Environment Vs Mode Horizontal Mixed Vertical Aquatic 34 28 6 Terrestrial 36 122 215

Total Page:16

File Type:pdf, Size:1020Kb

Environment Vs Mode Horizontal Mixed Vertical Aquatic 34 28 6 Terrestrial 36 122 215 environment vs mode horizontal mixed vertical aquatic 34 28 6 terrestrial 36 122 215 route vs mode mixed vertical external 54 40 internal 96 181 function vs mode horizontal mixed vertical nutrition 60 53 128 defense 1 33 15 multicomponent 0 9 8 unknown 9 32 70 manipulation 0 23 0 host classes vs symbiosis factors horizontal mixed vertical na external internal aquatic terrestrial nutrition defense multiple factor unknown manipulation Arachnida 0 0 2 0 0 2 0 2 2 0 0 0 0 Bivalvia 19 13 2 19 0 15 34 0 34 0 0 0 0 Bryopsida 2 0 0 2 0 0 0 2 2 0 0 0 0 Bryozoa 0 1 0 0 0 1 1 0 0 1 0 0 0 Cephalopoda 1 0 0 1 0 0 1 0 0 1 0 0 0 Chordata 0 1 0 0 1 0 1 0 1 0 0 0 0 Chromadorea 0 2 0 0 2 0 2 0 2 0 0 0 0 Demospongiae 1 2 0 1 0 2 3 0 0 0 0 3 0 Filicopsida 0 2 0 0 0 2 0 2 2 0 0 0 0 Gastropoda 5 0 0 5 0 0 5 0 5 0 0 0 0 Hepaticopsida 4 0 0 4 0 0 0 4 4 0 0 0 0 Homoscleromorpha 0 1 0 0 0 1 1 0 0 0 0 1 0 Insecta 8 112 208 8 82 238 3 325 151 43 9 105 20 Liliopsida 4 0 0 4 0 0 0 4 4 0 0 0 0 Magnoliopsida 17 4 0 17 0 4 0 21 17 4 0 0 0 Malacostraca 2 2 0 2 0 2 3 1 2 0 0 0 2 Maxillopoda 0 1 0 0 0 1 1 0 0 0 0 0 1 Nematoda 0 1 1 0 1 1 0 2 0 0 1 1 0 Oligochaeta 0 8 0 0 8 0 6 2 7 0 0 1 0 Polychaeta 6 0 0 6 0 0 6 0 6 0 0 0 0 Secernentea 0 0 7 0 0 7 0 7 0 0 7 0 0 Sphagnopsida 1 0 0 1 0 0 0 1 1 0 0 0 0 Turbellaria 0 0 1 0 0 1 1 0 1 0 0 0 0 host families vs. symbiosis factors horizontal mixed vertical na external internal aquatic terrestrial nutrition defense multiple factor unknown manipulation Acanthosomatidae 0 0 14 0 14 0 0 14 0 0 0 14 0 Adelgidae 2 3 8 2 1 10 0 13 0 0 0 13 0 Aleyrodidae 0 5 6 0 0 11 0 11 2 1 0 6 2 Alvinocarididae 2 0 0 2 0 0 2 0 2 0 0 0 0 Alydidae 1 0 0 1 0 0 0 1 0 0 0 1 0 Anthocerotaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Aphididae 0 7 8 0 0 15 0 15 8 4 1 0 2 Aphrophoridae 0 7 17 0 0 24 0 24 24 0 0 0 0 Armadillidiidae 0 1 0 0 0 1 0 1 0 0 0 0 1 Betulaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Blaberidae 0 0 1 0 0 1 0 1 1 0 0 0 0 Blasiaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Blissidae 2 1 0 2 1 0 0 3 0 0 0 3 0 Bostrichidae 0 0 1 0 0 1 0 1 0 0 0 1 0 Bugulidae 0 1 0 0 0 1 1 0 0 1 0 0 0 Casuarinaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Cercopidae 0 0 22 0 0 22 0 22 22 0 0 0 0 Chrysomelidae 0 0 4 0 4 0 2 2 1 2 0 1 0 Cicadellidae 1 1 17 1 0 18 0 19 15 0 0 4 0 Cicadidae 0 1 2 0 0 3 0 3 3 0 0 0 0 Cixiidae 0 0 8 0 0 8 0 8 4 0 0 4 0 Clastopteridae 0 0 6 0 0 6 0 6 6 0 0 0 0 Coreoidea 1 0 0 1 0 0 0 1 0 0 0 1 0 Coriariaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Crabronidae 0 21 0 0 21 0 0 21 0 21 0 0 0 Crambeidae 0 1 0 0 0 1 1 0 0 0 0 1 0 Cryptocercidae 0 0 1 0 0 1 0 1 1 0 0 0 0 Culicidae 0 2 0 0 0 2 0 2 0 1 0 0 1 Curculionidae 0 7 17 0 0 24 0 24 0 11 4 9 0 Cydnidae 0 0 1 0 1 0 0 1 0 0 0 1 0 Datiscaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Desmodoridae 0 2 0 0 2 0 2 0 2 0 0 0 0 Diaspididae 0 0 1 0 0 1 0 1 1 0 0 0 0 Didemnidae 0 1 0 0 1 0 1 0 1 0 0 0 0 Drosophilidae 0 6 0 0 0 6 0 6 0 0 0 0 6 Echinophthiriidae 0 0 1 0 0 1 1 0 1 0 0 0 0 Ectobiidae 0 0 1 0 0 1 0 1 1 0 0 0 0 Elaeagnaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Epipygidae 0 0 1 0 0 1 0 1 1 0 0 0 0 Eriococcidae 0 1 1 0 0 2 0 2 1 0 0 1 0 Fabaceae 4 0 0 4 0 0 0 4 4 0 0 0 0 Formicidae 0 0 2 0 0 2 0 2 1 1 0 0 0 Geocoridae 0 0 1 0 0 1 0 1 0 0 0 1 0 Glossinidae 0 1 1 0 0 2 0 2 1 0 1 0 0 Gunneraceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Hirudinidae 0 1 0 0 1 0 0 1 1 0 0 0 0 Hylocomiaceae 2 0 0 2 0 0 0 2 2 0 0 0 0 Ixodidae 0 0 2 0 0 2 0 2 2 0 0 0 0 Lachniniae 0 8 2 0 0 10 0 10 2 0 2 0 6 Largidae 1 0 0 1 0 0 0 1 0 0 0 1 0 Leguminosae 4 0 0 4 0 0 0 4 4 0 0 0 0 Lepadidae 0 1 0 0 0 1 1 0 0 0 0 0 1 Liviidae 0 1 1 0 0 2 0 2 1 0 0 0 1 Longidoridae 0 0 1 0 0 1 0 1 0 0 0 1 0 Lucinidae 6 0 0 6 0 0 6 0 6 0 0 0 0 Lumbricidae 0 1 0 0 1 0 0 1 0 0 0 1 0 Lygaeidae 0 4 5 0 0 9 0 9 0 0 0 9 0 Machaerotidae 0 0 6 0 0 6 0 6 6 0 0 0 0 Mastotermiidae 0 0 1 0 0 1 0 1 1 0 0 0 0 Membracidae 0 0 2 0 0 2 0 2 2 0 0 0 0 Monophlebidae 0 0 1 0 0 1 0 1 1 0 0 0 0 Mycalidae 0 1 0 0 0 1 1 0 0 0 0 1 0 Myricaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Mytilidae 13 0 0 13 0 0 13 0 13 0 0 0 0 Naididae 0 2 0 0 2 0 2 0 2 0 0 0 0 Notothyladaceae 2 0 0 2 0 0 0 2 2 0 0 0 0 Nycteribiidae 0 0 4 0 0 4 0 4 4 0 0 0 0 Onchocercidae 0 0 7 0 0 7 0 7 0 0 7 0 0 Parastrachiidae 0 0 1 0 1 0 0 1 1 0 0 0 0 Pediculidae 0 0 1 0 0 1 0 1 1 0 0 0 0 Peloridiidae 0 0 1 0 0 1 0 1 1 0 0 0 0 Peltospiridae 1 0 0 1 0 0 1 0 1 0 0 0 0 Pentatomidae 0 15 10 0 25 0 0 25 0 0 0 25 0 Petrosiidae 1 0 0 1 0 0 1 0 0 0 0 1 0 Plakinidae 0 1 0 0 0 1 1 0 0 0 0 1 0 Plataspidae 0 0 8 0 8 0 0 8 0 0 0 8 0 Poaceae 4 0 0 4 0 0 0 4 4 0 0 0 0 Primulaceae 0 1 0 0 0 1 0 1 0 1 0 0 0 Provannidae 4 0 0 4 0 0 4 0 4 0 0 0 0 Pseudococcidae 0 11 14 0 0 25 0 25 25 0 0 0 0 Psyllidae 0 2 4 0 0 6 0 6 5 0 1 0 0 Pteromalidae 0 2 0 0 0 2 0 2 0 0 0 0 2 Putoidae 0 1 0 0 0 1 0 1 1 0 0 0 0 Pyrrhocoridae 0 2 0 0 2 0 0 2 1 0 0 1 0 Retronectidae 0 0 1 0 0 1 1 0 1 0 0 0 0 Rhamnaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Rosaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Rubiaceae 0 3 0 0 0 3 0 3 0 3 0 0 0 Salviniaceae 0 2 0 0 0 2 0 2 2 0 0 0 0 Scutelleridae 0 0 1 0 1 0 0 1 0 0 0 1 0 Sepiolidae 1 0 0 1 0 0 1 0 0 1 0 0 0 Siboglinidae 6 0 0 6 0 0 6 0 6 0 0 0 0 Silvanidae 0 0 1 0 0 1 0 1 0 1 0 0 0 Solemyidae 0 1 1 0 0 2 2 0 2 0 0 0 0 Sphagnaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Steinernematidae 0 1 0 0 1 0 0 1 0 0 1 0 0 Streblidae 0 0 3 0 0 3 0 3 3 0 0 0 0 Talitridae 0 1 0 0 0 1 1 0 0 0 0 0 1 Tenebrionidae 0 1 0 0 1 0 0 1 0 1 0 0 0 Tephritidae 0 2 0 0 2 0 0 2 2 0 0 0 0 Teredinidae 0 7 0 0 0 7 7 0 7 0 0 0 0 Tubificidae 0 4 0 0 4 0 4 0 4 0 0 0 0 Vesicomyidae 0 4 1 0 0 5 5 0 5 0 0 0 0 Xylophagidae 0 1 0 0 0 1 1 0 1 0 0 0 0 symbiont phyla vs symbiosis factors horizontal mixed vertical na external internal aquatic terrestrial nutrition defense multiple factor unknown manipulation Actinobacteria 8 23 0 8 23 0 0 31 9 21 0 1 0 Alphaproteobacteria 11 26 10 11 0 36 3 44 14 1 7 3 22 Bacteroidetes 0 1 55 0 0 56 0 56 51 1 0 3 1 Betaproteobacteria 9 4 46 9 3 47 0 59 42 1 1 15 0 Chlamydiae 0 0 2 0 0 2 0 2 0 0 0 2 0 Cyanobacteria 8 3 0 8 1 2 1 10 11 0 0 0 0 Deltaproteobacteria 0 2 0 0 2 0 2 0 2 0 0 0 0 Epsilonproteobacteria 2 0 0 2 0 0 2 0 2 0 0 0 0 Flavobacteria 0 0 1 0 0 1 0 1 1 0 0 0 0 Gammaproteobacteria 31 88 103 31 65 126 56 166 109 25 9 79 0 Poribacteria 1 3 0 1 0 3 4 0 0 0 0 4 0 unclassified 4 6 0 4 3 3 7 0 3 3 3 4 3 Verrucomicrobia 0 0 1 0 0 1 0 1 0 0 0 1 0 symbiont families vs symbiosis factors horizontal mixed vertical na external internal aquatic terrestrial nutrition defense multiple factor unknown manipulation Acetobacteraceae 2 1 0 2 0 1 0 3 1 1 0 1 0 Aeromonadaceae 0 1 0 0 1 0 0 1 1 0 0 0 0 Alteromonadaceae 0 8 0 0 0 8 8 0 8 0 0 0 0 Anaplasmataceae 0 22 7 0 0 29 2 27 0 0 7 0 22 Bacteroidaceae 0 1 0 0 0 1 0 1 0 0 0 0 1 Blattabacteriaceae 0 0 4 0 0 4 0 4 4 0 0 0 0 Bradyrhizobiaceae 2 0 0 2 0 0 0 2 2 0 0 0 0 Burkholderiaceae 6 6 3 6 2 7 0 15 0 5 0 10 0 Cellvibrionaceae 0 1 0 0 0 1 1 0 0 1 0 0 0 Chlamydiales 0 0 1 0 0 1 0 1 0 0 0 1 0 Chromatiaceae 0 3 0 0 3 0 3 0 3 0 0 0 0 Comamonadaceae 0 1 0 0 1 0 0 1 0 0 0 1 0 Coriobacteriaceae 0 2 0 0 2 0 0 2 1 0 0 1 0 Enterobacteriaceae 0 60 77 0 56 81 3 134 46 8 9 74 0 Erwiniaceae 0 1 0 0 1 0 0 1 1 0 0 0 0 Frankiaceae 8 0 0 8 0 0 0 8 8 0 0 0 0 Halomonadaceae 0 0 1 0 0 1 0 1 1 0 0 0 0 Helicobacteraceae 1 0 0 1 0 0 1 0 1 0 0 0 0 Legionellaceae 0 0 2 0 0 2 0 2 2 0 0 0 0 Nostocaceae 7 2 0 7 0 2 0 9 9 0 0 0 0 Oceanospirillaceae 2 0 0 2 0 0 2 0 2 0 0 0 0 Oxalobacteraceae 2 0 21 2 0 21 0 23 22 0 0 1 0 Phyllobacteriaceae 2 0 0 2 0 0 0 2 2 0 0 0 0 Prochloraceae 0 1 0 0 1 0 1 0 1 0 0 0 0 Pseudomonadaceae 0 0 1 0 1 0 0 1 0 0 0 1 0 Rhizobiaceae 4 0 0 4 0 0 0 4 4 0 0 0 0 Rhodospirillaceae 1 0 1 1 0 1 1 1 2 0 0 0 0 Rickettsiaceae 0 1 1 0 0 2 0 2 0 0 0 2 0 Rivulariaceae 1 0 0 1 0 0 0 1 1 0 0 0 0 Simkaniaceae 0 0 1 0 0 1 0 1 0 0 0 1 0 Streptomycetaceae 0 21 0 0 21 0 0 21 0 21 0 0 0 unclassified 4 6 0 4 3 3 7 0 3 3 3 4 3 unclassified-Bacteroidetes 0 0 1 0 0 1 0 1 1 0 0 0 0 unclassified_Betaproteobacteria 0 0 7 0 0 7 0 7 4 0 0 3 0 unclassified-Betaproteobacteria 0 0 15 0 0 15 0 15 14 0 1 0 0 unclassified_deltasulfate- reducing_symbionts 0 2 0 0 2 0 2 0 2 0 0 0 0 unclassified_epsilonbacteria 1 0 0 1 0 0 1 0 1 0 0 0 0 unclassified_Flavobacteriales 0 0 50 0 0 50 0 50 46 1 0 3 0 unclassified_Gammamethane- oxidizing_symbionts 5 0 0 5 0 0 5 0 5 0 0 0 0 unclassified_Gammaproteobacteria 0 2 16 0 0 18 0 18 3 11 0 4 0 unclassified-Gammaproteobacteria 0 1 4 0 0 5 0 5 5 0 0 0 0 unclassified_Gammasulfur- oxidizing_symbionts 22 8 2 22 3 7 32 0 32 0 0 0 0 unclassified_Oceanospirillales 1 0 1 1 0 1 1 1 2 0 0 0 0 unclassified_Rhizobiales 0 2 1 0 0 3 0 3 3 0 0 0 0 Vibrionaceae 1 0 0 1 0 0 1 0 0 1 0 0 0 Xiphinematobacteriaceae 0 0 1 0 0 1 0 1 0 0 0 1 0 Zoogloeaceae 1 0 0 1 0 0 0 1 1 0 0 0 0.
Recommended publications
  • Alternative Transmission Patterns in Independently Acquired Nutritional Co-Symbionts of Dictyopharidae Planthoppers
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.07.438848; this version posted April 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Alternative transmission patterns in independently acquired nutritional co-symbionts of Dictyopharidae planthoppers Anna Michalik1*, Diego C. Franco2, Michał Kobiałka1, Teresa Szklarzewicz1, Adam Stroiński3, Piotr Łukasik2 1Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Kraków, Poland 2Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland 3Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland Abstract Keywords: planthoppers, nutritional endosymbiosis, Sap-sucking hemipterans host specialized, heritable transovarial transmission microorganisms that supplement their unbalanced diet with essential nutrients. These microbes show unusual features Significance statement that provide a unique perspective on the evolution of life but Sup-sucking hemipterans host ancient heritable have not been systematically studied. Here, we combine microorganisms that supplement their unbalanced diet with microscopy with high-throughput sequencing to revisit 80- essential nutrients, and which have repeatedly been year-old reports on the diversity of symbiont transmission complemented or replaced by other microorganisms. They modes in a broadly distributed planthopper family need to be reliably transmitted to subsequent generations Dictyopharidae. We show that in all species examined, the through the reproductive system, and often they end up using ancestral nutritional endosymbionts Sulcia and Vidania are the same route as the ancient symbionts.
    [Show full text]
  • Based on Comparative Morphological Data AF Emel'yanov Transactions of T
    The phylogeny of the Cicadina (Homoptera, Cicadina) based on comparative morphological data A.F. Emel’yanov Transactions of the All-Union Entomological Society Morphological principles of insect phylogeny The phylogenetic relationships of the principal groups of cicadine* insects have been considered on more than one occasion, commencing with Osborn (1895). Some phylogenetic schemes have been based only on data relating to contemporary cicadines, i.e. predominantly on comparative morphological data (Kirkaldy, 1910; Pruthi, 1925; Spooner, 1939; Kramer, 1950; Evans, 1963; Qadri, 1967; Hamilton, 1981; Savinov, 1984a), while others have been constructed with consideration given to paleontological material (Handlirsch, 1908; Tillyard, 1919; Shcherbakov, 1984). As the most primitive group of the cicadines have been considered either the Fulgoroidea (Kirkaldy, 1910; Evans, 1963), mainly because they possess a small clypeus, or the cicadas (Osborn, 1895; Savinov, 1984), mainly because they do not jump. In some schemes even the monophyletism of the cicadines has been denied (Handlirsch, 1908; Pruthi, 1925; Spooner, 1939; Hamilton, 1981), or more precisely in these schemes the Sternorrhyncha were entirely or partially depicted between the Fulgoroidea and the other cicadines. In such schemes in which the Fulgoroidea were accepted as an independent group, among the remaining cicadines the cicadas were depicted as branching out first (Kirkaldy, 1910; Hamilton, 1981; Savinov, 1984a), while the Cercopoidea and Cicadelloidea separated out last, and in the most widely acknowledged systematic scheme of Evans (1946b**) the last two superfamilies, as the Cicadellomorpha, were contrasted to the Cicadomorpha and the Fulgoromorpha. At the present time, however, the view affirming the equivalence of the four contemporary superfamilies and the absence of a closer relationship between the Cercopoidea and Cicadelloidea (Evans, 1963; Emel’yanov, 1977) is gaining ground.
    [Show full text]
  • A Study of the Scale Insect Genera Puto Signoret (Hemiptera
    Zootaxa 2802: 1–22 (2011) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2011 · Magnolia Press ISSN 1175-5334 (online edition) A study of the scale insect genera Puto Signoret (Hemiptera: Sternorrhyncha: Coccoidea: Putoidae) and Ceroputo Šulc (Pseudococcidae) with a comparison to Phenacoccus Cockerell (Pseudococcidae) D.J. WILLIAMS1, P.J. GULLAN2,3,6 , D.R. MILLER4, D. MATILE-FERRERO5 & SARAH I. HAN2 1Department of Entomology, The Natural History Museum, Cromwell Road, London, SW7 5BD, U.K. 2Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, U.S.A. E-mail: [email protected] 3Division of Evolution, Ecology and Genetics, Research School of Biology, The Australian National University, Canberra, A.C.T., 0200, Australia. E-mail: [email protected] 4U.S. Department of Agriculture, Systematic Entomology Laboratory, PSI, Agricultural Research Service, Building 005, Barc-West, 10300 Baltimore Avenue, Beltsville, MD 20705, U.S.A. E-mail: [email protected] 5Muséum national d’Histoire naturelle, Département Systématique etÉvolution, UMR 7205, MNHN-CNRS, Entomologie. 45, rue Buf- fon, CP 50, F-75231 Paris Cedex 05, France. 6Corresponding author: E-mail: [email protected] Abstract For almost a century, the scale insect genus Puto Signoret (Hemiptera: Sternorrhyncha: Coccoidea) was considered to be- long to the family Pseudococcidae (the mealybugs), but recent consensus accords Puto its own family, the Putoidae. This paper reviews the taxonomic history of Puto and family Putoidae, compares the morphology of Puto to that of Ceroputo Šulc and Phenacoccus Cockerell, and reassesses the status of all species that have been placed in Puto to determine wheth- er they belong to the Putoidae or to the Pseudococcidae.
    [Show full text]
  • The Planthopper Genus Trypetimorpha: Systematics and Phylogenetic Relationships (Hemiptera: Fulgoromorpha: Tropiduchidae)
    JOURNAL OF NATURAL HISTORY, 1993, 27, 609-629 The planthopper genus Trypetimorpha: systematics and phylogenetic relationships (Hemiptera: Fulgoromorpha: Tropiduchidae) J. HUANG and T. BOURGOINt* Pomological Institute of Shijiazhuang, Agricultural and Forestry Academy of Sciences of Hebei, 5-7 Street, 050061, Shijiazhuang, China t Mus#um National d'Histoire Naturelle, Laboratoire d'Entomologie, 45 rue Buffon, F-75005, Paris, France (Accepted 28 January 1993) The genus Trypetimorpha is revised with the eight currently recognized species described or re-described. Four new species are described and seven new synonymies are proposed. Within Trypetimorphini sensu Fennah (1982), evidences for the monophyly of each genus are selected, but Caffrommatissus is transferred to the Cixiopsini. Monophyly of Trypetimorphini, restricted to Trypetimorpha and Ommatissus, is discussed. A key is given for the following Trypetimorpha species: (1) T. fenestrata Costa ( = T. pilosa Horvfith, syn. n.); (2) T. biermani Dammerman (= T. biermani Muir, syn. n.; = T. china (Wu), syn. n.; = T. formosana Ishihara, syn. n.); (3) T. japonica Ishihara ( = T. koreana Kwon and Lee, syn. n.); (4) T. canopus Linnavuori; (5) T. occidentalis, sp. n. (= T. fenestrata Costa, sensu Horvfith); (6) T. aschei, sp. n., from New Guinea; (7) T. wilsoni, sp. n., from Australia; (8) T. sizhengi, sp. n., from China and Viet Nam. Study of the type specimens of T. fenestrata Costa shows that they are different from T. fenestrata sensu Horvfith as usually accepted, which one is redescribed here as T. occidentalis. KEYWORDS: Hemiptera, Fulgoromorpha, Tropiduchidae, Trypetimorpha, Ommatissus, Cafrommatissus, systematics, phylogeny. Downloaded by [University of Delaware] at 10:13 13 January 2016 Introduction This revision arose as the result of a study of the Chinese Fulgoromorpha of economic importance (Chou et al., 1985) and the opportunity for J.H.
    [Show full text]
  • Insects & Spiders of Kanha Tiger Reserve
    Some Insects & Spiders of Kanha Tiger Reserve Some by Aniruddha Dhamorikar Insects & Spiders of Kanha Tiger Reserve Aniruddha Dhamorikar 1 2 Study of some Insect orders (Insecta) and Spiders (Arachnida: Araneae) of Kanha Tiger Reserve by The Corbett Foundation Project investigator Aniruddha Dhamorikar Expert advisors Kedar Gore Dr Amol Patwardhan Dr Ashish Tiple Declaration This report is submitted in the fulfillment of the project initiated by The Corbett Foundation under the permission received from the PCCF (Wildlife), Madhya Pradesh, Bhopal, communication code क्रम 車क/ तकनीकी-I / 386 dated January 20, 2014. Kanha Office Admin office Village Baherakhar, P.O. Nikkum 81-88, Atlanta, 8th Floor, 209, Dist Balaghat, Nariman Point, Mumbai, Madhya Pradesh 481116 Maharashtra 400021 Tel.: +91 7636290300 Tel.: +91 22 614666400 [email protected] www.corbettfoundation.org 3 Some Insects and Spiders of Kanha Tiger Reserve by Aniruddha Dhamorikar © The Corbett Foundation. 2015. All rights reserved. No part of this book may be used, reproduced, or transmitted in any form (electronic and in print) for commercial purposes. This book is meant for educational purposes only, and can be reproduced or transmitted electronically or in print with due credit to the author and the publisher. All images are © Aniruddha Dhamorikar unless otherwise mentioned. Image credits (used under Creative Commons): Amol Patwardhan: Mottled emigrant (plate 1.l) Dinesh Valke: Whirligig beetle (plate 10.h) Jeffrey W. Lotz: Kerria lacca (plate 14.o) Piotr Naskrecki, Bud bug (plate 17.e) Beatriz Moisset: Sweat bee (plate 26.h) Lindsay Condon: Mole cricket (plate 28.l) Ashish Tiple: Common hooktail (plate 29.d) Ashish Tiple: Common clubtail (plate 29.e) Aleksandr: Lacewing larva (plate 34.c) Jeff Holman: Flea (plate 35.j) Kosta Mumcuoglu: Louse (plate 35.m) Erturac: Flea (plate 35.n) Cover: Amyciaea forticeps preying on Oecophylla smargdina, with a kleptoparasitic Phorid fly sharing in the meal.
    [Show full text]
  • Higherlevel Phylogeny of the Insect Order Hemiptera
    Systematic Entomology (2011), DOI: 10.1111/j.1365-3113.2011.00611.x Higher-level phylogeny of the insect order Hemiptera: is Auchenorrhyncha really paraphyletic? JASON R. CRYAN and JULIE M. URBAN Laboratory for Conservation and Evolutionary Genetics, New York State Museum, Albany, NY, U.S.A. Abstract. The higher-level phylogeny of the order Hemiptera remains a contentious topic in insect systematics. The controversy is chiefly centred on the unresolved question of whether or not the hemipteran suborder Auchenorrhyncha (including the extant superfamilies Fulgoroidea, Membracoidea, Cicadoidea and Cercopoidea) is a monophyletic lineage. Presented here are the results of a multilocus molecular phylogenetic investigation of relationships among the major hemipteran lineages, designed specifically to address the question of Auchenorrhyncha monophyly in the context of broad taxonomic sampling across Hemiptera. Phylogenetic analyses (maximum parsimony, maximum likelihood and Bayesian inference) were based on DNA nucleotide sequence data from seven gene regions (18S rDNA, 28S rDNA, histone H3, histone 2A, wingless, cytochrome c oxidase I and NADH dehydrogenase subunit 4 ) generated from 86 in-group exemplars representing all major lineages of Hemiptera (plus seven out-group taxa). All combined analyses of these data recover the monophyly of Auchenorrhyncha, and also support the monophyly of each of the following lineages: Hemiptera, Sternorrhyncha, Heteropterodea, Heteroptera, Fulgoroidea, Cicadomorpha, Membracoidea, Cercopoidea and Cicadoidea. Also
    [Show full text]
  • BÖCEKLERİN SINIFLANDIRILMASI (Takım Düzeyinde)
    BÖCEKLERİN SINIFLANDIRILMASI (TAKIM DÜZEYİNDE) GÖKHAN AYDIN 2016 Editör : Gökhan AYDIN Dizgi : Ziya ÖNCÜ ISBN : 978-605-87432-3-6 Böceklerin Sınıflandırılması isimli eğitim amaçlı hazırlanan bilgisayar programı için lütfen aşağıda verilen linki tıklayarak programı ücretsiz olarak bilgisayarınıza yükleyin. http://atabeymyo.sdu.edu.tr/assets/uploads/sites/76/files/siniflama-05102016.exe Eğitim Amaçlı Bilgisayar Programı ISBN: 978-605-87432-2-9 İçindekiler İçindekiler i Önsöz vi 1. Protura - Coneheads 1 1.1 Özellikleri 1 1.2 Ekonomik Önemi 2 1.3 Bunları Biliyor musunuz? 2 2. Collembola - Springtails 3 2.1 Özellikleri 3 2.2 Ekonomik Önemi 4 2.3 Bunları Biliyor musunuz? 4 3. Thysanura - Silverfish 6 3.1 Özellikleri 6 3.2 Ekonomik Önemi 7 3.3 Bunları Biliyor musunuz? 7 4. Microcoryphia - Bristletails 8 4.1 Özellikleri 8 4.2 Ekonomik Önemi 9 5. Diplura 10 5.1 Özellikleri 10 5.2 Ekonomik Önemi 10 5.3 Bunları Biliyor musunuz? 11 6. Plocoptera – Stoneflies 12 6.1 Özellikleri 12 6.2 Ekonomik Önemi 12 6.3 Bunları Biliyor musunuz? 13 7. Embioptera - webspinners 14 7.1 Özellikleri 15 7.2 Ekonomik Önemi 15 7.3 Bunları Biliyor musunuz? 15 8. Orthoptera–Grasshoppers, Crickets 16 8.1 Özellikleri 16 8.2 Ekonomik Önemi 16 8.3 Bunları Biliyor musunuz? 17 i 9. Phasmida - Walkingsticks 20 9.1 Özellikleri 20 9.2 Ekonomik Önemi 21 9.3 Bunları Biliyor musunuz? 21 10. Dermaptera - Earwigs 23 10.1 Özellikleri 23 10.2 Ekonomik Önemi 24 10.3 Bunları Biliyor musunuz? 24 11. Zoraptera 25 11.1 Özellikleri 25 11.2 Ekonomik Önemi 25 11.3 Bunları Biliyor musunuz? 26 12.
    [Show full text]
  • Coccidology. the Study of Scale Insects (Hemiptera: Sternorrhyncha: Coccoidea)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ciencia y Tecnología Agropecuaria (E-Journal) Revista Corpoica – Ciencia y Tecnología Agropecuaria (2008) 9(2), 55-61 RevIEW ARTICLE Coccidology. The study of scale insects (Hemiptera: Takumasa Kondo1, Penny J. Gullan2, Douglas J. Williams3 Sternorrhyncha: Coccoidea) Coccidología. El estudio de insectos ABSTRACT escama (Hemiptera: Sternorrhyncha: A brief introduction to the science of coccidology, and a synopsis of the history, Coccoidea) advances and challenges in this field of study are discussed. The changes in coccidology since the publication of the Systema Naturae by Carolus Linnaeus 250 years ago are RESUMEN Se presenta una breve introducción a la briefly reviewed. The economic importance, the phylogenetic relationships and the ciencia de la coccidología y se discute una application of DNA barcoding to scale insect identification are also considered in the sinopsis de la historia, avances y desafíos de discussion section. este campo de estudio. Se hace una breve revisión de los cambios de la coccidología Keywords: Scale, insects, coccidae, DNA, history. desde la publicación de Systema Naturae por Carolus Linnaeus hace 250 años. También se discuten la importancia económica, las INTRODUCTION Sternorrhyncha (Gullan & Martin, 2003). relaciones filogenéticas y la aplicación de These insects are usually less than 5 mm códigos de barras del ADN en la identificación occidology is the branch of in length. Their taxonomy is based mainly de insectos escama. C entomology that deals with the study of on the microscopic cuticular features of hemipterous insects of the superfamily Palabras clave: insectos, escama, coccidae, the adult female.
    [Show full text]
  • Hemiptera: Cercopoidea) from the Middle to Upper Jurassic Deposits in Northeastern China
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 115: 127–133, 2018 http://www.eje.cz doi: 10.14411/eje.2018.011 ORIGINAL ARTICLE New fossil genus and species of Sinoalidae (Hemiptera: Cercopoidea) from the Middle to Upper Jurassic deposits in northeastern China YAN-ZHE FU 1, 2 and DI-YING HUANG 1, * 1 University of Science and Technology of China, Hefei 230026, P.R. China; e-mails: [email protected], [email protected] 2 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences Nanjing, 210008, P.R. China Key words. Hemiptera, Cercopoidea, Sinoalidae, Stictocercopis wuhuaensis, new genus, new species, fossil, Middle to Upper Jurassic, China, Daohugou, Yanliao biota Abstract. A new fossil genus and species of Sinoalidae, Stictocercopis wuhuaensis gen. et sp. n., from the Middle to Upper Juras- sic Haifanggou Formation at Daohugou, Inner Mongolia, northeastern China is described, illustrated and its systematic position discussed, on the basis of four complete well-preserved specimens. The new genus distinctly differs from other sinoalids in having relatively complex wing venation and tegmen spots. The intra-specifi c variation in venation is also discussed. The new discovery increases the palaeodiversity of sinoalids in the early assemblage of the Yanliao biota from the Daohugou beds. ZooBank Article LSID: 7F2553EE-E341-43F9-BBB0-526FD518B9AE INTRODUCTION Russia, Australia, Central Asia, Southeast Asia and China The hemipteran superfamily Cercopoidea Leach, 1815 (Evans, 1956; Shcherbakov & Popov, 2002; Wang & is the second largest superfamily in the Cicadomorpha, Zhang, 2009). A small family of the Cercopoidea, named comprising approximately 3000 described species (Ha- Sinoalidae, established based on fossils from the mid- milton, 2001; Dietrich, 2002).
    [Show full text]
  • From Museum Specimen Database to Ecological Statement
    From Museum Specimen Database to Ecological Statement Christine A. Johnson1, Richard K. Rabeler2, Charles Bartlett3 © Tom Murray @Rob Naczi © Tom Murray 2 1 3 SPNHC – Cardiff - 2014 Tri-trophic Digitization Thematic Collections Network PI: Randall“Toby” Schuh (AMNH) 32 institutions: 18 insect collections, 14 herbaria NYBG is lead on botanical digitization, AMNH on entomological MAINE OSAC MIN UMEC CUIC MICH NY WIS EMC AMNH ISC CMNH CDFA INHS UDCC EMEC ILL CSUC MU CAS ILLS SEMC COLO MO UKIC KANU NCSU UCRC MEM Herbaria TEX Insect Collections TAMU BPBM Goals Plants Image and database 1.26M specimens from 20 families of vascular plants Unify these with 3.5M specimens from 3 data providers Mobilize total of 6.06M specimens Bugs Database 1.16M specimens from 92 families of Hemiptera Unify these with .38M specimens from 3 data providers Image selected specimens Parasitoids Database 45K specimens from 5 families of Hymenoptera Integrate trophic levels (7.65M records) in Discover Life Progress on Goals Start of Year 4 Botany: (currently at NY) 1,003 M images (79% of expected) data capture and georeferencing varies from skeletal to complete Insects + Parasitoids: 825K records completed (73.3% of expected) Happening Just Last Week Utilization of Collection Data Workshop UC-Riverside, June 17-18, 2014 data-mining and species distribution modeling use Tri-trophic Database as platform targeted to systematists and ecologists From Museum Specimen Database to Ecological Statement: Data Quality Inspection From Museum Specimen Database
    [Show full text]
  • Comparative Analysis of the Mitochondrial Genomes Of
    Comparative Analysis of the Mitochondrial Genomes of Callitettixini Spittlebugs (Hemiptera: Cercopidae) Confirms the Overall High Evolutionary Speed of the AT- Rich Region but Reveals the Presence of Short Conservative Elements at the Tribal Level Jie Liu1,2, Cuiping Bu1,3, Benjamin Wipfler1, Aiping Liang1* 1 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Chaoyang District, Beijing, P. R. China, 2 Graduate University of the Chinese Academy of Sciences, Shijingshan District, Beijing, P. R. China, 3 Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, Huaiyin Normal University, Huaian, Jiangsu Province, P. R. China Abstract The present study compares the mitochondrial genomes of five species of the spittlebug tribe Callitettixini (Hemiptera: Cercopoidea: Cercopidae) from eastern Asia. All genomes of the five species sequenced are circular double-stranded DNA molecules and range from 15,222 to 15,637 bp in length. They contain 22 tRNA genes, 13 protein coding genes (PCGs) and 2 rRNA genes and share the putative ancestral gene arrangement of insects. The PCGs show an extreme bias of nucleotide and amino acid composition. Significant differences of the substitution rates among the different genes as well as the different codon position of each PCG are revealed by the comparative evolutionary analyses. The substitution speeds of the first and second codon position of different PCGs are negatively correlated with their GC content. Among the five species, the AT-rich region features great differences in length and pattern and generally shows a 2–5 times higher substitution rate than the fastest PCG in the mitochondrial genome, atp8.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]