An Optimal Foraging Perspective on Early Holocene Human Prey Choice on Gotland Affluence Or Starvation?

Total Page:16

File Type:pdf, Size:1020Kb

An Optimal Foraging Perspective on Early Holocene Human Prey Choice on Gotland Affluence Or Starvation? An Optimal Foraging Perspective on Early Holocene Human Prey Choice on Gotland Affluence or Starvation? Mesolithic cave on the island of Stora Karlsö, Gotland, Sweden. Photo by Ingegärd E. Malmros y Ingegärd E. Malmros University of Gotland Dept. of Archaeology and Osteology 2012/Spring term Master Thesis Author: Ingegärd E. Malmros Supervisor: Jan Apel Abstract An Optimal Foraging Perspective on Early Human Holocene Prey Choice on Gotland. Affluence or Starvation? Ingegärd E. Malmros, Master thesis, 2012/Spring term. Gotland University, De- partment of Archaeology and Osteology The Optimal Foraging Theory, rooted in the processual archaeology, uses a measuring methodology where the foraging strategy that gives the highest pa- yoff measured as the highest ratio of energy gain per time unit is analysed (Mac Arthur & Pianca 1966, Emlen 1966). The theory is a branch of evolutionary eco- logy why much attention is paid to the interdependence of humans and preys and environmental conditions caused by climatologically and geographical changes or by overexploitation or other changes caused by humans. The ana- lysis of Early Mesolithic pioneers on Gotland, who settle in a transforming landscape, leaves indications of a Maglemose culture origin, probably from flo- oded original settlements in the south/southwest Baltic basin. The pioneers have to adapt to a seal-hunting economy dominated by grey seal which give the best cost-benefit outcome as big terrestrial mammals are missing and only mountain hare is available. The diet is narrow and there is a great risk for defi- ciency diseases as well as for acquiring hypervitaminosis and osteoporosis ca- used by excess of seal food. There is a hiatus c. 5000-4500 BC in the archaeological records on Gotland and the south-western Baltic region, and the master thesis hypothesises that Lit- torina Transgression I with a severe cold dip called the “8.2 ka BP cold event” has a delayed, but such a severe impact also on fauna and flora on Gotland, that the ecological system is destroyed. The possibility for humans to survive in a sustainable society is questionable. The extremely cold winters during this c. 400 years cold event, with glaciers moving southwards, delayed the blooming season, diminished the harvest and changed both flora and fauna. When the ecological niche for the grey seal is destroyed with flooded beaches close to the pioneers, human overexploitation is reinforced. With a diminishing population of mountain hare, which eventually gets extinct at the end of the Mesolithic, there are no alternatives but some birds and fish, hard to catch. Probably the pio- neers abandon Gotland or move to a higher level on Gotland but no records are yet found why the period is called a hiatus. Extinction is the worst scenario or survival in such a small number that a sustainable society is lost. If so, new population groups repopulated Gotland after the Littorina transgressions. The origin is still unknown of the Pitted-ware and Funnelbeaker cultures that are populating Gotland after the transgressions. This master thesis can not confirm an affluent life style but rather a suffering starving society flooded by Littorina transgressions and struggling with the severe cold, caused by the “8.2 ka cold event” that makes the environmental conditions even worse. The subsistence economy is successively destroyed which probably causes the hiatus in ar- chaeological records. The Littorina Transgression I with the “8.2 cold event” and the lack of terrestrial big animals are bottle necks. Key words: Gotland, grey seal, Holocene, hunter-gatherer, Mesolithic, Optimal Foraging Theory, OFT, 8.2 ka BP cold event, Zen Road 2 Abstrakt Överflöd eller svält? En studie av optimal födoinsamling och människors val av jaktbyte på Gotland under början av Holocen Ingegärd E. Malmros, Magisteruppsats, 2012. Högskolan på Gotland, Avdel- ningen för arkeologi och osteologi Optimal Foraging Theory, med sina rötter i den processuella arkeologin, använ- der en metodik utgående från mätningar där insamlingsstrategin som ger den högsta avkastningen per tidsenhet analyseras (Mac Arthur & Pianca 1966, Em- len 1966). Teorin är en undergrupp inom den evolutionära ekologin och därför ägnas stor tid åt att uppmärksamma det ömsesidiga beroendet och påverkan som sker i miljön p.g.a. klimatologiska och geologiska orsaker men också p.g.a. mänsklig påverkan som exempelvis överförbrukning. Analysen av tidigmesoli- tiska pionjärbosättare på Gotland, som möter ett landskap i förvandling, lämnar spår efter sig som tyder på ett ursprung i Maglemosekulturen i södra/sydvästra Östersjöregionen. De tvingas bli adapterade till en säljägarekonomi dominerad av gråsäl som ger det bästa energiutbytet, eftersom stora landdäggdjur saknas och endast bergshare finns tillgänglig. Dietvalet är smalt och det föreligger stor risk för både bristsjukdomar och A-vitaminförgiftning och osteoporos p.g.a. överkonsumtion av sälprodukter. Det finns ett uppehåll i de arkeologiska fynden c. 5000-4500 BC på Gotland liksom i södra Östersjöområdet. Magisteruppsatsens hypotes är att den kalla perioden med temperatursänkning som kallas ”8.2 ka BP cold event” under Lit- torinatransgression I har en fördröjd men så kraftigt övergripande effekt, på både djur- och växtliv på Gotland, att den förstör det ekologiska systemet och därmed möjligheten för människor att överleva i ett hållbart samhälle. De my- cket hårda vintrarna under de c. 400 årens ”cold event” medför att glaciärerna dras sig söderut, blomningssäsongen fördröjs, skörden minskar och både fauna och flora förändras. När den ekologiska nischen för gråsälen förstörs av över- svämmade stränder nära bosättarna förstärks överexploateringen, och då det inte finns någon alternativ föda utom en minskande harstam, svårfångade fåglar och fiskar, blir situationen fatal för de tidigmesolitiska bosättarna. Troligtvis flyt- tar de till andra platser inom Östersjönätverket eller till en högre nivå på Got- land, men fynd saknas hittills varför detta tomrum benämns ”hiatus”. Det värsta scenariot är att bosättarna dör ut eller överlever i ett så litet antal att det hållbara samhället går under. Om så är fallet återbefokas Gotland av gropkeramisk kul- tur och trattbägarkultur i anslutning till Littorinatrasgressionernas slut. Denna magisteruppsats kan inte konfirmera en livsstil i överflöd, utan snarare ett lidan- de svältande samhälle som översvämmas av Littorinatransgressioner med mil- jömässiga förhållanden som förvärras av den allvarliga kylan orsakad av ”8.2 ka cold event”. Försörjningsmöjligheterna förstörs succesivt och befolkningen för- svinner vilket troligen orsakar ett hiatus i de arkeologiska fynden. Littorina Transgression I med ”8.2 ka cold event” och bristen på stora landdjur är stora flaskhalsar. Key words: Gotland, grey seal, Holocene, hunter-gatherer, Mesolithic, Optimal Foraging Theory, OFT, 8.2 ka BP cold event Zen Road 3 Acknowledgements I would like to thank my supervisor Jan Apel for inspiring me to focus on Early Mesolithic pioneer settlers on Gotland and for letting me be a part of his re- search group in excavation and theoretical analysis. His challenging discus- sions have pushed me forward and his inspiring literature has increased my knowledge within this field. It has been a great adventure to gather information on the ecological system in the Baltic Area facing these Mesolithic hunter- gatherers who made Gotland to their homeland. It has been a thrilling joy when a feeling of cohesiveness has shown up. I also wish to thank my master semi- nar leader Paul Wallin who has been teaching and guiding our group in theo- retical as well as practical matters and always supported a creative thinking in a tolerant manner. Finally I send my thanks to all who have participated in discus- sions on my master thesis and given me good advices. 4 TABLE OF CONTENT 1 Introduction ............................................................................................................ 6 1.1.1 Aim and purpose ................................................................................ 6 1.1.2 Research questions ........................................................................... 7 1.2 Material ......................................................................................................... 7 1.2.1 Source Material .................................................................................. 7 1.2.2 Criticism of source material ................................................................ 9 1.2.3 Criticism of time schedules ................................................................ 9 1.3 Limitations ................................................................................................... 10 1.4 Methods ...................................................................................................... 11 1.5 Dictionary .................................................................................................... 11 1.6 Relevance ................................................................................................... 12 2 Theoretical perspectives ...................................................................................... 12 2.1 OFT as a benchmark for measuring culture ................................................. 13 2.2 Sahlins’s Original Affluent Society - the Zen road ........................................ 19 3 Previous research ................................................................................................ 24 3.1 Colonisation phase
Recommended publications
  • Late Weichselian and Holocene Shore Displacement History of the Baltic Sea in Finland
    Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland MATTI TIKKANEN AND JUHA OKSANEN Tikkanen, Matti & Juha Oksanen (2002). Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland. Fennia 180: 1–2, pp. 9–20. Helsinki. ISSN 0015-0010. About 62 percent of Finland’s current surface area has been covered by the waters of the Baltic basin at some stage. The highest shorelines are located at a present altitude of about 220 metres above sea level in the north and 100 metres above sea level in the south-east. The nature of the Baltic Sea has alter- nated in the course of its four main postglacial stages between a freshwater lake and a brackish water basin connected to the outside ocean by narrow straits. This article provides a general overview of the principal stages in the history of the Baltic Sea and examines the regional influence of the associated shore displacement phenomena within Finland. The maps depicting the vari- ous stages have been generated digitally by GIS techniques. Following deglaciation, the freshwater Baltic Ice Lake (12,600–10,300 BP) built up against the ice margin to reach a level 25 metres above that of the ocean, with an outflow through the straits of Öresund. At this stage the only substantial land areas in Finland were in the east and south-east. Around 10,300 BP this ice lake discharged through a number of channels that opened up in central Sweden until it reached the ocean level, marking the beginning of the mildly saline Yoldia Sea stage (10,300–9500 BP).
    [Show full text]
  • Digital Cover
    The Littorina transgression in southeastern Sweden and its relation to mid-Holocene climate variability Yu, Shiyong 2003 Link to publication Citation for published version (APA): Yu, S. (2003). The Littorina transgression in southeastern Sweden and its relation to mid-Holocene climate variability. Deaprtment of Geology. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 The Littorina transgression in L southeastern Sweden and its relation to mid-Holocene U climate variability N D Q Shi-Yong Yu U LUNDQUA Thesis 51 Quaternary Sciences A Department of Geology GeoBiosphere Science Centre Lund University T Lund 2003 H E S I S LUNDQUA Thesis 51 The Littorina transgression in southeastern Sweden and its relation to mid-Holocene climate variability Shi-Yong Yu Avhandling att med tillstånd från Naturvetenskapliga Fakulteten vid Lunds Universitet för avläggandet av filosofie doktorsexamen, offentligen försvaras i Geologiska institutionens föreläsningssal Pangea, Sölvegatan 12, Lund, fredagen den 14 november kl.
    [Show full text]
  • Relative Sea Level Changes, Glacio-Isostatic Rebound and Shoreline Displacement in the Southern Baltic
    SZYMON UŒCINOWICZ RELATIVE SEA LEVEL CHANGES, GLACIO-ISOSTATIC REBOUND AND SHORELINE DISPLACEMENT IN THE SOUTHERN BALTIC Polish Geological Institute Special Papers,10 WARSZAWA 2003 CONTENTS Introduction ..................................................................6 Area, objective and scope of study ......................................................7 Area of study ...............................................................7 Objective and scope of the work .....................................................8 Analysed materials ............................................................9 Geological setting of the Southern Baltic: an outline .............................................9 Pre-Quaternary ..............................................................9 Quaternary................................................................10 Relative sea level changes ..........................................................11 The problem and methods for its solution ...............................................11 Late Pleistocene and Early Holocene ..................................................18 The turn of Early and Middle Holocene, Middle Holocene ......................................31 Late Holocene ..............................................................35 Vertical crust movements ..........................................................37 Glacio-isostatic rebound: an outline of the problem ..........................................37 Glacio-isostatic movements in the Southern Baltic ...........................................38
    [Show full text]
  • The Late Quaternary Development of the Baltic Sea
    The late Quaternary development of the Baltic Sea Svante Björck, GeoBiosphere Science Centre, Department of Geology, Quaternary Sciences, Lund University, Sölveg. 12, SE-223 62 Lund, Sweden INTRODUCTION Since the last deglaciation of the Baltic basin, which began 15 000-17 000 cal yr BP (calibrated years Before Present) and ended 11 000-10 000 cal yr BP, the Baltic has undergone many very different phases. The nature of these phases were determined by a set of forcing factors: a gradually melting Scandinavian Ice Sheet ending up into an interglacial environment, the highly differential glacio-isostatic uplift within the basin (from 9 mm/yr to -1mm/yr; Ekman 1996), changing geographic position of the controlling sills (Fig. 1), varying depths and widths of the thresholds between the sea and the Baltic basin, and climate change. These factors have caused large variations in salinity and water exchange with the outer ocean, rapid to gradual paleographic alterations with considerable changes of the north-south depth profile with time. For example, the area north of southern Finland-Stockholm has never experienced transgressions, or land submergence, while the developmen south of that latitude has been very complex. The different controlling factors are also responsible for highly variable sedimentation rates, both in time and space, and variations of the aquatic productivity as well as faunal and floral changes. The basic ideas in this article follow the lengthy, but less up-dated version of the Baltic Sea history (Björck, 1995), a more complete reference list and, e.g., the calendar year chronology of the different Baltic phases can be found on: http://www.geol.lu.se/personal/seb/Maps%20of%20the%20Baltic.htm.
    [Show full text]
  • •1I1ii11i11 Se0000219
    •1I1II11I11 SE0000219 Technical Report TR-99-38 Salinity change in the Baltic Sea during the last 8,500 years: evidence, causes and models Per Westman, Stefan Wastegard, Kristian Schoning Department of Quaternary Research, Stockholm University Bo Gustafsson Oceanus Havsundersokningar, Goteborg Anders Omstedt, SMHl, Norrkoping December 1999 Svensk Karnbranslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 5864 102 40 Stockholm Tel 08-459 84 00 Fax 08-661 57 19 3 1/ 21 Salinity change in the Baltic Sea during the last 8,500 years: evidence, causes and models Per Westman, Stefan Wastegard, Kristian Scheming Department of Quaternary Research, Stockholm University Bo Gustafsson Oceanus Havsundersokningar, Goteborg Anders Omstedt, SMHI, Norrkoping December 1999 Keywords: biosphere, salinity, landrise, surface ecosystem, palaeo salinity This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. NEXT PAGE(S) left BLANK Abstract The salinity influences which ecosystems will dominate in the coastal area and what property radionuclides have. Salinity is also an important boundary condition for the transport models in the geosphere. Knowledge about the past salinity is important background to evaluate the hydrology and geochemistry in the rock and further to assess the radiological consequences of possible releases from a radioactive repository. This report concerns the salinity in the Baltic Sea during the last 8500 calendar years BP. Shore-level data for the inlet areas and proxy (indirect) data for the palaeosalinity and the climate are reviewed. These data is furthered used in a steady-state model for the salt exchange between the Baltic Sea and Kattegat.
    [Show full text]
  • PDF Linkchapter
    INDEX* With the exception of Allee el al. (1949) and Sverdrup et at. (1942 or 1946), indexed as such, junior authors are indexed to the page on which the senior author is cited although their names may appear only in the list of references to the chapter concerned; all authors in the annotated bibliographies are indexed directly. Certain variants and equivalents in specific and generic names are indicated without reference to their standing in nomenclature. Ship and expedition names are in small capitals. Attention is called to these subindexes: Intertidal ecology, p. 540; geographical summary of bottom communities, pp. 520-521; marine borers (systematic groups and substances attacked), pp. 1033-1034. Inasmuch as final assembly and collation of the index was done without assistance, errors of omis- sion and commission are those of the editor, for which he prays forgiveness. Abbott, D. P., 1197 Acipenser, 421 Abbs, Cooper, 988 gUldenstUdti, 905 Abe, N.r 1016, 1089, 1120, 1149 ruthenus, 394, 904 Abel, O., 10, 281, 942, 946, 960, 967, 980, 1016 stellatus, 905 Aberystwyth, algae, 1043 Acmaea, 1150 Abestopluma pennatula, 654 limatola, 551, 700, 1148 Abra (= Syndosmya) mitra, 551 alba community, 789 persona, 419 ovata, 846 scabra, 700 Abramis, 867, 868 Acnidosporidia, 418 brama, 795, 904, 905 Acoela, 420 Abundance (Abundanz), 474 Acrhella horrescens, 1096 of vertebrate remains, 968 Acrockordus granulatus, 1215 Abyssal (defined), 21 javanicus, 1215 animals (fig.), 662 Acropora, 437, 615, 618, 622, 627, 1096 clay, 645 acuminata, 619, 622; facing
    [Show full text]
  • 3. Eemian Interglacial: 130 - 117 Ka Bp
    SE9800205 SKB rapport R-98-02 January 1998 Compilation of information on the climate and evaluation of the hydrochemical and isotopic composition during Late Pleistocene and Holocene Cecilia Andersson Intern KB Svensk Karnbranslehantering AB Swedish Nuclear Fuel and Waste Management Co SKB, Box 5864, S-102 40 Stockholm, Sweden Tel 08-665 28 00 Fax 08-661 57 19 Tel+46 8 665 28 00 Fax+46 8 661 57 19 ISSN 1402-3091 SKB Rapport R-98-02 COMPILATION OF INFORMATION ON THE CLIMATE AND EVALUATION OF THE HYDROCHEMICAL AND ISOTOPIC COMPOSITION DURING LATE PLEISTOCENE AND HOLOCENE Cecilia Andersson Intera KB January 1998 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the author(s) and do not necessarily coincide with those of the client. COMPILATION OF INFORMATION ON THE CLIMATE AND EVALUATION OF THE HYDROCHEMICAL AND ISOTOPIC COMPOSITION DURING LATE PLEISTOCENE AND HOLOCENE 98-01-07 Cecilia Andersson Intera KB ABSTRACT This report summarises and evaluates some of the existing information on the Late Pleistocene and Holocene climates, i.e. the last 130 000 years. An estimation of the conditions at the Aspo island (southeast Sweden) has also been made during this time span. The knowledge about Late Pleistocene (Eemian Interglacial and Weichselian glacial) is not yet fully understood. There are still a lot of assumptions concerning this period and more information is needed to be able to establish the climatic conditions. This is not the case for the Weichselian deglaciation and the present interglacial, Holocene, for which the environmental conditions are quite certain.
    [Show full text]
  • High-Resolution Hydrodynamic Modelling of the Marine Environment at Forsmark Between 6500 BC and 9000 AD
    R-10-09 High-resolution hydrodynamic modelling of the marine environment at Forsmark between 6500 BC and 9000 AD Anna Karlsson, Christin Eriksson, Charlotta Borell Lövstedt, Olof Liungman DHI Sverige AB Anders Engqvist, Division of Water Resources Engineering, KTH February 2010 Svensk Kärnbränslehantering AB Swedish Nuclear Fuel and Waste Management Co Box 250, SE-101 24 Stockholm Phone +46 8 459 84 00 R-10-09 CM Gruppen AB, Bromma, 2010 ISSN 1402-3091 SKB Rapport R-10-09 High-resolution hydrodynamic modelling of the marine environment at Forsmark between 6500 BC and 9000 AD Anna Karlsson, Christin Eriksson, Charlotta Borell Lövstedt, Olof Liungman DHI Sverige AB Anders Engqvist, Division of Water Resources Engineering, KTH February 2010 This report concerns a study which was conducted for SKB. The conclusions and viewpoints presented in the report are those of the authors. SKB may draw modifi ed conclusions, based on additional literature sources and/or expert opinions. A pdf version of this document can be downloaded from www.skb.se. Contents 1 Introduction 9 1.1 Background 9 1.2 Purpose 9 1.3 Deliverables 9 1.4 Contents 9 2 The Baltic Sea and Öregrundsgrepen 11 2.1 Description of Öregrundsgrepen 11 2.2 Evolution 12 2.3 Overview of present hydrodynamic conditions 13 3 Methods 17 3.1 Basin flows 17 3.2 Average Age 18 3.3 Hydraulic residence time 18 3.4 Description of models 18 3.4.1 BC years 18 3.4.2 AD years 20 4 Model input data 25 4.1 Bathymetric data 26 4.2 Meteorological forcing 26 4.3 Land runoff 26 4.4 Sea levels 27 4.5 Stratification
    [Show full text]
  • Reconstruction of the Littorina Transgression in the Western Baltic Sea
    Meereswissenschaftliche Berichte MARINE SCIENCE REPORTS No. 67 Reconstruction of the Littorina Transgression in the Western Baltic Sea by Doreen Rößler Baltic Sea Research Institute (IOW), Seestraße 15, D-18119 Rostock-Warnemünde, Germany Mail address: [email protected] Institut für Ostseeforschung Warnemünde 2006 In memory of Wolfram Lemke Contents Abstract 3 Kurzfassung 3 1 Introduction 4 2 Setting of the study area 4 2.1 The Baltic Sea and its western basins, the Mecklenburg Bay and the Arkona Basin 4 2.2 The Pre-Quaternary basement 6 2.3 The Quaternary development 9 2.4 The post-glacial history of the Baltic Sea 11 2.4.1 The early stages: the Baltic Ice Lake, the Yoldia Sea and the Ancylus Lake stage 11 2.4.2 The Littorina transgression, the Littorina Sea and the post-Littorina Sea 15 3 Methods 18 3.1 Work program and material 18 3.2 Field work 22 3.2.1 Seismo-acoustic profiles 22 3.2.2 Sediment coring 22 3.2.3 Sediment sampling on board 23 3.3 Laboratory work 23 3.3.1 Sediment sampling in the laboratory 23 3.3.2 Physical sediment properties 24 3.3.2.1 Multi-Sensor Core Logging (MSCL) 24 3.3.2.2 Bulk density and water content 25 3.3.2.3 Mineral magnetic properties 25 3.3.3 Grain size analyses 26 3.3.4 Geochemical analyses 27 3.3.4.1 C/S- and C/N-analyses 27 3.3.4.2 X-ray fluorescence (XRF) analyses 27 3.3.4.3 Stable δ13C isotope analyses 28 3.3.5 Palaeontological investigations 28 3.3.5.1 Macrofossil analyses 28 3.3.5.2 Microfossil analyses 29 3.3.6 Radiocarbon dating 29 4 Results 30 4.1 Seismo-acoustic profiles 30
    [Show full text]
  • A New Formal Subdivision of the Holocene Series/Epoch in Estonia
    Estonian Journal of Earth Sciences, 2020, 69, 4, 269–280 https://doi.org/10.3176/earth.2020.15 A new formal subdivision of the Holocene Series/Epoch in Estonia Tiit Hanga, Siim Veskib, Jüri Vassiljevb, Anneli Poskab, Aivar Kriiskac and Atko Heinsalub a Institute of Ecology and Earth Sciences, University of Tartu, Ravila 14A, 50114 Tartu, Estonia; [email protected] b Department of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia c Institute of History and Archaeology, University of Tartu, Jakobi 2, 51005 Tartu, Estonia Received 20 May 2020, accepted 15 July 2020, available online 11 November 2020 Abstract. Over the past 25 years since the ratification of the last official Holocene Stratigraphic Chart in Estonia, the stratigraphic framework of global Quaternary geology has significantly progressed. The Pleistocene/Holocene boundary is defined in the NGRIP2 ice core from Greenland, with an age of 11 700 calendar yr b2k (before AD 2000). The International Subcommission on Quaternary Stratigraphy developed a formal tripartite stratigraphical subdivision of the Holocene into the Greenlandian, Northgrippian and Meghalayan stages/ages, each supported by a Global Boundary Stratotype Section and Point (GSSP). All three GSSPs are defined on the basis of geochemical markers reflecting abrupt global climatic events dated with high accuracy and serving as a reliable foundation for cross correlation. In the light of this development we present a new formal subdivision for the Holocene in Estonia. The new chart is climatostratigraphic with tripartite subdivision. The chronological boundaries and corresponding names for the stages/ages are aligned with the International Holocene Stratigraphic Chart.
    [Show full text]
  • 8.5 X12.5 Doublelines.P65
    Cambridge University Press 978-0-521-50996-1 - The Diatoms: Applications for the Environmental and Earth Sciences, Second Edition Edited by John P. Smol and Eugene F. Stoermer Index More information Index α-mesohaline, 292 Ad´elie Land/George Vth Coast, 391 α-oligohaline, 292 Adelie penguin, 499 β-carotene, 14 ADIAC project, 25 δ15N, 455, 500, 503, 505, 507 Adirondack Mountains, 102, 108 ∂30Si, 427 Adirondacks, 105, 111 10Be, 277, 415 adnate, 479 134Cs, 302 adnate diatoms, 254 137Cs, 88, 156, 259, 302, 329, 477 Adriatic, 328 13C, 327, 335 aerial habitat, 465–70 13C/12C, 318 aerial photo, 88 14C, 311, 314, 329, 415 aerobiologist, 552 15N, 314, 318, 327, 335 aerophil, 553 15N/14N, 318 aerophilic diatom, 479, 481, 486 1913–18 Canadian Arctic Expedition, aerophilous diatom, 91, 271, 468, 250 488 210Pb, 88, 94, 105, 156, 259, 329, aerosol, 552 364, 477 aeroterrestrial diatom, 465 235U, 600 Afar Rift, 192 34S/32S, 318 AFDM (see also ash-free dry mass), 60, 62 Abbagadasett River, 336 Africa, 175, 177, 189, 190–3, 197, aberrant diatom shape, 70 198, 199, 201, 222, 348, 374, ACC (see also Antarctic Circumpolar 393, 441, 481, 552–3, 554, 556, Current), 438, 445, 446 570 Accelerator Mass Spectrometry African rift lake, 225 (see also AMS), 361 Afrocymbella,211 accumulation rate, 24, 26, 132 agar plate, 552 Achnanthes, 65, 68, 111, 135, 163, agriculture, 103, 134 165, 231, 239, 269, 296, 297, AIES (see also Autecological Index of 350, 468 Environmental Stressor), 482 Achnanthidium, 62, 64, 65, 66, 291, AIR, 575 566 air root, 347 ACID, 70 Akaike Information
    [Show full text]
  • BALTICA Volume 22 Number 1 June 2009 : 51-62
    BALTICA Volume 22 Number 1 June 2009 : 51-62 Ancylus Lake and Litorina Sea transition on the Island of Saaremaa, Estonia: a pilot study Leili Saarse, Jüri Vassiljev, Alar Rosentau Saarse, L., Vassiljev, J., Rosentau, A., 2009. Ancylus Lake and Litorina Sea transition on the Island of Saaremaa, Estonia: a pilot study. Baltica, Vol. 22 (1), 51-62. Vilnius. ISSN 0067-3064. Abstract Biostratigraphical, sedimentological and magnetic susceptibility analyses and radiocarbon datings of six Holocene lagoonal profiles of the Island of Saaremaa, Estonia were performed. The examined lagoons were formed during the Ancylus Lake regression and the Litorina Sea transgression. Spatial displacement of the Ancylus Lake and Litorina Sea shores was reconstructed using a digital terrain model with the grid size 50 m x 50 m and the development of the island in terms of the changing sea level and land uplift was described. Due to differences in the isostatic uplift rate, the Ancylus Lake beach formations are located between 35 and 25 m and those of the Litorina Sea between 20.5 and 15.5 m above the present sea level. Radiocarbon dates from buried organic sediments suggest that the Litorina Sea transgression started about 8300–8200 cal yr BP and lasted up to 7300 cal yr BP. Keywords : Ancylus Lake, Litorina Sea, Saaremaa Island, 14 C dates, Estonia. Leili Saarse [[email protected]], Jüri Vassiljev [[email protected]], Institute of Geology at Tallinn University of Technology, Ehita - jate tee 5, 19086 Tallinn, Estonia; Alar Rosentau [[email protected]], Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia.
    [Show full text]