PDF Linkchapter

Total Page:16

File Type:pdf, Size:1020Kb

PDF Linkchapter INDEX* With the exception of Allee el al. (1949) and Sverdrup et at. (1942 or 1946), indexed as such, junior authors are indexed to the page on which the senior author is cited although their names may appear only in the list of references to the chapter concerned; all authors in the annotated bibliographies are indexed directly. Certain variants and equivalents in specific and generic names are indicated without reference to their standing in nomenclature. Ship and expedition names are in small capitals. Attention is called to these subindexes: Intertidal ecology, p. 540; geographical summary of bottom communities, pp. 520-521; marine borers (systematic groups and substances attacked), pp. 1033-1034. Inasmuch as final assembly and collation of the index was done without assistance, errors of omis- sion and commission are those of the editor, for which he prays forgiveness. Abbott, D. P., 1197 Acipenser, 421 Abbs, Cooper, 988 gUldenstUdti, 905 Abe, N.r 1016, 1089, 1120, 1149 ruthenus, 394, 904 Abel, O., 10, 281, 942, 946, 960, 967, 980, 1016 stellatus, 905 Aberystwyth, algae, 1043 Acmaea, 1150 Abestopluma pennatula, 654 limatola, 551, 700, 1148 Abra (= Syndosmya) mitra, 551 alba community, 789 persona, 419 ovata, 846 scabra, 700 Abramis, 867, 868 Acnidosporidia, 418 brama, 795, 904, 905 Acoela, 420 Abundance (Abundanz), 474 Acrhella horrescens, 1096 of vertebrate remains, 968 Acrockordus granulatus, 1215 Abyssal (defined), 21 javanicus, 1215 animals (fig.), 662 Acropora, 437, 615, 618, 622, 627, 1096 clay, 645 acuminata, 619, 622; facing 621 community, 652-654 arbuscula, 624 fauna, distribution, 664 brueggemmani, 618, 627, 1090 fishes, distribution (fig.)» 667 cuneata, 615 species, age of, 668 conifera, 620 A byssocucumis ingolfi, 1193 corymbosa 431, 618, 620, 622, 627 Abyssopelagic zone, 643 association, 623 Acanella eburnea, 1105 zone, 620; facing, 621, 626 Ac&ntharia, 1069 digitifera, 618, 620 A cantharia, 450 zone, 618; facing 620 Acanthaster, 622 echinata, 622, 624 A canthobdella peledina, 423 exilis, 622 Acanthobdellida, 423 formosa, 624 Acanthocephala, 422, 1118 zone, 623, 624; facing 627 Acanthodoris pilosa, 350 hebes, 620, 627; facing 626 Acanthonus, 665, 667 humilis, 618, 620, 622, 623 distribution (fig.), 667 humilis-digitifera, 619 Acanthozoslera, 618 implicata, 624 gemmata, 928, 929 nasuta, 622 Acarina, 424 nobilis, 624 Acartia, 1168 palifera, 618, 619, 622, 623 Acartia bifilosa, 781, 792, 793 zone, 618 clausi, 833, 834, 856, 1166 rambleri, 624 longiretnis, 792, 1167 rayneri, 615, 624 tonsa, 716, 787 reticulata, 623, 624 Acclimatization, 143, 166-168 association, 623 in Caspian Sea, 904, 906-912 zone, facing 621 A centropus niveus, 779 reticulata-hyacinthus-cytherea, 619 Acer a bullata, 494, 495, 497 rosaria, 622 Acerina cermta, 987 rotumana, 618, 620 Acetabularia, 261, 262, 263 squamosa, 618, 627 Acid digestion in Holothurians, 280 striata, 622 * The index is a joint contribution of University of California, Scripps Institution of Oceanography, and Pacific Marine Station, College of the Pacific. 1227 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/956277/mem67v1-bm.pdf by guest on 29 September 2021 1228 MAE INE ECOLOGY Acropora—(cont'd) Aix-en-Provence shales, 966 surculosa, 618, 620 Akashiwo mortality, 981 teres, 624 Akers, W. H., 1076 Acteon candens, 716 Aksiray, F., 865 Actiarctus doryphorus, 424 Alaria, 552 Actinia equina, 400, 437, 501 esculenta, 1048 Actinians, commensal, 399 Aland Sea, 753 life span, 501 Alaska, Gulf of, oxygen, 230 Actinicola percula, 622 mortality, 976 Actinocyclus, 901, 914 Albacore, 1209 ehrenbergi, 914 ALBATROSS, 112, 223, 224 Actinodendron, 623 ALBATROSS III, 199 Actinomyxidia, 419 Albatrosses, 1219, 1220, 1221 Actinotkoe pugna, 400 Alberni Inlet, 689 Acrothoracida, 426 Albert I, Prince of Monaco, 654 Adacna minima, 914 Albunea, 1154 plicata, 804, 806 Alburnus tarichi, 977 Adam, W., 1139 Alcidae, 1219 Adams, C. C., 1 Alciopa, 1121 Aiamsia, 399 cantrainii, 1121 palliata, 402 Alcippe lampas, 426 sociabilis, 402 Alcock, A. A., 394 Aden, Gulf, coral reefs, 1095 Alcyonacea, 1106 oxygen, 224 zooxanthellae in, 433 Adeney, W. E., 190 Alcyonaria, 1105 Adolph, E. F., 148, 1211 calcite in, 264 Adriatic mortality, 978 Alcyanidium polyormm, 787 oyster pests, 1130 Alcyonium, 433, 620 temp, and salinity, 1130 Alderia modesta, 781 Aedes argenleus, 1182 Alébion glaber, 425 dorsalis, 1179 Aleem, A. A., 550, 573, 724, 1047, 1051, 1059 mariae, 148, 1180 Aleev, Y. G., 866 sollicitans, 1179 Alepas, 426 taeniorhynchus, 1179 Aletes, 637 Aega ventrosa, 1151 Aleutian Islands, 333 Aegean Sea, 2 Ridge, 230 Aegidae, 426 Aleutian copepods, 1165 Aeolidiella, (Ealidina) alderi, 432 Alexander, James E., 983 Aeolis glauca, 432 Alexander, W. B., 677, 678, 701, 702, 703, 1219 Aeoliscus slrigatus, 622 Alexeterion parfaiti, 654 Aepophilus, 1178 Algae, 1041 bonairei, 1178 calcareous, 261-263 Aepus, 1178 in estuaries, 707, 1024 Aetolikon mortality, 986 osmotic pressure, 140 Affinity groups, 470 Algal borers, 279, 1030 Afognak mortality, 974 cushions, 846 Agar-digesting bacteria, 1039 mats, 280 Agassiz, A., 10, 257, 280, 650, 654, 1090, 1191 ridge, 615; facing 620 Agassiz, Louis, 5, 946, 980, 987 Algerian coast, fauna, 1017 Agassiz trawl, 75 Al-Hussaini, A. H., 1206 Ageciras, 728 Alikunhi, K. H., 1120 Aggregata eberlhi, 418 Alinat, J., 55 Aglaopheniai?) galatheae, 656 Alkalinity, Black Sea, 821 Agnatha, 1203 deep sea, 647 Ago Bay, Foraminifera, 1078 Alkmaria romijni, 780 mortality, 981 Allan, J. R. H., 67 Agulhas Bank, 946, 963 Allan, Joyce, 1135 Current, 327, 949, 951 Allan, P. F., 1052 Ahermatypic corals, 1089 Allan, R. S., 1113 Ahlmann, H. W., 88 Allantactis parasitica, 403 Ahlstom, E. H., 376, 1205 Allee, W. C., 5, 19, 20, 148, 177, 370, 463, 465, 537, 550, 611, Ahrens, L. H., 245 728, 1012, 1013, 1188 Ahrens, L. W., 355 Allee et al., 1, 36, 43, 146, 149, 160, 161, 166, 415, 471, 1012 Aikawa, H., 957, 958 Aiptasia, 436 Allee's principle, 47 Aiptasiomorpha Ittciae, 704 Allen, Esther C., 1040 Air, bacteria, 1039 Allen, E. J., 730 Aiyar, R. Gopala, 928, 986, 1120 Allen, F. E., 698,1027 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/956277/mem67v1-bm.pdf by guest on 29 September 2021 INDEX 1229 Allen, J. A., 497, 517, 1143 Amphiroa, 261, 624 Allen, J. Frances, 1143 aticeps, 1017 Allen, N. T., 54, 73 Amphiscolops langerhansii, 437 Allen, W. E., 9, 298, 447, 449, 535, 956, 970, 981, 1061, 1062 Amphisile heinrichi, 942 Alligator mississipiensis, 1213 Amphistegina, 276 Alloecoela, 420 Amphitrite robusta, 407 Allogromia laticollaris, 1076 rubra, 494 Alloposus mollis, 988 Amphiura, 472, 477, 487, 488, 495, 847 Aloyidis {¿Ma, 1149 aesluarii community, 512 Alpheids, freshwater, 1157 chiajei, 845, 1188 Alpkeopsis haugi, 1157 Amphiura communities, 485, 510; (fig.), 512, 513 monodi, 1157 filiformis, 488 Aiveolinella quoyi, 1077 -Amphiura chiajei community, 511 Alveopora, 619 fiorifera community, 512 Alyar, R. G., 449 rosea community, 512 Amansia glomerala, 1049 Anabaena, 792 Amaroucium, 418 tallica, 782, 786, 792 constellatum, 1199 Anacropora, 624 pellucidum, 1198, 1199 Anaerobic glycolysis, 281 Amazon tides, 681 Anaerobic respiration in molluscs, 267 Ambassis natalensis, 394 Anal papillae, 150 Amblyrkynckus cristatus, 1213, 1214 Anarrhichas, 979 Ambroz, A. P., 866, 867 Anaspiies, 696 Amemiya, I., 1029, 1129 Anastrophe, 941 Amia, 1206 Anatolia, fish fauna, 862 calm, 421 Anchialo Lagoon, 853 Amison, J. M., 956 Anchoa hepselus, 709 Ammocoete, 1204 mitchelli, 709 Ammodyles, 646, 846 Ancient deposits, 734 Ammophila armaria, 1057 Ancylus ftuviatilis, 769 baltica, 1057 Ancylus Lake, 769, 771 -Lathyrus maritimus, 1052 Anderson, C., 1139 Ammonia, Baltic, 320 Anderson, C. T., 250 Black Sea, 822 Anderson, D. Q., 194, 306, 1040 Gulf of Maine, 313, 314 Anderson, E. C., 243 and nitrogen, Pacific, 308 Anderson, W. W., 151 Ammotrypane galalheae, 657 Andersson, Charles W., 983 Amoebina, 418 Andersson, K. A., 1219 Ampelisca, 495,1153 André, M., 424, 1031, 1175 community, 516 Andrée, K., 681, 729, 960 Amphibians, 1211 Andreitcheva-Vankova, M., 818 Amphibiontic, zone, 546 Andrewartha, H. G., 33, 41, 42, 47, 1012 Amphtiesma, 595 Andrews, E. A., 150, 395, 1143 subtriangulatum, 597 Andrews, Harry L., 1041 veniricosum, 594, 597 Andriashev, A. P., 363, 1206 Amphidinium fusiforme, 982 Andros Island, 628 Ampkilepis norvegica-Pecten vitreus community, 518 Andrusov, N. I., (or Andrussow, Nicolaus), 802, 803, 804, Amphilina foliacea, 421 824, 969, 977 Amphilinidea, 421 Anelasma squalicola, 425 Amphiodia-Amphioplus communities, 513 Anemones, 1108 cratoderma-Turritella fenestrala community, 513 and fishes, 403 occidentale community, 513 Anemonia sargassensis, 368 sp.-Schizaster sp. community, 514 sulcata, 437 Amphiophiura bullala, 653, 654 Angas, G. F., 1139 convexa, 654 Angelescu, V., 35, 691, 692 Amphioplus macraspis community, 514 Angelier, E., 596, 1175 Amphioxus, 848, 849 Anglers, 643 Anglesey, intertidal, 1018, 1019 sands, 846 Angstrom, A., 110 Amphipod communities, 516 Anguilla, 144 Amphipoda, 426, 1153 vulgaris, 795 Skagerak, 1154 Angulus exiguus, 846 Isle of Man, 1155 Animals in Baltic (fig.), 773 Amphineura, 424 Animal production, (defined), 500 Amphiprion, 403, 427 Anisakis, 422 bicinctus, 622 Anisus (Planorbis) vortex, 779 and Stoichactis (fig.), 403 Ankel, W. E., 393, 1149 Downloaded from http://pubs.geoscienceworld.org/books/book/chapter-pdf/956277/mem67v1-bm.pdf by guest on 29 September 2021 1230 MAE INE ECOLOGY Annandale, N., 11,146,501, 693,1029, 1084,1090,1172, Apodida, 426 Annelida, 423 Apogonichthys,
Recommended publications
  • Geometric Morphometric Analysis Reveals That the Shells of Male and Female Siphon Whelks Penion Chathamensis Are the Same Size and Shape Felix Vaux A, James S
    MOLLUSCAN RESEARCH, 2017 http://dx.doi.org/10.1080/13235818.2017.1279474 Geometric morphometric analysis reveals that the shells of male and female siphon whelks Penion chathamensis are the same size and shape Felix Vaux a, James S. Cramptonb,c, Bruce A. Marshalld, Steven A. Trewicka and Mary Morgan-Richardsa aEcology Group, Institute of Agriculture and Environment, Massey University, Palmerston North, New Zealand; bGNS Science, Lower Hutt, New Zealand; cSchool of Geography, Environment & Earth Sciences, Victoria University, Wellington, New Zealand; dMuseum of New Zealand Te Papa Tongarewa, Wellington, New Zealand ABSTRACT ARTICLE HISTORY Secondary sexual dimorphism can make the discrimination of intra and interspecific variation Received 11 July 2016 difficult, causing the identification of evolutionary lineages and classification of species to be Final version received challenging, particularly in palaeontology. Yet sexual dimorphism is an understudied research 14 December 2016 topic in dioecious marine snails. We use landmark-based geometric morphometric analysis to KEYWORDS investigate whether there is sexual dimorphism in the shell morphology of the siphon whelk Buccinulidae; conchology; Penion chathamensis. In contrast to studies of other snails, results strongly indicate that there fossil; geometric is no difference in the shape or size of shells between the sexes. A comparison of morphometrics; mating; P. chathamensis and a related species demonstrates that this result is unlikely to reflect a paleontology; reproduction; limitation of the method. The possibility that sexual dimorphism is not exhibited by at least secondary sexual some species of Penion is advantageous from a palaeontological perspective as there is a dimorphism; snail; true whelk rich fossil record for the genus across the Southern Hemisphere.
    [Show full text]
  • Optics-Based Surveys of Large Unicellular Zooplankton: a Case Study on Radiolarians and Phaeodarians
    Plankton Benthos Res 12(2): 95–103, 2017 Plankton & Benthos Research © The Plankton Society of Japan Optics-based surveys of large unicellular zooplankton: a case study on radiolarians and phaeodarians 1, 2 3 4,5 YASUHIDE NAKAMURA *, REI SOMIYA , NORITOSHI SUZUKI , MITSUKO HIDAKA-UMETSU , 6 4,5 ATSUSHI YAMAGUCHI & DHUGAL J. LINDSAY 1 Department of Botany, National Museum of Nature and Science, Tsukuba 305–0005, Japan 2 Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Nagasaki 852–8521, Japan 3 Department of Earth Science, Graduate School of Science, Tohoku University, Sendai 980–8578, Japan 4 Research and Development (R&D) Center for Submarine Resources, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237–0061, Japan 5 School of Marine Biosciences, Kitasato University, Sagamihara 252–0373, Japan 6 Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041–8611, Japan Received 24 May 2016; Accepted 6 February 2017 Responsible Editor: Akihiro Tuji Abstract: Optics-based surveys for large unicellular zooplankton were carried out in five different oceanic areas. New identification criteria, in which “radiolarian-like plankton” are categorized into nine different groups, are proposed for future optics-based surveys. The autonomous visual plankton recorder (A-VPR) captured 65 images of radiolarians (three orders: Acantharia, Spumellaria and Collodaria) and 117 phaeodarians (four taxa: Aulacanthidae, Phaeosphaeri- da, Tuscaroridae and Coelodendridae). Colonies were observed for one radiolarian order (Collodaria) and three phae- odarian taxa (Phaeosphaerida, Tuscaroridae and Coelodendridae). The rest of the radiolarian orders (Taxopodia and Nassellaria) and the other phaeodarian taxa were not detected because of their small cell size (< ca.
    [Show full text]
  • The Paleoecology and Fire History from Crater Lake
    THE PALEOECOLOGY AND FIRE HISTORY FROM CRATER LAKE, COLORADO: THE LAST 1000 YEARS By Charles T. Mogen A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Science and Policy Northern Arizona University August 2018 Approved: R. Scott Anderson, Ph.D., Chair Nicholas P. McKay, Ph.D. Darrell S. Kaufman, Ph.D. Abstract High-resolution pollen, plant macrofossil, charcoal and pyrogenic Polycyclic Aromatic Hydrocarbon (PAH) records were developed from a 154 cm long sediment core collected from Crater Lake (37.39°N, 106.70°W; 3328 m asl), San Juan Mountains, Colorado. Several studies have explored Holocene paleo-vegetation and fire histories from mixed conifer and subalpine bogs and lakes in the San Juan and southern Rocky Mountains utilizing both palynological and charcoal studies, but most have been at relatively low resolution. In addition to presenting the highest resolution palynological study over the last 1000 years from the southern Rocky Mountains, this thesis also presents the first high-resolution pyrogenic PAH and charcoal paired analysis aimed at understanding both long-term fire history and the unresolved relationship between how each of these proxies depict paleofire events. Pollen assemblages, pollen ratios, and paleofire activity, indicated by charcoal and pyrogenic PAH records, were used to infer past climatic conditions. Although the ecosystem surrounding Crater Lake has remained a largely spruce (Picea) dominated forest, the proxies developed in this thesis suggest there were two distinct climate intervals between ~1035 to ~1350 CE and ~1350 to ~1850 CE in the southern Rocky Mountains, associated with the Medieval Climate Anomaly (MCA) and Little Ice Age (LIA) respectively.
    [Show full text]
  • US Fish & Wildlife Service Seabird Conservation Plan—Pacific Region
    U.S. Fish & Wildlife Service Seabird Conservation Plan Conservation Seabird Pacific Region U.S. Fish & Wildlife Service Seabird Conservation Plan—Pacific Region 120 0’0"E 140 0’0"E 160 0’0"E 180 0’0" 160 0’0"W 140 0’0"W 120 0’0"W 100 0’0"W RUSSIA CANADA 0’0"N 0’0"N 50 50 WA CHINA US Fish and Wildlife Service Pacific Region OR ID AN NV JAP CA H A 0’0"N I W 0’0"N 30 S A 30 N L I ort I Main Hawaiian Islands Commonwealth of the hwe A stern A (see inset below) Northern Mariana Islands Haw N aiian Isla D N nds S P a c i f i c Wake Atoll S ND ANA O c e a n LA RI IS Johnston Atoll MA Guam L I 0’0"N 0’0"N N 10 10 Kingman Reef E Palmyra Atoll I S 160 0’0"W 158 0’0"W 156 0’0"W L Howland Island Equator A M a i n H a w a i i a n I s l a n d s Baker Island Jarvis N P H O E N I X D IN D Island Kauai S 0’0"N ONE 0’0"N I S L A N D S 22 SI 22 A PAPUA NEW Niihau Oahu GUINEA Molokai Maui 0’0"S Lanai 0’0"S 10 AMERICAN P a c i f i c 10 Kahoolawe SAMOA O c e a n Hawaii 0’0"N 0’0"N 20 FIJI 20 AUSTRALIA 0 200 Miles 0 2,000 ES - OTS/FR Miles September 2003 160 0’0"W 158 0’0"W 156 0’0"W (800) 244-WILD http://www.fws.gov Information U.S.
    [Show full text]
  • Forage Fish Management Plan
    Oregon Forage Fish Management Plan November 19, 2016 Oregon Department of Fish and Wildlife Marine Resources Program 2040 SE Marine Science Drive Newport, OR 97365 (541) 867-4741 http://www.dfw.state.or.us/MRP/ Oregon Department of Fish & Wildlife 1 Table of Contents Executive Summary ....................................................................................................................................... 4 Introduction .................................................................................................................................................. 6 Purpose and Need ..................................................................................................................................... 6 Federal action to protect Forage Fish (2016)............................................................................................ 7 The Oregon Marine Fisheries Management Plan Framework .................................................................. 7 Relationship to Other State Policies ......................................................................................................... 7 Public Process Developing this Plan .......................................................................................................... 8 How this Document is Organized .............................................................................................................. 8 A. Resource Analysis ....................................................................................................................................
    [Show full text]
  • Active Applicant Report Type Status Applicant Name
    Active Applicant Report Type Status Applicant Name Gaming PENDING ABAH, TYRONE ABULENCIA, JOHN AGUDELO, ROBERT JR ALAMRI, HASSAN ALFONSO-ZEA, CRISTINA ALLEN, BRIAN ALTMAN, JONATHAN AMBROSE, DEZARAE AMOROSE, CHRISTINE ARROYO, BENJAMIN ASHLEY, BRANDY BAILEY, SHANAKAY BAINBRIDGE, TASHA BAKER, GAUDY BANH, JOHN BARBER, GAVIN BARRETO, JESSE BECKEY, TORI BEHANNA, AMANDA BELL, JILL 10/1/2021 7:00:09 AM Gaming PENDING BENEDICT, FREDRIC BERNSTEIN, KENNETH BIELAK, BETHANY BIRON, WILLIAM BOHANNON, JOSEPH BOLLEN, JUSTIN BORDEWICZ, TIMOTHY BRADDOCK, ALEX BRADLEY, BRANDON BRATETICH, JASON BRATTON, TERENCE BRAUNING, RICK BREEN, MICHELLE BRIGNONI, KARLI BROOKS, KRISTIAN BROWN, LANCE BROZEK, MICHAEL BRUNN, STEVEN BUCHANAN, DARRELL BUCKLEY, FRANCIS BUCKNER, DARLENE BURNHAM, CHAD BUTLER, MALKAI 10/1/2021 7:00:09 AM Gaming PENDING BYRD, AARON CABONILAS, ANGELINA CADE, ROBERT JR CAMPBELL, TAPAENGA CANO, LUIS CARABALLO, EMELISA CARDILLO, THOMAS CARLIN, LUKE CARRILLO OLIVA, GERBERTH CEDENO, ALBERTO CENTAURI, RANDALL CHAPMAN, ERIC CHARLES, PHILIP CHARLTON, MALIK CHOATE, JAMES CHURCH, CHRISTOPHER CLARKE, CLAUDIO CLOWNEY, RAMEAN COLLINS, ARMONI CONKLIN, BARRY CONKLIN, QIANG CONNELL, SHAUN COPELAND, DAVID 10/1/2021 7:00:09 AM Gaming PENDING COPSEY, RAYMOND CORREA, FAUSTINO JR COURSEY, MIAJA COX, ANTHONIE CROMWELL, GRETA CUAJUNO, GABRIEL CULLOM, JOANNA CUTHBERT, JENNIFER CYRIL, TWINKLE DALY, CADEJAH DASILVA, DENNIS DAUBERT, CANDACE DAVIES, JOEL JR DAVILA, KHADIJAH DAVIS, ROBERT DEES, I-QURAN DELPRETE, PAUL DENNIS, BRENDA DEPALMA, ANGELINA DERK, ERIC DEVER, BARBARA
    [Show full text]
  • THE NAUTILUS [Vol
    2 2 THE NAUTILUS [Vol. 69 (1) separated from each other by five centimeters. The snail was expanded with its head oriented away from the clam. When placed on the sand, the clam showed no activity during the next 30 minutes after which observations were discontinued. All but the lower (anterior) end of the body of the clam was covered by an envelope of slime secreted by the foot of the snail. It seems clear that P. duplicatus capturesEnsis directus by approaching it below the surface of the substratum and by ir­ ritating the lower portion so that it retreats upward. The snail then coats the razor clam with an envelope of slime which ap­ pears to have anesthetic properties. Successful capture proba­ bly depends on the ability of the snail to maintain contact with its prey until anesthesia takes place. ON THE OCCURRENCE OF THE NUDIBRANCH ALDERIA MODESTA (LOVÉN, 1844) ON THE CENTRAL CALIFORNIAN COAST By CADET HAND and JOAN STEINBERG Department of Zoology, University of California, Berkeley Alderia modesta (Loven, 1844) has long been known from the coasts of northern Europe. It has been recorded from as far north as the Trondheim Fjord in Norway (Norman, 1893), south to Skibbereen in Ireland (Allman, 1845) and on the French coast (Gollien, 1929). Therefore, it has been of con­ siderable interest to us to find well-established populations of an Alderia in two localities on the central Californian coast. Through the kindness of Monsieur G. Van Put of the Royal Institute of Natural Sciences of Belgium in Brussels and Dr.
    [Show full text]
  • A Review of Planktivorous Fishes: Their Evolution, Feeding Behaviours, Selectivities, and Impacts
    Hydrobiologia 146: 97-167 (1987) 97 0 Dr W. Junk Publishers, Dordrecht - Printed in the Netherlands A review of planktivorous fishes: Their evolution, feeding behaviours, selectivities, and impacts I Xavier Lazzaro ORSTOM (Institut Français de Recherche Scientifique pour le Développement eri Coopération), 213, rue Lu Fayette, 75480 Paris Cedex IO, France Present address: Laboratorio de Limrzologia, Centro de Recursos Hidricob e Ecologia Aplicada, Departamento de Hidraulica e Sarzeamento, Universidade de São Paulo, AV,DI: Carlos Botelho, 1465, São Carlos, Sï? 13560, Brazil t’ Mail address: CI? 337, São Carlos, SI? 13560, Brazil Keywords: planktivorous fish, feeding behaviours, feeding selectivities, electivity indices, fish-plankton interactions, predator-prey models Mots clés: poissons planctophages, comportements alimentaires, sélectivités alimentaires, indices d’électivité, interactions poissons-pltpcton, modèles prédateurs-proies I Résumé La vision classique des limnologistes fut de considérer les interactions cntre les composants des écosystè- mes lacustres comme un flux d’influence unidirectionnel des sels nutritifs vers le phytoplancton, le zoo- plancton, et finalement les poissons, par l’intermédiaire de processus de contrôle successivement physiqucs, chimiques, puis biologiques (StraSkraba, 1967). L‘effet exercé par les poissons plaiictophages sur les commu- nautés zoo- et phytoplanctoniques ne fut reconnu qu’à partir des travaux de HrbáEek et al. (1961), HrbAEek (1962), Brooks & Dodson (1965), et StraSkraba (1965). Ces auteurs montrèrent (1) que dans les étangs et lacs en présence de poissons planctophages prédateurs visuels. les conimuiiautés‘zooplanctoniques étaient com- posées d’espèces de plus petites tailles que celles présentes dans les milieux dépourvus de planctophages et, (2) que les communautés zooplanctoniques résultantes, composées d’espèces de petites tailles, influençaient les communautés phytoplanctoniques.
    [Show full text]
  • Radiozoa (Acantharia, Phaeodaria and Radiolaria) and Heliozoa
    MICC16 26/09/2005 12:21 PM Page 188 CHAPTER 16 Radiozoa (Acantharia, Phaeodaria and Radiolaria) and Heliozoa Cavalier-Smith (1987) created the phylum Radiozoa to Radiating outwards from the central capsule are the include the marine zooplankton Acantharia, Phaeodaria pseudopodia, either as thread-like filopodia or as and Radiolaria, united by the presence of a central axopodia, which have a central rod of fibres for rigid- capsule. Only the Radiolaria including the siliceous ity. The ectoplasm typically contains a zone of frothy, Polycystina (which includes the orders Spumellaria gelatinous bubbles, collectively termed the calymma and Nassellaria) and the mixed silica–organic matter and a swarm of yellow symbiotic algae called zooxan- Phaeodaria are preserved in the fossil record. The thellae. The calymma in some spumellarian Radiolaria Acantharia have a skeleton of strontium sulphate can be so extensive as to obscure the skeleton. (i.e. celestine SrSO4). The radiolarians range from the A mineralized skeleton is usually present within the Cambrian and have a virtually global, geographical cell and comprises, in the simplest forms, either radial distribution and a depth range from the photic zone or tangential elements, or both. The radial elements down to the abyssal plains. Radiolarians are most useful consist of loose spicules, external spines or internal for biostratigraphy of Mesozoic and Cenozoic deep sea bars. They may be hollow or solid and serve mainly to sediments and as palaeo-oceanographical indicators. support the axopodia. The tangential elements, where Heliozoa are free-floating protists with roughly present, generally form a porous lattice shell of very spherical shells and thread-like pseudopodia that variable morphology, such as spheres, spindles and extend radially over a delicate silica endoskeleton.
    [Show full text]
  • Fagutredning, Prosjekt Nr
    Müller - Sars Selskapet – Drøbak Daphnia lacustris (v.ø.), D. l. alpina (h.ø.): store, lavpredasjonsdaphnier og Lough Slieveaneena, Irland; oceanisk lavpredasjoninnsjø med bare ørret og store D. longispina Vedvarende menneskeindusert spredning av bredspektret ferskvannsfisk til og internt i Norge: et holarktisk, økologisk perspektiv Rapport nr. 10-2009 Drøbak 2009 ISBN: 978-82-8030-003-4 Ekstrakt Menneskeindusert spredning av fisk med bredspektret fødevalg, som karpefisk og gjedde, påvirker nå følsomme økosystemer i store deler av Norge. Mens en pest-art som ørekyte (Phoxinus phoxinus) kan leve over et meget bredt temperaturområde, og finnes like vanlig i høyfjellet som i karpefiskområder i lavlandet og på kontinentet, har andre karpefisk og nordlig gjedde (Esox lucius) vanligvis et trangere temperaturområde, slik som de siste spredningsartene i Norge: sørv (Scardinius erythrophthalmus), suter (Tinca tinca) og regnlaue (Leucaspius delineatus). Arter som karpe, mort, karuss, gullvederbuk og stingsild kan og også spres med menneskers hjelp. I tillegg ble mataukfisk som kanadisk bekkerøye spredd under perioden med forsuring i Norge og regnbueørret er satt ut ulike steder i landet gjennom flere tiår. Spredning av ørekyte og de tidligere utsettingene av faunafremmede laksefisk blir gitt stor oppmerksomhet i forvaltning og forskning, mens spredning av øvrige karpefisk og gjedde til ekstremt sjeldne økosystemer i norsk lavland får utvikle seg relativt fritt i det ”oppvirvlede støvet” rundt ørekyte og laksefiskene. På grunn av landets steile topografi og lange, sammenhengende fjellkjeder mot invasjonssentre, og -regioner, var det alltid problematisk for ferskvannsfisk å spre seg over hele Norge, før menneskene ankom. Etter siste istid har imidlertid menneskene båret fisk over det meste av landet.
    [Show full text]
  • Marine Information Network Information on the Species and Habitats Around the Coasts and Sea of the British Isles
    MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Sponges, shade-tolerant red seaweeds and Dendrodoa grossularia on wave-surged overhanging lower eulittoral bedrock and caves MarLIN – Marine Life Information Network Marine Evidence–based Sensitivity Assessment (MarESA) Review John Readman 2020-01-24 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/habitats/detail/1203]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: Readman, J.A.J., 2020. Sponges, shade-tolerant red seaweeds and [Dendrodoa grossularia] on wave- surged overhanging lower eulittoral bedrock and caves. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.1203.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this
    [Show full text]
  • Malacologist57corr.Pdf
    Number 57 (August 2011) The Malacologist Page 1 NUMBER 57 AUGUST 2011 Annual Award Winner Alexandra Zieritz describes her work . Variability, function and phylogenetic significance of unionoid shell characters Freshwater mussels of the order Unionoida show a wide parasitic levels of both modern and ancient unionoid populations. variability in shell features (Fig. 1), but our understanding Continued on page 3 of which factors determine which trends in shell morphol- ogy is poor. The aim of my PhD thesis was to improve our knowledge on the phylogenetic significance and functional morphologies of unionoid shell characters; or in other words, to answer the question “Why does a mussel look the way it does?”. A good understanding of morphological differences between and within species is not only needed to resolve unanswered questions on unionoid evolution but can also be helpful for other fields of research, including palaeontology, ecology and conservation of these highly threatened animals. Intraspecific patterns in shell morphologies and their use for palaeontological reconstructions If we knew which environmental conditions or other fac- tors a given shell morphotype is associated with, we could reconstruct a mussel’s (former) habitat and/or biological characteristics by merely looking at its shell. Taxa produc- ing hard parts that persist in sedimentary deposits can addi- tionally be used to recover information about ancient popu- lations and environments. Unfortunately, our incomplete understanding of which factors cause which patterns in morphology has so far limited the use of unionoids in such reconstructions of both the present and the past. This is where I come in: Applying a novel morphometric tech- nique (Fourier shape analysis), I detected the first consis- tent habitat-associated trend in shell shape (Zieritz & Aldridge, 2009).
    [Show full text]