Vector Transmission of Xylella Fastidiosa: Applying Fundamental Knowledge to Generate Disease Management Strategies

Total Page:16

File Type:pdf, Size:1020Kb

Vector Transmission of Xylella Fastidiosa: Applying Fundamental Knowledge to Generate Disease Management Strategies SPECIAL FEATURE ON INSECT TRANSMISSION OF PLANT PATHOGENS Vector Transmission of Xylella fastidiosa: Applying Fundamental Knowledge to Generate Disease Management Strategies RODRIGO P. P. ALMEIDA,1 MATTHEW J. BLUA,2 JOA˜ O R. S. LOPES,3 4 AND ALEXANDER H. PURCELL Ann. Entomol. Soc. Am. 98(6): 775Ð786 (2005) ABSTRACT Xylella fastidiosa is a xylem-limited bacterium transmitted to plants by xylem sap- feeding insects. This pathogen has a wide host range, causing disease in crops such as grape, citrus, almond, and coffee; ornamental plants; and trees. Sharpshooter leafhoppers are the major vectors of X. fastidiosa to crops of economic importance. Transmission characteristics include the lack of a latent period, no transstadial or transovarial transmission, persistence in adults, and multiplication in the foregut of vectors. Various factors inßuence vector transmission of X. fastidiosa, including the distribution and density of bacterial populations in host plants, insect host range and plant preference, season of inoculation, and climatic conditions. The ecology of vectors can affect epidemics, as demonstrated by the large increase in PierceÕs disease of grapevine incidence in California after the introduction of Homalodisca coagulata (Say). Disease control strategies should incorporate basic knowledge of transmission biology, vector ecology, and other interactions involved in X. fastidiosa diseases. We discuss basic aspects of X. fastidiosa transmission by vectors, the ecology of insects in relation to transmission and disease spread, and how basic research can be applied to the development of management strategies for a X. fastidiosa disease. KEY WORDS Hemiptera, Cicadellidae, bacteria, plant disease, bioÞlm INSECTS THAT INGEST PRIMARILY xylem sap belong to four (Fig. 1). Epidemics of citrus variegated chlorosis families within the Hemiptera: Cicadellidae (subfam- (CVC) in Brazil and new outbreaks of PierceÕs disease ily Cicadellinae, sharpshooter leafhoppers), Cercopi- (PD) of grapevines in California driven by Homalo- dae (spittlebugs), Machaerotidae (tube-building disca coagulata (Say) (Blua et al. 1999, Hopkins and spittlebugs), and Cicadidae (cicadas). In general, Purcell 2002), and the availability of genome se- these insects cause little damage to plants. Some ci- quences of four strains of X. fastidiosa (Simpson et al. cadas can damage foliage or debilitate plants by suck- 2000; Bhattacharyya et al. 2002a,b; Van Sluys et al. ing signiÞcant amounts of xylem sap when large 2003), are among the major reasons for such emerging broods emerge, whereas spittlebugs can affect pasture interest. This recent research has rapidly advanced grasses or sugarcane. Sharpshooters rarely damage knowledge of X. fastidiosa biology and epidemiology. plants directly (Andersen et al. 2003) but are eco- Recent reviews evaluate various aspects of X. fastid- nomically important as vectors of the plant pathogenic iosa diseases, including genomics (Van Sluys et al. bacterium Xylella fastidiosa. Grape, almond, citrus, 2002), vector ecology and disease epidemiology coffee, peach, and many forest tree species are among (Redak et al. 2004), and case studies (Purcell and Feil a large list of economically important plants in which 2001, Hopkins and Purcell 2002). We focus this review X. fastidiosa induces disease (Purcell 1997). Many on X. fastidiosa transmission by vectors, the ecology of other agronomic, ornamental, and wild plants are also the interactions, and how this knowledge can be in- hosts of the pathogen, most without expressing symp- corporated into disease management strategies. toms (Hopkins and Purcell 2002). X. fastidiosa Transmission Characteristics. Initial Worldwide, research involving X. fastidiosa and its studies on PD in vineyards suggested that the diseaseÕs vectors has increased dramatically in recent years etiological agent was an insect-borne virus (Hewitt et al. 1946). After Newton PierceÕs observations in the late 1800s and the devastation caused by the disease to 1 Department of Plant and Environmental Protection Sciences, southern California vineyards (Pierce 1892), interest University of Hawaii at Manoa, Honolulu, HI 96822. 2 Department of Entomology, University of California, Riverside, in PD diminished until an outbreak of the disease in CA 92521. the Central Valley of California during the 1930s and 3 Departamento de Entomologia, Fitopatologia and Zoologia Agrõ´- early 1940s (Hewitt et al. 1949). Researchers during cola, ESALQ/Universidade de Sa˜o Paulo, SP, Piracicaba, SP 13418- the 1940s identiÞed sharpshooter leafhoppers and 900, Brazil. 4 Department of Environmental Science, Policy and Management, spittlebugs as vectors (Houston et al. 1947; Severin University of California, Berkeley, CA 94720. 1949, 1950). 0013-8746/05/0775Ð0786$04.00/0 ᭧ 2005 Entomological Society of America 776 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 98, no. 6 vector competency (Purcell and Finlay 1979). Longer access periods result in higher transmission efÞciency. X. fastidiosa is irregularly distributed in infected tis- sues (Hopkins 1989), thus longer plant access time may increase chances of the vector probing infected vessels. Because X. fastidiosa must attach to the fore- gut of vectors in a fast moving environment with ßuid speed of 5Ð10 cm/s (Purcell et al. 1979), longer access periods also can increase the number of cells ingested by the insect, and, proportionally, the opportunities for attachment to occur. By contrast, two other factors may be associated with the increase in inoculation efÞciencies over time. First, attached cells in the fore- gut would have more opportunities to detach from the cuticle and be inoculated into a susceptible vessel with Fig. 1. Number of publications retrieved after a ÔXylellaÕ term was used as a keyword to search the ISI Web of Knowl- longer access times relative to shorter ones. Second, it edge (Web of Science) database in December 2004. Solid may be that cells are frequently inoculated into plants, line (empty circles) represents number of hits with ÔTitleÕ but most die before proliferating and generating dis- only option selected; dashed line (solid squares) are results ease. The number of cells inoculated and the proba- for general ÔTopicÕ search. bility of establishment would increase with access time. Both factors could operate independently. The basis of the transmission mechanism may have some The identiÞcation of a group of vectors considered similarities with that of semipersistently transmitted xylem feeders suggested that the etiological agent was (foregut-borne) viruses (Nault 1997). limited to xylem, as was later demonstrated by exper- Vector Foregut and Its Relationship to Trans- imentally blocking vector transmission to xylem tis- mission. Sharpshooters have typical hemipteran sues with a metal foil barrier (Houston et al. 1947). mouthparts adapted for feeding on liquids. The max- Davis et al. (1978) identiÞed X. fastidiosa as the eti- illary stylets interlock to form parallel food and sali- ological agent of PD. Vector ability seems to require vary canals. The mandibular stylets surround and sup- only that the insect is a xylem sap-feeding specialist. port the maxillary stylets and cut through plant Although phloem and mesophyll feeders have been tissues during probing. The mouthpart morphology of tested for X. fastidiosa transmission to plants (Purcell H. coagulata has been described in detail previously 1980), including leafhopper species known to pene- (Leopold et al. 2003). Sap enters the stylets and is trate and ingest from xylem, e.g., Euscelidius variegatus transferred to the precibarium, a narrow tube con- (Kirschbaum) (Naito 1977), none of these insect necting the food canal to the cibarium (pumping groups transmitted the pathogen. In contrast, most chamber). The precibarial valve, located about mid- Cicadellinae species tested in sufÞcient numbers were way in the precibarium, opens to admit ingested sap proven to be vectors. Observations that X. fastidiosa and closes to prevent backßow while food is pumped has little, if any, species speciÞcity within xylem-feed- to the gut. Backus and McLean (1982, 1983) described ing specialists (Purcell 1989) suggest that distinctive the morphology of the precibarial valve and a likely probing behaviors or foregut morphological charac- ingestion mechanism. The precibarium canal contin- teristics shared by xylem feeders enable bacterial ues after the valve and ends in the cibarium. The transmission. cibarium connects the precibarium to the esophagus X. fastidiosa is unique in its transmission character- or true mouth. From the esophagus, food is pushed istics among vector-borne plant pathogens in that it through the cardiac/esophageal valve into the midgut. does not require a latent period yet is persistently Sap ingestion is regulated by the precibarial and transmitted. Severin (1949) showed that adult sharp- cardiac (esophageal) valves and the cibarium dilator shooters remained infective for long periods. How- musculature, which originates at the insect clypeus ever, the lack of transstadial transmission or a latent and inserts along a medial line distal to the elastic period (Purcell and Finlay 1979) strongly suggested cibarial diaphragm (Purcell et al. 1979). Contraction that the pathogen is inoculated into plants from the of the dilator muscle raises the diaphragm to create foregut of vectors, the cuticle of which is shed at each negative pressure in the cibarium chamber, sucking in molt. Although the bacterium multiplies
Recommended publications
  • Xylella Fastidiosa HOST: GRAPEVINE
    Xylella fastidiosa HOST: GRAPEVINE What is Xylella fastidiosa and why is it so serious? ◆ A dangerous bacterium threatening hundreds of species of plants in the UK ◆ It is spreading across southern Europe from its origins in the Americas ◆ Can be transported by sap-feeding insects such as spittlebugs ◆ Causes plant death by blocking water transporting vessels (xylem) ◆ Currently no cure Vitis vinifera ◆ Deciduous climbing shrub ◆ Flaky bark ◆ Climbs by tendrils reaching 15–18m high ◆ Three- or five-lobed, coarsely toothed leaves, 7.5–15cm long and wide, with stalks half as long as the blade, hairy underneath and of variable colour ◆ Tiny greenish flowers ◆ Oval or globose fruit Healthy Diseased What is BRIGIT? A collaborative project aimed at reducing the risk of a Xylella introduction into the UK and mitigating the risks in the event of an outbreak. Please turn over to find out more. What to look 1 out for 2 ◆ Marginal leaf scorch 1 ◆ Leaf chlorosis 2 ◆ Premature loss of leaves 3 ◆ Matchstick petioles 3 ◆ Irregular cane maturation (green islands in stems) 4 ◆ Fruit drying and wilting 5 ◆ Stunting of new shoots 5 ◆ Death of plant in 1–5 years Where is the plant from? 3 ◆ Plants sourced from infected countries are at a much higher risk of carrying the disease-causing bacterium Do not panic! 4 How long There are other reasons for disease symptoms to appear. Consider California. of University Montpellier; watercolour, RHS Lindley Collections; “healthy”, RHS / Tim Sandall; “diseased”, J. Clark, California 3 J. Clark & A.H. Purcell, University of California 4 J. Clark, University of California 5 ENSA, Images © 1 M.
    [Show full text]
  • Xylella Fastidiosa – What Do We Know and Are We Ready
    Xylella fastidiosa: What do we know and are we ready? Suzanne McLoughlin, Vinehealth Australia. Xylella is a major threat due to its multiple hosts Suzanne McLoughlin, Vinehealth Australia’s (more than 350 plant species, many of which Technical Manager, analyses the grape and wine do not show symptoms), its multiple vectors community’s preparedness and knowledge about and its continued global spread. The pathogen Xylella fastidiosa, which is known to the industry causes clogging of plant xylem vessels, resulting as Pierce’s disease. This article first appeared in Australian and New Zealand Grapegrower and in water stress-like symptoms to distal parts of Winemaker Magazine, June 2017. the grapevine, with vine death in 1-2 years post infection (Figure 44). The bacterium is primarily Introduction transmitted in the gut of sapsucking insects and Xylella fastidiosa is a gram-negative, rod-shaped the disease cannot occur without a vector. bacterium known to cause Pierce’s disease in viticulture. Xylella fastidiosa was the subject of an While Xylella fastidiosa is known as Pierce’s international symposium held in Brisbane in May disease in grapevines, it is known as many other 2017, organised by the Department of Agriculture names in other host plants. It is inherently difficult and Water Resources (DAWR). A broad range of to control and there are no known treatments to international experts shared their knowledge and cure diseased plants. experience on Xylella with Australian federal and Xylella fastidiosa has been reported on various state government biosecurity personnel, as well host crops, either symptomatic or asymptomatic, as a small number of invited industry participants.
    [Show full text]
  • Citrus Blight and Other Diseases of Recalcitrant Etiology
    P1: FRK August 1, 2000 18:44 Annual Reviews AR107-09 Annu. Rev. Phytopathol. 2000. 38:181–205 Copyright c 2000 by Annual Reviews. All rights reserved CITRUS BLIGHT AND OTHER DISEASES OF RECALCITRANT ETIOLOGY KS Derrick and LW Timmer University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, Lake Alfred, Florida 33850-2299; e-mail: [email protected]fl.edu, [email protected]fl.edu Key Words citrus psorosis, citrus variegated chlorosis, lettuce big vein, peach tree short life, replant diseases ■ Abstract Several economically important diseases of unknown or recently de- termined cause are reviewed. Citrus blight (CB), first described over 100 years ago, was shown in 1984 to be transmitted by root-graft inoculations; the cause remains unknown and is controversial. Based on graft transmission, it is considered to be an infectious agent by some; others suggest that the cause of CB is abiotic. Citrus varie- gated chlorosis, although probably long present in Argentina, where it was considered to be a variant of CB, was identified as a specific disease and shown to be caused by a strain of Xylella fastidiosa after if reached epidemic levels in Brazil in 1987. Citrus psorosis, described in 1933 as the first virus disease of citrus, is perhaps one of the last to be characterized. In 1988, it was shown to be caused by a very unusual virus. The cause of lettuce big vein appears to be a viruslike agent that is transmitted by a soilborne fungus. Double-stranded RNAs were associated with the disease, suggesting it may be caused by an unidentified RNA virus.
    [Show full text]
  • The Planthopper Genus Trypetimorpha: Systematics and Phylogenetic Relationships (Hemiptera: Fulgoromorpha: Tropiduchidae)
    JOURNAL OF NATURAL HISTORY, 1993, 27, 609-629 The planthopper genus Trypetimorpha: systematics and phylogenetic relationships (Hemiptera: Fulgoromorpha: Tropiduchidae) J. HUANG and T. BOURGOINt* Pomological Institute of Shijiazhuang, Agricultural and Forestry Academy of Sciences of Hebei, 5-7 Street, 050061, Shijiazhuang, China t Mus#um National d'Histoire Naturelle, Laboratoire d'Entomologie, 45 rue Buffon, F-75005, Paris, France (Accepted 28 January 1993) The genus Trypetimorpha is revised with the eight currently recognized species described or re-described. Four new species are described and seven new synonymies are proposed. Within Trypetimorphini sensu Fennah (1982), evidences for the monophyly of each genus are selected, but Caffrommatissus is transferred to the Cixiopsini. Monophyly of Trypetimorphini, restricted to Trypetimorpha and Ommatissus, is discussed. A key is given for the following Trypetimorpha species: (1) T. fenestrata Costa ( = T. pilosa Horvfith, syn. n.); (2) T. biermani Dammerman (= T. biermani Muir, syn. n.; = T. china (Wu), syn. n.; = T. formosana Ishihara, syn. n.); (3) T. japonica Ishihara ( = T. koreana Kwon and Lee, syn. n.); (4) T. canopus Linnavuori; (5) T. occidentalis, sp. n. (= T. fenestrata Costa, sensu Horvfith); (6) T. aschei, sp. n., from New Guinea; (7) T. wilsoni, sp. n., from Australia; (8) T. sizhengi, sp. n., from China and Viet Nam. Study of the type specimens of T. fenestrata Costa shows that they are different from T. fenestrata sensu Horvfith as usually accepted, which one is redescribed here as T. occidentalis. KEYWORDS: Hemiptera, Fulgoromorpha, Tropiduchidae, Trypetimorpha, Ommatissus, Cafrommatissus, systematics, phylogeny. Downloaded by [University of Delaware] at 10:13 13 January 2016 Introduction This revision arose as the result of a study of the Chinese Fulgoromorpha of economic importance (Chou et al., 1985) and the opportunity for J.H.
    [Show full text]
  • Managing Aboveground Pests: Arthropod Vectors of Citrus Pathogens: Part I February 13, 2019 Lecture Overview
    Managing aboveground pests: Arthropod vectors of citrus pathogens: Part I February 13, 2019 Lecture Overview Part I: • Vector-borne disease concepts • Introduction to Disease Vectors • Taxonomy • Biology • Vector-borne diseases of citrus • Viral Pathogens Part II: • Vector-borne diseases of citrus • Bacterial Pathogens • Case studies: • Citrus Variegated Chlorosis and Citrus greening disease Plant disease epidemics • Can result in large loss of crop yields or decimate entire plant species (e.g. Dutch elm disease) • Approximately 30-40% of damage/loss due to plant diseases Pathogen due to direct or indirect effects of (Vector) transmission and facilitation of pathogens by insects • Three elements needed for disease to occur (‘disease Susceptible Conducive triangle’) host environment • When a pathogen requires a vector to be spread, the vector must be plentiful and active for an epidemic to occur Disease Triangle • Not shown: time (latent period) for disease development Plant disease epidemics Host/Pathogen Relationships • Environmental and physiological factors contribute to the development of disease • Resistance: ability of a host to prevent infection and disease • Virulence: ability of a pathogen to produce disease • Many plant pathogens need to be transmitted by a vector • A pathogen’s host range may be determined by the host range of the vector - it can only infect plants that the insect vector feeds upon Vector/Host Relationships • Generally, the closer the association between vector and host, the greater the suitability of the vector
    [Show full text]
  • Dual RNA Sequencing of Vitis Vinifera During Lasiodiplodia Theobromae Infection Unveils Host–Pathogen Interactions
    International Journal of Molecular Sciences Article Dual RNA Sequencing of Vitis vinifera during Lasiodiplodia theobromae Infection Unveils Host–Pathogen Interactions Micael F. M. Gonçalves 1 , Rui B. Nunes 1, Laurentijn Tilleman 2 , Yves Van de Peer 3,4,5 , Dieter Deforce 2, Filip Van Nieuwerburgh 2, Ana C. Esteves 6 and Artur Alves 1,* 1 Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (M.F.M.G.); [email protected] (R.B.N.) 2 Laboratory of Pharmaceutical Biotechnology, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; [email protected] (L.T.); [email protected] (D.D.); [email protected] (F.V.N.) 3 Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; [email protected] 4 Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium 5 Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa 6 Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Estrada da Circunvalação, 3504-505 Viseu, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-234-370-766 Received: 28 October 2019; Accepted: 29 November 2019; Published: 3 December 2019 Abstract: Lasiodiplodia theobromae is one of the most aggressive agents of the grapevine trunk disease Botryosphaeria dieback. Through a dual RNA-sequencing approach, this study aimed to give a broader perspective on the infection strategy deployed by L. theobromae, while understanding grapevine response. Approximately 0.05% and 90% of the reads were mapped to the genomes of L.
    [Show full text]
  • Environment Vs Mode Horizontal Mixed Vertical Aquatic 34 28 6 Terrestrial 36 122 215
    environment vs mode horizontal mixed vertical aquatic 34 28 6 terrestrial 36 122 215 route vs mode mixed vertical external 54 40 internal 96 181 function vs mode horizontal mixed vertical nutrition 60 53 128 defense 1 33 15 multicomponent 0 9 8 unknown 9 32 70 manipulation 0 23 0 host classes vs symbiosis factors horizontal mixed vertical na external internal aquatic terrestrial nutrition defense multiple factor unknown manipulation Arachnida 0 0 2 0 0 2 0 2 2 0 0 0 0 Bivalvia 19 13 2 19 0 15 34 0 34 0 0 0 0 Bryopsida 2 0 0 2 0 0 0 2 2 0 0 0 0 Bryozoa 0 1 0 0 0 1 1 0 0 1 0 0 0 Cephalopoda 1 0 0 1 0 0 1 0 0 1 0 0 0 Chordata 0 1 0 0 1 0 1 0 1 0 0 0 0 Chromadorea 0 2 0 0 2 0 2 0 2 0 0 0 0 Demospongiae 1 2 0 1 0 2 3 0 0 0 0 3 0 Filicopsida 0 2 0 0 0 2 0 2 2 0 0 0 0 Gastropoda 5 0 0 5 0 0 5 0 5 0 0 0 0 Hepaticopsida 4 0 0 4 0 0 0 4 4 0 0 0 0 Homoscleromorpha 0 1 0 0 0 1 1 0 0 0 0 1 0 Insecta 8 112 208 8 82 238 3 325 151 43 9 105 20 Liliopsida 4 0 0 4 0 0 0 4 4 0 0 0 0 Magnoliopsida 17 4 0 17 0 4 0 21 17 4 0 0 0 Malacostraca 2 2 0 2 0 2 3 1 2 0 0 0 2 Maxillopoda 0 1 0 0 0 1 1 0 0 0 0 0 1 Nematoda 0 1 1 0 1 1 0 2 0 0 1 1 0 Oligochaeta 0 8 0 0 8 0 6 2 7 0 0 1 0 Polychaeta 6 0 0 6 0 0 6 0 6 0 0 0 0 Secernentea 0 0 7 0 0 7 0 7 0 0 7 0 0 Sphagnopsida 1 0 0 1 0 0 0 1 1 0 0 0 0 Turbellaria 0 0 1 0 0 1 1 0 1 0 0 0 0 host families vs.
    [Show full text]
  • Hemiptera: Cicadellidae) De La Argentina DELLAPÉ, Gimena1,2 & Susana L
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Nota Científica provided by Centro deScientific Servicios en NoteGestión de Información ISSN 0373-5680 (impresa), ISSN 1851-7471 (en línea) Revista de la Sociedad Entomológica Argentina 72 (3-4): 231-235, 2013 Nuevos registros de Proconiini (Hemiptera: Cicadellidae) de la Argentina DELLAPÉ, Gimena1,2 & Susana L. PARADELL1,3 1División Entomología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Paseo del Bosque, B1900FWA La Plata, Argentina. 2Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), [email protected] 3Comisión de Investigaciones Científicas de la provincia de Buenos Aires (CIC) New records of Proconiini (Hemiptera: Cicadellidae) from Argentina ABSTRACT. Acrogonia citrina Marucci & Cavichioli, Molomea confluens (Melichar), Tretogonia dentalis Emmrich, and Propetes schmidti Melichar are recorded for the first time from Argentina, being the first mention of the genus Propetes Walker in the country. Diagnosis, geographical distribution, and aspects of the biology or phy- tosanitary importance for each species are provided. In addition, geographical dis- tribution in Argentina of another 16 species of the tribe Proconiini is here included. KEY WORDS. Auchenorrhyncha. Sharpshooters. Xylella. Acrogonia. Propetes. RESUMEN. Acrogonia citrina Marucci & Cavichioli, Molomea confluens (Melichar), Tretogonia dentalis Emmrich y Propetes schmidti Melichar, son registradas por primera vez en la Argentina. Esta es la primera mención del género Propetes Walker para el país. Para cada especie se brinda una diagnosis, su distribución geográfica y aspectos de su biología o importancia fitosanitaria. Adicionalmente se amplía la distribución en la Argentina de otras 16 especies de la tribu Proconiini. PALABRAS CLAVE.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • Pierce's Disease Research Symposium Proceedings
    Pierce’s Disease Control Program Symposium Proceedings 2004 Pierce’s Disease Research Symposium December 7 – 10, 2004 Coronado Island Marriott Resort Coronado, California California Department of Food & Agriculture Proceedings of the 2004 Pierce’s Disease Research Symposium December 7 – 10, 2004 Coronado Island Marriott Resort Coronado, California Organized by: California Department of Food and Agriculture Proceedings Compiled by: M. Athar Tariq, Stacie Oswalt, Peggy Blincoe, Amadou Ba, Terrance Lorick, and Tom Esser Cover Design: Peggy Blincoe Printer: Copeland Printing, Sacramento, CA Funds for Printing Provided by: CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board To order additional copies of this publication, please contact: Pierce’s Disease Control Program California Department of Food and Agriculture 2014 Capitol Avenue, Suite 109 Telephone: (916) 322-2804 Fax: (916) 322-3924 http://www.cdfa.ca.gov/phpps/pdcp E-mail: [email protected] NOTE: The progress reports in this publication have not been subject to independent scientific review. The California Department of Food and Agriculture makes no warranty, expressed or implied, and assumes no legal liability for the information in this publication. The publication of the Proceedings by CDFA does not constitute a recommendation or endorsement of products mentioned. TABLE OF CONTENTS Section 1: Crop Biology and Disease Epidemiology Xylem Chemistry Mediation of Resistance to Pierce’s Disease Peter C. Andersen.......................................................................................................................................................................
    [Show full text]
  • Spatial and Temporal Occurrence of Beet Armyworm (Lepidoptera: Noctuidae) Moths in Mississippi
    Armyworm Symposium 2002: Adamczyk et al. 229 SPATIAL AND TEMPORAL OCCURRENCE OF BEET ARMYWORM (LEPIDOPTERA: NOCTUIDAE) MOTHS IN MISSISSIPPI J. J. ADAMCZYK, JR.1, M. R. WILLIAMS2, J. T. REED2, D. W. HUBBARD1 AND D. D. HARDEE1 1USDA, ARS, Southern Insect Management Research Unit P.O. Box 346, Stoneville, MS 38776 2Mississippi State University, Department of Entomology and Plant Pathology Clay Lyle Building, Mississippi State, MS 39762 ABSTRACT Throughout 1994-2000, adult beet armyworm, Spodoptera exigua (Hübner) populations were monitored in the delta and hill regions of Mississippi using pheromone traps. Signifi- cant differences in the mean number of moths trapped were found among different geo- graphical areas of the state. A trend was observed where the greatest number of moths was found in the Mississippi Delta, located in the western region of the state. The lowest number of moths was found in the hills located in the eastern region of the state. An annual profile of beet armyworm populations in the western section of the Mississippi Delta also revealed that wide-scale immigration of this pest typically begins at 200 Julian days (mid-July). This date could be used as a benchmark to determine when and if population levels are high enough to have the potential to cause economic damage to crops in the Mississippi Delta. Key Words: Spodoptera, migration, movement RESUMEN A travéz de los años 1994 a 2000, se realizaron un monitoreo de las poblaciones de adultos del gusano trozador de la remolacha, Spodoptera exigua (Hübner) en las regiones de la Delta y las colinas del Estado de Mississippi usando trampas de feronomas.
    [Show full text]
  • Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
    ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4.
    [Show full text]