Late Weichselian and Holocene Shore Displacement History of the Baltic Sea in Finland

Total Page:16

File Type:pdf, Size:1020Kb

Late Weichselian and Holocene Shore Displacement History of the Baltic Sea in Finland Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland MATTI TIKKANEN AND JUHA OKSANEN Tikkanen, Matti & Juha Oksanen (2002). Late Weichselian and Holocene shore displacement history of the Baltic Sea in Finland. Fennia 180: 1–2, pp. 9–20. Helsinki. ISSN 0015-0010. About 62 percent of Finland’s current surface area has been covered by the waters of the Baltic basin at some stage. The highest shorelines are located at a present altitude of about 220 metres above sea level in the north and 100 metres above sea level in the south-east. The nature of the Baltic Sea has alter- nated in the course of its four main postglacial stages between a freshwater lake and a brackish water basin connected to the outside ocean by narrow straits. This article provides a general overview of the principal stages in the history of the Baltic Sea and examines the regional influence of the associated shore displacement phenomena within Finland. The maps depicting the vari- ous stages have been generated digitally by GIS techniques. Following deglaciation, the freshwater Baltic Ice Lake (12,600–10,300 BP) built up against the ice margin to reach a level 25 metres above that of the ocean, with an outflow through the straits of Öresund. At this stage the only substantial land areas in Finland were in the east and south-east. Around 10,300 BP this ice lake discharged through a number of channels that opened up in central Sweden until it reached the ocean level, marking the beginning of the mildly saline Yoldia Sea stage (10,300–9500 BP). As the connecting chan- nels rose above sea level, however, the Baltic Sea became confined once more, to form the Ancylus Lake (9500–8000 BP). During its existence the outflow channel to the ocean shifted to the Straits of Denmark and the major lake systems of central Finland became isolated from the Baltic basin. After the brief Mastogloia transition phase, a greater influx of saline water began to take place through the Straits of Denmark, marking the Litorina Sea stage (7500– 4000 BP), to be followed by a somewhat less saline stage known as the Lim- nea Sea. After a transgressive period early in the Litorina Sea stage, shoreline displacement in Finland has proceeded at a steadily declining rate. Matti Tikkanen, Department of Geography, P. O. Box 64, FIN-00014 Universi- ty of Helsinki, Finland. E-mail: [email protected] Juha Oksanen, Finnish Geodetic Institute, Department of Geoinformatics & Cartography, P. O. Box 15, FIN-02431 Masala, Finland. E-mail: juha.oksanen@ fgi.fi Introduction period of several thousand years and has corre- spondingly increased the land area of Finland. The The Baltic Sea has a long and chequered history, present area of the Baltic Sea is about 377,000 in the course of which the area nowadays occu- square kilometres, and it has a freshwater influx pied by Finland has undergone substantial chang- of some 660 cubic kilometres a year from a drain- es. The phenomenon known as land uplift, which age basin of 1.6 million square kilometres. In ad- still operates in the Baltic region and currently dition, some 475 square kilometres of saline wa- amounts to some eight millimetres per year on the ter a year flows into the Baltic through the nar- Finnish coast of the northernmost Gulf of Both- row Straits of Denmark. The total outflow of brack- nia (Kakkuri 1990; Mäkinen & Saaranen 1998), ish water is of the order of 950 cubic kilometres a has had the effect of reducing the sea area over a year (Björck 1995: 19). 10Matti Tikkanen and Juha Oksanen FENNIA 180: 1–2 (2002) Fig. 1. The Baltic Sea and the surrounding region. The Baltic Sea is the largest brackish water basin waters (Björck 1995: 20). The salinity has also var- in the world, although it is fairly shallow – its deep- ied greatly in the course of the history of the basin. est point is only 459 metres. Thresholds divide the Finland and the whole Baltic basin have been basin into a number of separate sections (Fig. 1). buried beneath the continental ice sheet on sev- The sea’s salinity varies from 0.1 percent in the north eral occasions during the Quaternary period to 0.6–0.8 percent in the central parts, and can (Taipale & Saarnisto 1991: 212). These glaciations reach as much as 1.5–2.0 percent in the deepest have been separated by more favourable climatic FENNIA 180: 1–2 (2002)Late Weichselian and Holocene shore displacement... 11 periods, during which the Baltic basin has been their influence on the pattern of shore displace- occupied by water and land uplift has caused pro- ment in Finland. The technique employed for con- gressively greater areas of dry land to emerge on structing the palaeogeographical maps of Finland its coasts, in the same manner as during this last is based on a digital elevation model (DEM) for postglacial period. During the Eemian interglacial, the entire country. The model can be intersected about 130,000–115,000 BP, the basin contained by different surfaces in accordance with the wa- what is referred to as the Eemian Sea. Its waters ter level that prevailed in the Baltic at each stage. were evidently much more saline than those of The contour-based DEM was constructed by the the Baltic Sea nowadays, as deduced from dia- National Land Survey, and it has horizontal reso- toms recovered from sediments dated to that pe- lution of 200 metres. riod. It is possible that there was a connection from the Baltic basin to the Arctic Ocean across Karelia at the beginning of this Eemian Sea stage, The Baltic Ice Lake although it was closed later due to the effects of (12,600–10,300 BP) land uplift (Björck & Svensson 1994). The ice sheet associated with the Weichselian The ice margin began to retreat from the south- glaciation, which followed the Eemian intergla- ernmost parts of the Baltic basin around 13,500– cial, reached its maximum extent about 18,000– 13,000 BP, leading to the creation of the first post- 20,000 BP. It was more than three kilometres thick glacial water bodies in the region (Björck 1995: in the area of Finland, so that it depressed the 21). Deglaciation then proceeded very rapidly, so earth’s crust to such a degree that a considerable that the margin was situated close to the south part of the country’s present area lay beneath the coast of Finland by about 12,000 BP (Niemelä waters of the Baltic basin immediately after de- 1971; Saarnisto & Salonen 1995: 10). By that glaciation. As the burden of the overlying ice was stage the large volumes of meltwater from the ice released, the crust began to rise rapidly, howev- sheet were able to discharge from the Baltic Ice er, so that it is estimated that the total rise up to Lake into the ocean via the Strait of Öresund the present time has been 600–700 metres on the (Agrell 1976; Björck 1979; Björck 1995) (Fig. 2A). northern coast of the Gulf of Bothnia, 400–500 Before the ice margin had reached the point metres in the middle part of Finland and in cen- now marked by the First Salpausselkä moraines, tral Lapland, and around 300 metres on the coast however, the bedrock threshold in the Strait of of the Gulf of Finland and in northern Lapland Öresund had risen above the ocean level and the (Mörner 1980). The majority of this rise neverthe- waters of the Baltic basin had begun to be less took place as the ice was melting, before the dammed up to form a freshwater ice lake. Then, ground surface became exposed. around 11,200 BP, a (possibly subglacial) connec- Four main stages can be recognized in the his- tion to the west opened up north of Mount Bil- tory of the Baltic basin since the last glaciation, lingen in central Sweden. This remained function- influenced by a complex interaction between de- al for some 400 years, and allowed the water level glaciation, regional differences in land uplift, and in the Baltic to return to that of the outside ocean, eustatic changes in sea level (Tikkanen et al. presumably implying a decline of 5–10 metres 1999). The connection with the outside ocean has (Björck 1995). This has been referred to as the g- been located variably in the Straits of Denmark stage, derived from a now obsolete system of la- or central Sweden. There is a long tradition of re- belling shore levels in the Baltic with letters from search into the history of the Baltic basin and a to p (Eronen 1990). shore displacement in Finland and the other The climate became cooler once more during countries of the Baltic region (see Eronen 1983; the Younger Dryas period, causing the ice margin Björck 1995; Heinsalu et al. 2000), and the re- to advance. With the closure of the connection gional changes in shore displacement during the with the ocean around 10,800 BP, the next 600 various stages can nowadays be traced fairly ac- years proved to be a transgressive period on the curately by combining the vast amount of data shores of the southern parts of the Baltic Ice Lake, available with altitude data using GIS techniques its water level gradually rising to about 25 metres (Tikkanen & Oksanen 1999). above that of the ocean and the outflow channel This article will provide a brief overview of the shifting to the Strait of Öresund once again (Björck main stages in the history of the Baltic Sea and 1995).
Recommended publications
  • Varve-Related Publications in Alphabetical Order (Version 15 March 2015) Please Report Additional References, Updates, Errors Etc
    Varve-Related Publications in Alphabetical Order (version 15 March 2015) Please report additional references, updates, errors etc. to Arndt Schimmelmann ([email protected]) Abril JM, Brunskill GJ (2014) Evidence that excess 210Pb flux varies with sediment accumulation rate and implications for dating recent sediments. Journal of Paleolimnology 52, 121-137. http://dx.doi.org/10.1007/s10933-014-9782-6; statistical analysis of radiometric dating of 10 annually laminated sediment cores from aquatic systems, constant rate of supply (CRS) model. Abu-Jaber NS, Al-Bataina BA, Jawad Ali A (1997) Radiochemistry of sediments from the southern Dead Sea, Jordan. Environmental Geology 32 (4), 281-284. http://dx.doi.org/10.1007/s002540050218; Dimona, Jordan, gamma spectroscopy, lead-210, no anthropogenic contamination, calculated sedimentation rate agrees with varve record. Addison JA, Finney BP, Jaeger JM, Stoner JS, Norris RN, Hangsterfer A (2012) Examining Gulf of Alaska marine paleoclimate at seasonal to decadal timescales. In: (Besonen MR, ed.) Second Workshop of the PAGES Varves Working Group, Program and Abstracts, 17-19 March 2011, Corpus Christi, Texas, USA, 15-21. http://www.pages.unibe.ch/download/docs/working_groups/vwg/2011_2nd_VWG_workshop_programs_and_abstracts.pdf; ca. 60 cm marine sediment core from Deep Inlet in southeast Alaska, CT scan, XRF scanning, suspected varves, 1972 earthquake and tsunami caused turbidite with scouring and erosion. Addison JA, Finney BP, Jaeger JM, Stoner JS, Norris RD, Hangsterfer A (2013) Integrating satellite observations and modern climate measurements with the recent sedimentary record: An example from Southeast Alaska. Journal of Geophysical Research: Oceans 118 (7), 3444-3461. http://dx.doi.org/10.1002/jgrc.20243; Gulf of Alaska, paleoproductivity, scanning XRF, Pacific Decadal Oscillation PDO, fjord, 137Cs, 210Pb, geochronometry, three-dimensional computed tomography, discontinuous event-based marine varve chronology spans AD ∼1940–1981, Br/Cl ratios reflect changes in marine organic matter accumulation.
    [Show full text]
  • Paleoenvironmental Reconstructions in the Baltic Sea and Iberian Margin
    Paleoenvironmental reconstructions in the Baltic Sea and Iberian Margin Assessment of GDGTs and long-chain alkenones in Holocene sedimentary records Lisa Alexandra Warden Photography: Cover photos: Dietmar Rüß Inside photos: Dietmar Rüß, René Heistermann and Claudia Zell Printed by: Ridderprint, Ridderkerk Paleoenvironmental reconstructions in the Baltic Sea and Iberian Margin Assessment of GDGTs and long-chain alkenones in Holocene sedimentary records Het gebruik van GDGTs en alkenonen in Holocene sedimentaire archieven van de Baltische Zee en kustzeeën van het Iberisch schiereiland voor paleomilieureconstructie (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof. dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op vrijdag 31 maart 2017 des middags te 12.45 uur door Lisa Alexandra Warden geboren op 24 januari 1982 te Philadelphia, Verenigde Staten van Amerika Promotor: Prof. dr. ir. J.S. Sinninghe Damsté This work has been financially supported by the European Research Council (ERC) and the NIOZ Royal Netherlands Institute for Sea Research. “We are the first generation to feel the impact of climate change and the last generation that can do something about it.” -President Obama For Lauchlan, who was with me the whole time as I wrote this thesis. Photo by Dietmar Rüß Contents Chapter 1 – Introduction 9 Chapter 2 - Climate forced human demographic and cultural change in
    [Show full text]
  • The Problem of . the Cochrane in Late Pleistocene * Chronology
    The Problem of . the Cochrane in Late Pleistocene * Chronology ¥ GEOLOGICAL SURVEY BULLETIN 1021-J A CONTRIBUTION TO GENERAL GEOLOGY 4 - THE PROBLEM OF THE COCHRANE IN LATE PLEISTOCENE CHRONOLOGY By THOR N. V. KAKLSTROM .ABSTRACT The precise position of the Cochrane readvances in the Pleistocene continental chronology has long been uncertain. Four radiocarbon samples bearing on the age of the Cochrane events were recently dated by the U. S. Geological Survey. Two samples (W-241 and W-242), collected from organic beds underlying sur­ face drift in the Cochrane area, Ontario, are more than 38,000 years old. Two samples (W-136 and W-176), collected from forest beds near the base and middle of a 4- to 6-foot-thick peat section overlying glacial lake sediments deposited after ice had retreated north of Cochrane, have ages, consistent with stratigraphic position, of 6,380±350 and 5,800±300 years. These results indicate that the Cochrane area may have been under a continuous ice cover from before 36,000 until some time before 4500 B. C.; this conforms with the radiocarbon dates of the intervening substage events of the Wisconsin glaciation. The radiocarbon results indicate that the Cochrane preceded rather than followed the Altither- mal climatic period and suggest that the Cochrane be considered a Wisconsin event of substage rank. Presented geoclimatic data seemingly give a consistent record of a glaciation and eustatic sea level low between 7000 and 4500 B. C., which appears to corre­ late with the Cochrane as a post-Mankato and pre-Altithermal event. A direct relation between glacial and atmospheric humidity changes is revealed by com­ paring the glacioeustatic history of late Pleistocene and Recent time with inde­ pendently dated drier intervals recorded from Western United States, Canada, and Europe.
    [Show full text]
  • Post-Glacial History of Sea-Level and Environmental Change in the Southern Baltic Sea
    Post-Glacial History of Sea-Level and Environmental Change in the Southern Baltic Sea Kortekaas, Marloes 2007 Link to publication Citation for published version (APA): Kortekaas, M. (2007). Post-Glacial History of Sea-Level and Environmental Change in the Southern Baltic Sea. Department of Geology, Lund University. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 Post-glacial history of sea-level and environmental change in the southern Baltic Sea Marloes Kortekaas Quaternary Sciences, Department of Geology, GeoBiosphere Science Centre, Lund University, Sölvegatan 12, SE-22362 Lund, Sweden This thesis is based on four papers listed below as Appendices I-IV.
    [Show full text]
  • Effet Réservoir Sur Les Âges 14C De La Mer De Champlain À La Transition Pléistocène-Holocène : Révision De La Chronologie De La Déglaciation Au Québec Méridional
    _57-2-3.qxd 31/08/05 16:17 Page 115 Géographie physique et Quaternaire, 2003, vol. 57, nos 2-3, p. 115-138, 6 fig., 4 tabl. EFFET RÉSERVOIR SUR LES ÂGES 14C DE LA MER DE CHAMPLAIN À LA TRANSITION PLÉISTOCÈNE-HOLOCÈNE : RÉVISION DE LA CHRONOLOGIE DE LA DÉGLACIATION AU QUÉBEC MÉRIDIONAL Serge OCCHIETTI* et Pierre J.H. RICHARD*, respectivement : Département de géographie et Centre GEOTOP-UQAM-McGILL, Université du Québec à Montréal, C.P.8888, succursale Centre-ville, Montréal, Québec H3C 3P8 et Département de géogra- phie, Université de Montréal, C.P.6128, succursale Centre-ville, Montréal, Québec H3C 3J7. RÉSUMÉ L’âge de macrorestes de plantes ABSTRACT Reservoir effect on 14C ages of RESUMEN Datación con radiocarbono del terricoles et une extrapolation fondée sur le Champlain Sea at the Pleistocene-Holocene efecto reservorio del Mar de Champlain pollen des sédiments sous-jacents à la date transition: revision of the chronology of ice durante la transición Pleistoceno-Holoceno: basale du lac postglaciaire de Hemlock Carr retreat in southern Québec. Basal AMS-dates revisión cronológica de la desglaciación en el (243 m), au mont Saint-Hilaire, montrent que on terrestrial plant macrofossils coupled with Québec meridional. La edad de los macrores- la déglaciation locale y est survenue vers an extrapolation from the pollen content of tos de plantas terrestres y una extrapolación 11 250 ans 14C BP (13,3-13,1 ka BP). La underlying postglacial lake sediments at the fundada sobre el polen de los sedimentos datation croisée entre de tels macrorestes Hemlock Carr peatland (243 m), on subyacentes al estrato basal del lago postgla- (10 510 ± 60 ans 14C BP) et des coquilles de Mont Saint-Hilaire, show that local ice retreat ciar de Hemlock Carr (243 m), en el Mont sédiments marins (~12 200 ans 14C BP) pié- occurred around 11 250 14C yr BP (13,3- Saint-Hilaire, muestran que la desglaciación gés au fond du lac Hertel (169 m), voisin, 13,1 ka BP).
    [Show full text]
  • (NSF) Directorate of Geosciences
    NSF Proposal accepted for funding March 22, 2007 Target Program: National Science Foundation (NSF) Directorate of Geosciences (GEO): Division of Earth Sciences (EAR): Sedimentary Geology and Paleobiology (SGP) Program – proposal submitted July 16, 2006 – proposal accepted for funding March 22, 2007 Title: Consolidation and Calibration of the New England Varve Chronology (NEVC): An Annual Continental Record of Ice Dynamics and Terrestrial Change, 18-11.5 kyr BP John C. Ridge 617-627-3494 or 617-627-2890 Dept. of Geology [email protected] Tufts University Medford, MA 02155 1 1. Project Summary Intellectual merit. Rapid climate change events during deglaciation are closely linked to ice sheet, ocean, and atmosphere interactions. Understanding these interactions requires high resolution comparisons of climate and continental ice dynamics. Although general patterns of Laurentide Ice Sheet (LIS) variation have been discerned, they are not continuously resolved at a sub-century scale. This lack of continuous, high-resolution terrestrial glacial chronologies with accurate radiometric controls continues to be a limiting factor in understanding deglacial climate. Such records, especially from the southeastern sector of the LIS, can provide critical comparisons to N. Atlantic climate records (marine and ice core) and a rigorous test of hypotheses linking glacial activity to climate change. Consolidation of the New England Varve Chronology (NEVC), and development of its records of glacier dynamics and terrestrial change, is a rare opportunity to formulate a complete, annual-scale terrestrial chronology from 18-11.5 kyr BP. Glacial varve deposition, which is linked to glacial meltwater discharge, can be used to monitor ice sheet ablation and has a direct tie to glacier mass balance and climate.
    [Show full text]
  • Land Uplift and Relative Sea-Level Changes in the Loviisa Area, Southeastern Finland, During the Last 8000 Years
    F10000009 POSIVA 99-28 Land uplift and relative sea-level changes in the Loviisa area, southeastern Finland, during the last 8000 years Arto Miettinen Matti Eronen Hannu Hyvarinen Department of Geology University of Helsinki September 1999 POSIVA OY Mikonkatu 15 A. FIN-001O0 HELSINKI, FINLAND Phone (09) 2280 30 (nat.). ( + 358-9-) 2280 30 (int.) Fax (09) 2280 3719 (nat.), ( + 358-9-) 2280 3719 (int.) POSIVA 99-28 Land uplift and relative sea-level changes in the Loviisa area, southeastern Finland, during the last 8000 years Arto Miettinen Matti Eronen Hannu Hyvarinen September 1999 POSIVA OY Mikonkatu 15 A, FIN-OO1OO HELSINKI, FINLAND Phone (09) 2280 30 (nat.), ( + 358-9-) 2280 30 (int.) 3 1/23 Fax (09) 2280 3719 (nat.), ( + 358-9-) 2280 3719 (int.) Posiva-raportti - Posiva Report Raporfintumus-Report <»*> POSIVA 99-28 Posiva Oy . Mikonkatu 15 A, FIN-00100 HELSINKI, FINLAND JuikaisuaiKa Date Puh. (09) 2280 30 - Int. Tel. +358 9 2280 30 September 1999 Tekija(t) - Author(s) Toimeksiantaja(t) - Commissioned by Arto Miettinen MattiEronen Posiva Oy Hannu Hyvannen y Department of Geology, University of Helsinki Nimeke - Title LAND UPLIFT AND RELATIVE SEA-LEVEL CHANGES IN THE LOVIISA AREA, SOUTHEASTERN FINLAND, DURING THE LAST 8000 YEARS Tiivistelma - Abstract Southeastern Finland belongs to the area covered by the Weichselian ice sheet, where the release of the ice load caused a rapid isostatic rebound during the postglacial time. While the mean overall apparent uplift is of the order of 2 mm/yr today, in the early Holocene time it was several times higher. A marked decrease in the rebound rate occurred around 8500 BP, however, since then the uplift rate has remained high until today, with a slightly decreasing trend towards the present time.
    [Show full text]
  • Digital Cover
    The Littorina transgression in southeastern Sweden and its relation to mid-Holocene climate variability Yu, Shiyong 2003 Link to publication Citation for published version (APA): Yu, S. (2003). The Littorina transgression in southeastern Sweden and its relation to mid-Holocene climate variability. Deaprtment of Geology. Total number of authors: 1 General rights Unless other specific re-use rights are stated the following general rights apply: Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Read more about Creative commons licenses: https://creativecommons.org/licenses/ Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. LUND UNIVERSITY PO Box 117 221 00 Lund +46 46-222 00 00 The Littorina transgression in L southeastern Sweden and its relation to mid-Holocene U climate variability N D Q Shi-Yong Yu U LUNDQUA Thesis 51 Quaternary Sciences A Department of Geology GeoBiosphere Science Centre Lund University T Lund 2003 H E S I S LUNDQUA Thesis 51 The Littorina transgression in southeastern Sweden and its relation to mid-Holocene climate variability Shi-Yong Yu Avhandling att med tillstånd från Naturvetenskapliga Fakulteten vid Lunds Universitet för avläggandet av filosofie doktorsexamen, offentligen försvaras i Geologiska institutionens föreläsningssal Pangea, Sölvegatan 12, Lund, fredagen den 14 november kl.
    [Show full text]
  • 20020011.Pdf
    Color profile: Generic CMYK printer profile Composite Default screen 1144 PERSPECTIVE Geological and evolutionary underpinnings for the success of Ponto-Caspian species invasions in the Baltic Sea and North American Great Lakes David F. Reid and Marina I. Orlova1 Abstract: Between 1985 and 2000, ~70% of new species that invaded the North American Great Lakes were endemic to the Ponto-Caspian (Caspian, Azov, and Black seas) basins of eastern Europe. Sixteen Ponto-Caspian species were also established in the Baltic Sea as of 2000. Many Ponto-Caspian endemic species are characterized by wide environmental tolerances and high phenotypic variability. Ponto-Caspian fauna evolved over millions of years in a series of large lakes and seas with widely varying salinities and water levels and alternating periods of isolation and open connections between the Caspian Sea and Black Sea depressions and between these basins and the Mediterranean Basin and the World Ocean. These conditions probably resulted in selection of Ponto-Caspian endemic species for the broad environmental tolerances and euryhalinity many exhibit. Both the Baltic Sea and the Great Lakes are geologi- cally young and present much lower levels of endemism. The high tolerance of Ponto-Caspian fauna to varying environmental conditions, their ability to survive exposure to a range of salinities, and the similarity in environmental conditions available in the Baltic Sea and Great Lakes probably contribute to the invasion success of these species. Human activities have dramatically increased the opportunities for transport and introduction and have played a cata- lytic role. Résumé : Entre 1985 et 2000, environ 70 % des espèces qui ont envahi pour la première fois les Grands-Lacs d’Amérique du Nord étaient endémiques aux bassins versants de la région pontocaspienne de l’Europe de l’Est, soit ceux de la mer Caspienne, de la mer d’Azov et de la mer Noire.
    [Show full text]
  • Relative Sea Level Changes, Glacio-Isostatic Rebound and Shoreline Displacement in the Southern Baltic
    SZYMON UŒCINOWICZ RELATIVE SEA LEVEL CHANGES, GLACIO-ISOSTATIC REBOUND AND SHORELINE DISPLACEMENT IN THE SOUTHERN BALTIC Polish Geological Institute Special Papers,10 WARSZAWA 2003 CONTENTS Introduction ..................................................................6 Area, objective and scope of study ......................................................7 Area of study ...............................................................7 Objective and scope of the work .....................................................8 Analysed materials ............................................................9 Geological setting of the Southern Baltic: an outline .............................................9 Pre-Quaternary ..............................................................9 Quaternary................................................................10 Relative sea level changes ..........................................................11 The problem and methods for its solution ...............................................11 Late Pleistocene and Early Holocene ..................................................18 The turn of Early and Middle Holocene, Middle Holocene ......................................31 Late Holocene ..............................................................35 Vertical crust movements ..........................................................37 Glacio-isostatic rebound: an outline of the problem ..........................................37 Glacio-isostatic movements in the Southern Baltic ...........................................38
    [Show full text]
  • (Eemian) Hydrographic Conditions in the Southeastern Baltic Sea, NE
    ARTICLE IN PRESS Quaternary International 130 (2005) 3–30 Last Interglacial (Eemian) hydrographic conditions in the southeastern Baltic Sea,NE Europe,based on dinoflagellate cysts Martin J. Heada,*,Marit-Solveig Seidenkrantz b,Zofia Janczyk-Kopikowa c, Leszek Marksc,d,Philip L. Gibbard a a Godwin Institute for Quaternary Research, Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK b Department of Earth Sciences, University of Aarhus, DK-8000 Arhus( C, Denmark c Polish Geological Institute, Rakowiecka 4, PL-00-975 Warsaw, Poland d Institute of Geology, Warsaw University, Zwirki i Wigury 93, PL-02-089 Warsaw, Poland Available online 20 July 2004 Abstract A rich organic-walled dinoflagellate cyst and pollen record from the Licze borehole in northern Poland has been used to reconstruct the hydrographic history of the southeastern Baltic Sea during the Last Interglacial (Eemian Stage,Late Pleistocene). Warm,saline waters (ca. 10–15 psu) entered the site from the North Sea within the first few hundred years of the Eemian, corresponding to the Pinus–Betula (E1) or Pinus–Betula–Ulmus (E2) regional pollen assemblage zones (RPAZ). By about 300 years (beginning of RPAZ E3),dinoflagellate cyst assemblages were already indicating summer sea-surface salinities in excess of about 15 psu and temperatures that perhaps exceeded 27C. Warm and saline conditions of 15–20 psu or more,at least twice present levels, persisted throughout the early Eemian. A rise in sea level at Licze appears to correlate with a similar event in eastern Denmark,as both coincide with the increase in Corylus (ca. 750 years into the interglacial).
    [Show full text]
  • Littorina Sea Since Ca 8700 Cal Yr BP Relative Sea Level Curves
    EOLO L G OG O IA O I IK N L S T Ü I T U U T U R T A T M 1820 E O N E T LL E ET MA Global sea level rise and changing erosion: examples from the Baltic Sea Basin Alar Rosentau University of Tartu, Estonia Jan Harff, Szczecin University, Poland; IOW Warnemünde, Germany Birgit Hünicke, Helmholtz-Zentrum Geesthacht, Germany Ice sheet extension during LGM Svendsen, J.I. et al. 2004.Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, 1229–1271 Ice sheet extension during LGM Svendsen, J.I. et al. 2004.Late Quaternary ice sheet history of northern Eurasia. Quaternary Science Reviews 23, 1229–1271 Tide-gauge measurements data by Ekman, 1996 Vertical crustal movements data by Lidberg et al., 2007 Eustatic sea level Black: Global eustatic sea level curve of Waelbroeck et al. (2002) Red: Barbados eustatic curve using ICE-5G(VM2) model Purple “step-discontinuous” curve, the “ice equivalent” eustatic sea level history of the ICE-5G model of global deglaciation m bsl Peltier 2007 History of the Baltic Sea Baltic Ice Lake ca 15 000- 11 700 cal yr BP History of the Baltic Sea Yoldia Sea ca 11 700- 10 800 cal yr BP History of the Baltic Sea Ancylus Lake ca 10 800- 8 700 cal yr BP History of the Baltic Sea Littorina Sea Since ca 8700 cal yr BP Relative sea level curves Rosentau, A., Meyer, M., Harff, J, Dietrich, R, Richter, A. 2007 RSL change model for Littorina Sea Changes in volume and area Rosentau, A et al.
    [Show full text]