.it/~carla/varie/Stefan-Boltzmann_law_in_a_light_bulb.pdf INTRODUCTION All material objects emit electromagnetic radiation at a temperature above absolute zero. The radiation represents a conversion of a body's thermal energy into electromagnetic energy, and is therefore called thermal radiation. Conversely all matter absorbs electromagnetic radiation to some degree. An object that absorbs all radiation falling on it at all wavelengths is called a blackbody. It is well known that when an object, such as a lump of metal, is heated, it glows; first a dull red, then as it becomes hotter, a brighter red, then bright orange, then a brilliant white. Although the brightness varies from one material to another, the color (strictly spectral distribution) of the glow is essentially universal for all materials, and depends only on the temperature. In the idealized case, this is known as blackbody, or cavity, radiation. At low temperatures, the wavelengths of thermal radiation are mainly in infrared. As temperature increases, objects begin to glow red.