Citrus Blight and Other Diseases of Recalcitrant Etiology
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Xylella Fastidiosa HOST: GRAPEVINE
Xylella fastidiosa HOST: GRAPEVINE What is Xylella fastidiosa and why is it so serious? ◆ A dangerous bacterium threatening hundreds of species of plants in the UK ◆ It is spreading across southern Europe from its origins in the Americas ◆ Can be transported by sap-feeding insects such as spittlebugs ◆ Causes plant death by blocking water transporting vessels (xylem) ◆ Currently no cure Vitis vinifera ◆ Deciduous climbing shrub ◆ Flaky bark ◆ Climbs by tendrils reaching 15–18m high ◆ Three- or five-lobed, coarsely toothed leaves, 7.5–15cm long and wide, with stalks half as long as the blade, hairy underneath and of variable colour ◆ Tiny greenish flowers ◆ Oval or globose fruit Healthy Diseased What is BRIGIT? A collaborative project aimed at reducing the risk of a Xylella introduction into the UK and mitigating the risks in the event of an outbreak. Please turn over to find out more. What to look 1 out for 2 ◆ Marginal leaf scorch 1 ◆ Leaf chlorosis 2 ◆ Premature loss of leaves 3 ◆ Matchstick petioles 3 ◆ Irregular cane maturation (green islands in stems) 4 ◆ Fruit drying and wilting 5 ◆ Stunting of new shoots 5 ◆ Death of plant in 1–5 years Where is the plant from? 3 ◆ Plants sourced from infected countries are at a much higher risk of carrying the disease-causing bacterium Do not panic! 4 How long There are other reasons for disease symptoms to appear. Consider California. of University Montpellier; watercolour, RHS Lindley Collections; “healthy”, RHS / Tim Sandall; “diseased”, J. Clark, California 3 J. Clark & A.H. Purcell, University of California 4 J. Clark, University of California 5 ENSA, Images © 1 M. -
Xylella Fastidiosa – What Do We Know and Are We Ready
Xylella fastidiosa: What do we know and are we ready? Suzanne McLoughlin, Vinehealth Australia. Xylella is a major threat due to its multiple hosts Suzanne McLoughlin, Vinehealth Australia’s (more than 350 plant species, many of which Technical Manager, analyses the grape and wine do not show symptoms), its multiple vectors community’s preparedness and knowledge about and its continued global spread. The pathogen Xylella fastidiosa, which is known to the industry causes clogging of plant xylem vessels, resulting as Pierce’s disease. This article first appeared in Australian and New Zealand Grapegrower and in water stress-like symptoms to distal parts of Winemaker Magazine, June 2017. the grapevine, with vine death in 1-2 years post infection (Figure 44). The bacterium is primarily Introduction transmitted in the gut of sapsucking insects and Xylella fastidiosa is a gram-negative, rod-shaped the disease cannot occur without a vector. bacterium known to cause Pierce’s disease in viticulture. Xylella fastidiosa was the subject of an While Xylella fastidiosa is known as Pierce’s international symposium held in Brisbane in May disease in grapevines, it is known as many other 2017, organised by the Department of Agriculture names in other host plants. It is inherently difficult and Water Resources (DAWR). A broad range of to control and there are no known treatments to international experts shared their knowledge and cure diseased plants. experience on Xylella with Australian federal and Xylella fastidiosa has been reported on various state government biosecurity personnel, as well host crops, either symptomatic or asymptomatic, as a small number of invited industry participants. -
Botryosphaeria Infections in New Zealand Grapevine Nurseries: Sources of Inoculum and Infection Pathways
Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Botryosphaeria infections in New Zealand grapevine nurseries: Sources of inoculum and infection pathways A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Plant Pathology by Regina Billones-Baaijens Lincoln University 2011 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Plant Pathology Abstract Botryosphaeria infections in New Zealand grapevine nurseries: Inoculum sources and infection pathways by Regina Billones-Baaijens The botryosphaeriaceous fungi can cause decline, dieback and death of grapevines. Anecdotal evidence has indicated that these pathogens might be present in the young vines sold by propagation nurseries, so this study investigated their role in spread of this disease. Sampling of grapevine nurseries across New Zealand showed that botryosphaeriaceous infections were present in eight out of nine nurseries with infection incidence ranging from 5 to 63%. Of the 311 propagation materials and plants received, 23% were positive for botryosphaeriaceous infection, with a total of 120 isolates recovered. -
Rangpur Lime X Troyer Citrange, a Hybrid Citrus Rootstock for Closely Spaced Trees
Proc. Fla. State Hort. Soc. 99:33-35. 1986. RANGPUR LIME X TROYER CITRANGE, A HYBRID CITRUS ROOTSTOCK FOR CLOSELY SPACED TREES W. S. Castle A combination of diseases, repeated freezes, and other University of Florida, IFAS factors has reemphasized the importance of rootstocks in Citrus Research and Education Center Florida. Moreover, the effects of these factors illustrate the 700 Experiment Station Road inherent weaknesses in virtually all citrus rootstocks and Lake Alfred, FL 33850 the need to continually search for new, improved ones. Another recent trend related to rootstocks has been C. O. YOUTSEY the shift toward more closely spaced trees, particularly FDACS, Division of Plant Industry within the row (7,8). Rootstocks well-suited for dense plan Citrus Budwood Registration Bureau tings have not been available although such stocks are 3027 Lake Alfred Road being evaluated and one appears particularly promising Winter Haven, FL 33881 (1, 3, 4, 8). It is a hybrid of Rangpur lime and Troyer D. J. Hutchison citrange (RxT) and has been under study in Florida for 18 United States Department of Agriculture yr. During this period, trees on RxT have demonstrated Agricultural Research Service sufficient commercial potential to justify our presentation 2120 Camden Road in this report of their performance and a description of Orlando, FL 32803 RxT and its characteristics. Additional index words. Blight, tristeza, tree size control. History Dr. J. R. Furr, formerly a plant breeder with the U.S. Abstract. A hybrid of Rangpur lime (Citrus limonia Osb.) and Department of Agriculture (USDA) at Indio, California, Troyer citrange [ C. sinensis (L) Osb. -
Trunk Xylem Anatomy of Mature Healthy and Blighted Grapefruit Trees on Several Rootstocks
J. AMER. SOC. HORT. SCI. 119(2):185–194. 1994. Trunk Xylem Anatomy of Mature Healthy and Blighted Grapefruit Trees on Several Rootstocks Luiz A.B.C. Vasconcellos1 and William S. Castle University of Florida, Institute of Food and Agricultural Sciences, Citrus Research and Education Center, 700 Experiment Station Road, Lake Alfred, FL 33850 Additional index words. vessel element diameter and density, wood hydraulic conductivity, dye movement, Citrus paradisi Abstract. Wood samples were taken from healthy and blighted citrus trees on several rootstocks to describe and compare the xylem anatomy of the healthy trees and to determine if blight altered xylogenesis. Horizontal trunk xylem cores, 6 cm long, were extracted from blighted 18-year-old commercial grapefruit (Citrus paradisi Macf.) trees on rough lemon (RL) (C. jambhiri Lush.), Cleopatra mandarin (CM) (C. reshni Hort. ex Tan.), and Carrizo citrange (CC) [C. sinensis (L). Osb. x Poncirus trifoliata (L.) Raf] and from healthy trees on those rootstocks and sour orange (SO) (C. aurantium L.). Cores were taken from the eastern and western sides of the scion and rootstock of each tree. The cores were divided into 2-cm pieces and cross-sections were prepared for analysis of vessel element (VE) number and diameter in 0.5-cm increments. A sample-size study showed that tree side was not a significant source of variation and that 10 replications were sufficient to detect differences of ≈12% from the overall mean. Among the healthy trees, VE densities and diameters were similar for the trees on CC or RL and larger than those for trees on SO or CM. -
In Vitro Inhibition of Several Phytopathogenic Fungi from Avocado by Soluble Potassium Silicate T F Bekker1, C Kaiser1 and N Labuschagne2
In vitro inhibition of several phytopathogenic fungi from avocado by soluble potassium silicate T F Bekker1, C Kaiser1 and N Labuschagne2 1Department of Plant Production and Soil Science 2Department of Microbiology and Plant Pathology University of Pretoria, Pretoria 0002, South Africa ABSTRACT Silicon is a bioactive element only recently implicated as having fungicidal properties. The present study examined water soluble liquid potassium silicate for activity against several types of avocado phytopathogenic fungi. In vitro dose-responses towards solu- ble potassium silicate (20.7% silicon dioxide) were determined for Phytophthora cinnamomi, Phomopsis perniciosa, Pestalotiopsis maculans, Lasiodiplodia theobromae, Glomerella cingulata, Natrassia sp., and Collectotrichum gloeosporioides. Inhibition of mycelial growth was dose-dependant with 100% inhibition observed at 80 ml (pH 11.7) and 40 ml (pH 11.5) soluble potassium silicate (20.7% silicon dioxide) per litre of agar, for all fungi tested in two of the replicate experiments with the exception of Natrassia sp., G. cingulata and C. gloeosporioides at 40 ml in one replication. For both replicate experiments, Phytophthora cinnamomi, Phomopsis perniciosa, Pestalotiopsis maculans, Lasiodiplodia theobromae, Glomerella cingulata, Natrassia sp., and Collectotrichum gloeosporioides were only partially inhibited at 5, 10 and 20 ml soluble potassium silicate per litre of agar. Percentage inhibition was, however, positively correlated with soluble potassium silicate concentrations. Soluble potassium silicate raised the pH of the agar from 5.6 to between 10.3 and 11.7 at concentrations of 5 and 80 ml soluble potassium silicate per litre of agar respectively. The effect of pH on fungal growth does not follow a clear trend for all fungi tested. -
Dual RNA Sequencing of Vitis Vinifera During Lasiodiplodia Theobromae Infection Unveils Host–Pathogen Interactions
International Journal of Molecular Sciences Article Dual RNA Sequencing of Vitis vinifera during Lasiodiplodia theobromae Infection Unveils Host–Pathogen Interactions Micael F. M. Gonçalves 1 , Rui B. Nunes 1, Laurentijn Tilleman 2 , Yves Van de Peer 3,4,5 , Dieter Deforce 2, Filip Van Nieuwerburgh 2, Ana C. Esteves 6 and Artur Alves 1,* 1 Department of Biology, CESAM, University of Aveiro, 3810-193 Aveiro, Portugal; [email protected] (M.F.M.G.); [email protected] (R.B.N.) 2 Laboratory of Pharmaceutical Biotechnology, Campus Heymans, Ottergemsesteenweg 460, B-9000 Ghent, Belgium; [email protected] (L.T.); [email protected] (D.D.); [email protected] (F.V.N.) 3 Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; [email protected] 4 Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium 5 Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa 6 Faculty of Dental Medicine, Center for Interdisciplinary Research in Health (CIIS), Universidade Católica Portuguesa, Estrada da Circunvalação, 3504-505 Viseu, Portugal; [email protected] * Correspondence: [email protected]; Tel.: +351-234-370-766 Received: 28 October 2019; Accepted: 29 November 2019; Published: 3 December 2019 Abstract: Lasiodiplodia theobromae is one of the most aggressive agents of the grapevine trunk disease Botryosphaeria dieback. Through a dual RNA-sequencing approach, this study aimed to give a broader perspective on the infection strategy deployed by L. theobromae, while understanding grapevine response. Approximately 0.05% and 90% of the reads were mapped to the genomes of L. -
Genome and Transcriptome Analysis of the Latent Pathogen Lasiodiplodia Theobromae, an Emerging Threat to the Cacao Industry
Genome Genome and transcriptome analysis of the latent pathogen Lasiodiplodia theobromae, an emerging threat to the cacao industry Journal: Genome Manuscript ID gen-2019-0112.R1 Manuscript Type: Article Date Submitted by the 05-Sep-2019 Author: Complete List of Authors: Ali, Shahin; Sustainable Perennial Crops Laboratory, United States Department of Agriculture Asman, Asman; Hasanuddin University, Department of Viticulture & Enology Draft Shao, Jonathan; USDA-ARS Northeast Area Balidion, Johnny; University of the Philippines Los Banos Strem, Mary; Sustainable Perennial Crops Laboratory, United States Department of Agriculture Puig, Alina; USDA/ARS Miami, Subtropical Horticultural Research Station Meinhardt, Lyndel; Sustainable Perennial Crops Laboratory, United States Department of Agriculture Bailey, Bryan; Sustainable Perennial Crops Laboratory, United States Department of Agriculture Keyword: Cocoa, Lasiodiplodia, genome, transcriptome, effectors Is the invited manuscript for consideration in a Special Not applicable (regular submission) Issue? : https://mc06.manuscriptcentral.com/genome-pubs Page 1 of 46 Genome 1 Genome and transcriptome analysis of the latent pathogen Lasiodiplodia 2 theobromae, an emerging threat to the cacao industry 3 4 Shahin S. Ali1,2, Asman Asman3, Jonathan Shao4, Johnny F. Balidion5, Mary D. Strem1, Alina S. 5 Puig6, Lyndel W. Meinhardt1 and Bryan A. Bailey1* 6 7 1Sustainable Perennial Crops Laboratory, USDA/ARS, Beltsville Agricultural Research Center-West, 8 Beltsville, MD 20705, USA. 9 2Department of Viticulture & Enology, University of California, Davis, CA 95616 10 3Department of Plant Pests and Diseases, Hasanuddin University, South Sulawesi, Indonesia. 11 4USDA/ARS, Northeast Area, Beltsville, MDDraft 20705, USA. 12 5 Institute of Weed Science, Entomology and Plant Pathology, University of the Philippines, Los Banos, 13 Laguna 4031, Philippines. -
Studies on the Storage Rot of Sweet Potato
STUDIES ON THE STORAGE ROT OF SWEET POTATO (IPOMOEA BATATAS L & LAM) BY BOTRYODIPLODIA THEOBROMAE PAT. AND OTHER FUNGI By Anthony Elue Arinze B.Sc., M.Sc. (Lagos) a A thesis submitted in part fulfilment of it) the requirements for the Degree of Doctor of Philosophy of the University of London. Department of Botany and Plant Technology Imperial College of Science and Technology Field Station Silwood Park Ascot Berkshire U.K. AUGUST, 1978 - 2 - ABSTRACT The storage rot of sweet potato (s.p.) (Ipomoea batatas) tuberous roots by Botryodiplodia theobromae (B.t.), Botrytis cinerea (B.c.) and Cladosporium cucumerinum (C.c.) was studied. The tuber was susceptible to rot by B. theobromae but was coloni,ed to a limited extent by B. cinerea and C. cucumerinum. The role of pectic enzymes in the successful rotting of s.p. by B.t. was investigated. B.t. produced four PG isoenzymes in vitro one of which was recovered from rotted sweet potato tissue. The properties of these isoenzymes were studied. The possible interaction between the host's metabolites (phenols and oxidative • enzymes) and the pectic enzymes of B.t. was discussed in relation to the successful rotting of the tuber by the fungus. Comparatively little pectic enzyme (PG) was recovered from tissues inoculated with B.c. and no pectic enzyme was found in tissues inoculated with C.c. Low temperature treatment (0-7°C) of the tuber induced chilling injury rendering the tissues more susceptible to rot by the fungi. The accumulation of antifungal compounds by s.p. inoculated with B.t., B.c. -
Pierce's Disease Research Symposium Proceedings
Pierce’s Disease Control Program Symposium Proceedings 2004 Pierce’s Disease Research Symposium December 7 – 10, 2004 Coronado Island Marriott Resort Coronado, California California Department of Food & Agriculture Proceedings of the 2004 Pierce’s Disease Research Symposium December 7 – 10, 2004 Coronado Island Marriott Resort Coronado, California Organized by: California Department of Food and Agriculture Proceedings Compiled by: M. Athar Tariq, Stacie Oswalt, Peggy Blincoe, Amadou Ba, Terrance Lorick, and Tom Esser Cover Design: Peggy Blincoe Printer: Copeland Printing, Sacramento, CA Funds for Printing Provided by: CDFA Pierce’s Disease and Glassy-winged Sharpshooter Board To order additional copies of this publication, please contact: Pierce’s Disease Control Program California Department of Food and Agriculture 2014 Capitol Avenue, Suite 109 Telephone: (916) 322-2804 Fax: (916) 322-3924 http://www.cdfa.ca.gov/phpps/pdcp E-mail: [email protected] NOTE: The progress reports in this publication have not been subject to independent scientific review. The California Department of Food and Agriculture makes no warranty, expressed or implied, and assumes no legal liability for the information in this publication. The publication of the Proceedings by CDFA does not constitute a recommendation or endorsement of products mentioned. TABLE OF CONTENTS Section 1: Crop Biology and Disease Epidemiology Xylem Chemistry Mediation of Resistance to Pierce’s Disease Peter C. Andersen....................................................................................................................................................................... -
SR-112 Science of Hemp: Production and Pest Management
University of Kentucky College of Agriculture, Food and Environment Agricultural Experiment Station SR-112 Science of Hemp: Production and Pest Management Science of Hemp: Production and Pest Management October 10 –11, 2019 Agricultural Kentucky Tobacco Research and Development Center | Veterinary Diagnostic Laboratory | Division of Regulatory Services | Research and Education Center Experiment Station Robinson Forest | Robinson Center for Appalachian Resource Sustainability | University of Kentucky Superfund Research Center | Equine Programs emp (Cannabis sativa with <0.3% THC content) is grown for fiber, grain, and cannabinoid extraction in Asia, Europe, and the Americas. Until recently, HCannabis sativa has been classified as a Schedule 1 controlled substance in the US. The Agricultural Act of 2014 (Farm Bill) allowed for reintroduction of industrial hemp under a pilot research program. Acreage increases and addition of state legislation resulted in over 78,000 acres of hemp grown in 23 states by the end of 2018. Hemp became a legal commodity under the 2018 Farm Bill, and by the end of 2019, over 500,000 licensed acres were documented across 45 states. Canada re-introduced the crop in 1998, and in 2018, almost 78,000 acres of hemp were licensed and planted. With this increase in acreage and the lack of modern scientific data, university and government agricultural specialists began to work on various components of production and a range of realized challenges. This new information, however, had either not been shared or was not readily accessible to the scientific community, especially early results and nonpublished data. The first annual meeting of the Science of Hemp: Production and Pest Management was held on October 10-11, 2019 at the University of Kentucky in Lexington, KY. -
Grapevine Trunk Diseases in German Viticulture. III. Biodiversity and Spatial Distribution of Fungal Pathogens in Rootstock Moth
Vitis 58, 141–149 (2019) DOI: 10.5073/vitis.2019.58.141-149 Grapevine trunk diseases in German viticulture. III. Biodiversity and spatial distribution of fungal pathogens in rootstock mother plants and possible relation to leaf symptoms M. FISCHER Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Plant Protection in Fruit Crops and Viticulture, Siebeldingen, Germany Summary Introduction Three rootstock mother blocks, planted with cul- Grapevine trunk diseases (GTDs) affecting young tivars SO4 (planted 2004), 125AA (2005) and 5BB vines and nursery processes include the Esca disease com- (2005), and located in southwestern Germany were plex (for definition of esca complex diseases see, among examined for the existence of grapevine trunk disease others, SURICO 2001, 2009), black-foot disease (AGUSTÍ-BRI- (GTD) pathogens and related internal and external SACH and ARMENGOL 2013, AGUSTÍ-BRISACH et al. 2013) and symptoms between 2011 and 2017. Frequency of leaf Botryosphaeria dieback (reviewed by BERTSCH et al. 2012). symptoms ranged from 0.2 % in six-year old blocks Eutypa dieback, due to several species of diatrypaceous to appr. 1.5 % in 12-year-old blocks. While the typical fungi, mostly Eutypa lata (Elata), is apparent in older vine- "tiger stripe pattern" was less common, the majority yards only (LECOMTE et al. 2000, ROLSHAUSEN et al. 2014). of affected leaves was characterized by irregularly ar- Between 25 and 50 millions of graftlings are annu- ranged necrotic spots spread over the leaf surface. Ir- ally produced by German nurseries (Verband Deutscher respective of leaf symptoms, in cross sections of 9-12 Rebenpflanzguterzeuger, pers. comm.).