Trends in Pollination Biology Herbert G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Watsonia 14 (1982), 79-100
Walsonia , 14, 79-100 (\982) 79 Book Reviews Flowers of Greece and the Balkans. A field guide. Oleg Polunin. Pp. xv+592 including 62 pages of line drawings and 21 maps, with 80 colour plates. Oxford University Press, Oxford. 1980. Price £40.00 (ISBN 0-19- 217-6269). This latest of Oleg Polunin's Field guides to the European flora presents a concise, but by no means superficial, picture of the flowering plants and conifers of the Balkan peninsula. The area that is covers takes in the whole of Greece (including the East Aegean Islands, excluded from Flora Europaea), Turkey-in-Europe, Albania, Bulgaria, Jugoslavia as far north as the River Sava, and the small portion of Romania that lies south and east of the River Danube. The author has condensed his account of the rich and varied flora of the region, together with the associated mass of published material, into a form that is attractive, comprehensible and useful to the amateur botanist. A book of this type has been badly needed, as the available floristic texts on the Balkans tend to be over 50 years old, scarce, extremely expensive and written in a foreign language, often Latin. However, the most significant attribute of this book is not that it gives access to diffuse and obscure information, but that it provides a radical alternative to popular botanical accounts of Greece which emphasize the lowland spring flora, notably the orchids and other petaloid monocots. Based on the author's many years of botanical experience and extensive travel in the region, Flowers of Greece and the Balkans demonstrates the wide range of flora and vegetation that the amateur botanist can expect to see in the Balkan peninsula. -
Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P. -
Pollination and Botanic Gardens Contribute to the Next Issue of Roots
Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • May 2020 Pollination and botanic gardens Contribute to the next issue of Roots The next issue of Roots is all about education and technology. As this issue goes to press, most botanic gardens around the world are being impacted by the spread of the coronavirus Covid-19. With many Botanic Gardens Conservation International Education Review Volume 16 • Number 2 • October 2019 Citizen gardens closed to the public, and remote working being required, Science educators are having to find new and innovative ways of connecting with visitors. Technology is playing an ever increasing role in the way that we develop and deliver education within botanic gardens, making this an important time to share new ideas and tools with the community. Have you developed a new and innovative way of engaging your visitors through technology? Are you using technology to engage a Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • April 2020 wider audience with the work of your garden? We are currently looking for a variety of contributions including Pollination articles, education resources and a profile of an inspirational garden and botanic staff member. gardens To contribute, please send a 100 word abstract to [email protected] by 15th June 2020. Due to the global impacts of COVID-19, BGCI’s 7th Global Botanic Gardens Congress is being moved to the Australian spring. Join us in Melbourne, 27 September to 1 October 2021, the perfect time to visit Victoria. Influence and Action: Botanic Gardens as Agents of Change will explore how botanic gardens can play a greater role in shaping our future. -
Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local Study)
plants Article Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local study) Lukáš Wittlinger and Lucia Petrikoviˇcová * Department of Geography and Regional Development, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94974 Nitra, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +421-907-3441-04 Abstract: In the years 2018–2020, we carried out large-scale mapping in the Western Carpathians with a focus on determining the biodiversity of taxa of the family Orchidaceae using field biogeographical research. We evaluated the research using phytogeographic analysis with an emphasis on selected ecological environmental factors (substrate: ecological land unit value, soil reaction (pH), terrain: slope (◦), flow and hydrogeological productivity (m2.s−1) and average annual amounts of global radiation (kWh.m–2). A total of 19 species were found in the area, of which the majority were Cephalenthera longifolia, Cephalenthera damasonium and Anacamptis morio. Rare findings included Epipactis muelleri, Epipactis leptochila and Limodorum abortivum. We determined the ecological demands of the abiotic environment of individual species by means of a functional analysis of communities. The research confirmed that most of the orchids that were studied occurred in acidified, calcified and basophil locations. From the location of the distribution of individual populations, it is clear that they are generally arranged compactly and occasionally scattered, which results in ecological and environmental diversity. During the research, we identified 129 localities with the occurrence of Citation: Wittlinger, L.; Petrikoviˇcová, L. Phytogeographical Analysis and 19 species and subspecies of orchids. We identify the main factors that threaten them and propose Ecological Factors of the Distribution specific measures to protect vulnerable populations. -
Pollination Partners
Table Rocks Curriculum Pollination Partners Objective: In order to explore the relationships between flowers and their pollinators, students will dissect flowers, construct flower models, and match each flower model with its correct pollinator. This activity emphasizes flowers and pollinators native to the Table Rocks. Benchmarks Targeted: 2 (Grades 4-5) Oregon Standards Achieved: Subject Area: Life Science Common Curriculum Goals: Diversity/ Interdependence: Understand the relationships among living things and between living things and their environments. Benchmark 2: Describe the relationship between characteristics of specific habitats and the organisms that live there. Describe how adaptations help a species survive. Common Curriculum Goals: Organisms: Understand the characteristics, structure, and functions of an organism. Benchmark 2: Group and classify organisms based on a variety of characteristics. Benchmark 2: Describe the basic plant and animal structures and their functions Subject Area: The Arts Common Curriculum Goals: Create, Present, and Perform: Apply artistic elements and technical skills to create, present, and/or perform works of art for a variety of audiences and purposes. Benchmark 2: Create, present and/or perform a work of art using experiences, imagination, observations, artistic elements, and technical skills to achieve desired effect. Length of Lesson: 3 to 5 hrs. Materials: Clipped specimens of a variety of flowers for the class to dissect Small scissors and tweezers for dissection Magnifying glasses or -
Cotswolds Beechwoods SAC Citation
EC Directive 92/43 on the Conservation of Natural Habitats and of Wild Fauna and Flora Citation for Special Area of Conservation (SAC) Name: Cotswold Beechwoods Unitary Authority/County: Gloucestershire SAC status: Designated on 1 April 2005 Grid reference: SO898134 SAC EU code: UK0013658 Area (ha): 585.85 Component SSSI: Cotswold Commons and Beechwoods SSSI Site description: The site consists of ancient beech woodland and unimproved grassland lying over Jurassic limestones at the western edge of the Cotswolds. The woodlands are amongst the most diverse and species-rich of their type while the grasslands typify the unimproved calcareous pastures for which the area is famous. The woods are structurally varied, including blocks of high forest and some areas of remnant beech coppice. The canopy is dominated by beech Fagus sylvatica, with ash Fraxinus excelsior, pedunculate oak Quercus robur and some areas of sycamore Acer pseudoplatanus. Characteristic understorey species include holly Ilex aquifolium and yew Taxus baccata but regenerating ash, sycamore and beech often accounts for much of the shrub layer. The field layer consists mainly of bramble Rubus fruticosus agg., dog’s mercury Mercurialis perennis and ivy Hedera helix. Rare plants include red helleborine Cephalanthera rubra, stinking hellebore Helleborus foetidus, narrow-lipped helleborine Epipactis leptochila and wood barley Hordelymus europaeus. The fauna of the woods includes an exceptional variety of invertebrate species, including a rich mollusc fauna. The unimproved limestone grassland swards are generally dominated by upright brome Bromopsis erecta, tor-grass Brachypodium pinnatum and sheep’s-fescue Festuca ovina, with quaking grass Briza media and a wide range of other flowering herbs. -
Pollination Fast Facts
Pollination Fast Facts What is pollination? Pollination is a vital stage in the life cycle of all flowering plants. When pollen is moved within a flower or carried from one flower to another of the same species it leads to fertilization. This transfer of pollen is necessary for healthy and productive native & agricultural ecosystems. • About 75% of all flowering plant species need the help of animals to move their heavy pollen grains from plant to plant for fertilization. • About 1,000 of all pollinators are vertebrates such as birds, bats, and small mammals. • Most pollinators (about 200,000 species) are beneficial insects such as flies, beetles, wasps, ants, butterflies, moths, and bees. Why are pollinators important? Pollinators are often keystone species, meaning that they are critical to an ecosystem. The work of pollinators ensures full harvests of crops and contributes to healthy plants everywhere. • An estimated 1/3 of all foods and beverages is delivered by pollinators. • In the U.S., pollination produces nearly $20 billion worth of products annually. How you can help. • Reduce your impact. Reduce or eliminate your pesticide use, increase green spaces, and minimize urbanization. Pollution and climate change affect pollinators, too! • Plant for pollinators. Create pollinator-friendly habitat with native flowering plants that supply pollinators with nectar, pollen, and homes. For information on what to plant in your area, download a free eco-regional guide online at www.pollinator.org. • Tell a friend. Educate your neighbors, schools, and community groups about the importance of pollinators. Host a dinner, a pollinated food cook-off or other event and invite your friends. -
Pollination of Fruits and Nuts
Fruit • HO-174-W Department of Horticulture Purdue University Cooperative Extension Service • West Lafayette, IN Pollination of Fruits and Nuts B. Rosie Lerner and Peter Hirst* Pollination is an important factor in growing fruits and tree. Sweet cherries, pears, and most apples require the nuts, since for most of these crops pollination is a prereq- presence of two different compatible cultivars for pollina- uisite for fruit production. Pollination is the transfer of tion to result in fruit set. pollen from the stamen, or male part of a flower, to the pistil, or female part of a flower. Pollen is transferred by In a few fruit species (e.g. kiwifruit and persimmon) male wind, splashing rain, moths, butterflies, birds, or honey- and female flowers are produced on different plants. Only bees, depending on the plant species. Most fruit trees are female plants bear fruit, but a male plant must be present pollinated primarily by bees, while most nut trees are nearby to produce compatible pollen. pollinated primarily by wind. The agent of pollen transfer (for example, a bee) is called the “pollinator” whereas the Check the individual listings under Pollen Requirements “pollinizer” is the source of pollen. for the cross-pollination requirements for specific fruits and nuts. As well as having a source of compatible pollen After pollination occurs, the pollen grain must germinate nearby, attention must be paid to ensure the bloom time and grow into the ovary of the flower where the male of the pollinizer overlaps with the tree to be pollinated. pollen cell unites with the female egg cell in a process called fertilization. -
ORCHID CONSERVATION NEWS the Newsletter of the Orchid Specialist Group of the IUCN Species Survival Commission
ORCHID CONSERVATION NEWS The Newsletter of the Orchid Specialist Group of the IUCN Species Survival Commission Issue 1 March 2021 PATHS TOWARD CONSERVATION PROGRESS Orchid workshop at Bogotá Botanic Garden, Colombia in 2017 1 https://www.bgci.org/our-work/plant- Editorial conservation/conservation-prioritisation/ex-situ- At the time of this first Issue of 2021, many challenges surveys/ still lie before us, lots of unknowns yet to be determined with the pandemic at the forefront of our thoughts. We Why am I puzzled? Well firstly, I don’t know where are doing our best to continue our conservation work the figure of 38% has come from. Although encouraging despite constraints whether it be project planning, data progress is being made with Red Listing, I don’t think collection and management, seed banking, evaluating we know how many species are threatened globally. conservation strategies, or continuing studies of orchid Secondly, does just one individual plant count as an ex populations over the long term. With the situ collection? Surely we need to be focusing on unpredictability and randomness of natural events that conserving as far as possible the genetic diversity within may threaten orchid ecosystems, long-term monitoring each species. Thirdly, the table doesn’t tell me whether studies are being re-visited years, even decades after the collection is plants and/or seed. their initiation, to study what has been happening following severe disturbance. For example, Deschênes, The BGCI report asserts that botanical gardens are the Brice & Brisson (2019) have reported, after an initial main repository of orchid collections. -
How Are the Flower Structure and Nectar Composition of the Generalistic Orchid Neottia Ovata Adapted to a Wide Range of Pollinators?
International Journal of Molecular Sciences Article How Are the Flower Structure and Nectar Composition of the Generalistic Orchid Neottia ovata Adapted to a Wide Range of Pollinators? Emilia Brzosko *, Andrzej Bajguz * , Magdalena Chmur, Justyna Burzy ´nska,Edyta Jermakowicz, Paweł Mirski and Piotr Zieli ´nski Faculty of Biology, University of Bialystok, Ciolkowskiego 1J, 15-245 Bialystok, Poland; [email protected] (M.C.); [email protected] (J.B.); [email protected] (E.J.); [email protected] (P.M.); [email protected] (P.Z.) * Correspondence: [email protected] (E.B.); [email protected] (A.B.); Tel.: +48-85-738-8424 (E.B.); +48-85-738-8361 (A.B.) Abstract: Plant-pollinator interactions significantly influence reproductive success (RS) and drive the evolution of pollination syndromes. In the context of RS, mainly the role of flower morphology is touched. The importance of nectar properties is less studied, despite its significance in pollination effectiveness. Therefore, the aim of this study was to test selection on flower morphology and nectar chemistry in the generalistic orchid Neottia ovata. In 2019–2020, we measured three floral displays and six flower traits, pollinaria removal (PR), female reproductive success (FRS), and determined the soil properties. The sugars and amino acids (AAs) were analyzed using the HPLC method. Data were Citation: Brzosko, E.; Bajguz, A.; analyzed using multiple statistical methods (boxplots, ternary plot, one-way ANOVA, Kruskal-Wallis Chmur, M.; Burzy´nska,J.; test, and PCA). Variation of flower structure and nectar chemistry and their weak correlation with Jermakowicz, E.; Mirski, P.; Zieli´nski, RS confirms the generalistic character of N. -
Brought to You By… POLLINATORS
Brought to You By… POLLINATORS What is “Pollination” & What is a “Pollinator?” • The act of “pollination” occurs when pollen grains are moved between two flowers of the same species by wind or animals. Successful pollination results in the production of healthy fruit and fertile seeds, allowing plants to reproduce. Without pollinator visits to tomatoes and other fruit and vegetable plants in our gardens, we would have no produce! For more information: http://hiltonpond.org/ThisWeek031008.html • Almost 90% of all flowering plants rely on animal pollinators for fertilization, and about 200,000 species of animals act as pollinators. Of those, 1,000 are hummingbirds, bats, and small mammals such as mice. The rest are insects like beetles, bees, ants, wasps, butterflies and moths. See http://www.wildaboutgardening.org/en/attracting/section1/ Why Are Pollinators Important to Us? • Worldwide, approximately 1,000 plants grown for food, beverages, fibers, spices, and medicines need to be pollinated by animals in order to produce the goods on which we depend. • Foods and beverages produced with the help of pollinators include: apples, bananas, blueberries, chocolate, coffee, melons, peaches, potatoes, pumpkins, vanilla, almonds, and tequila. (Imagine a world without some of these things!) • In the United States, pollination by honeybees and other insects produces $40 billion worth of products annually! Did You Know? Bees -- can fly at about 7 miles per hour, and have to beat their wings 190 times per second to do it! Bees are constantly on the lookout for brightly-colored flowers with sweet scents. Bees tend to prefer flowers that they can walk on to sip nectar. -
Dottorato Di Ricerca
Università degli Studi di Cagliari DOTTORATO DI RICERCA IN SCIENZE E TECNOLOGIE DELLA TERRA E DELL'AMBIENTE Ciclo XXXI Patterns of reproductive isolation in Sardinian orchids of the subtribe Orchidinae Settore scientifico disciplinare di afferenza Botanica ambientale e applicata, BIO/03 Presentata da: Dott. Michele Lussu Coordinatore Dottorato Prof. Aldo Muntoni Tutor Dott.ssa Michela Marignani Co-tutor Prof.ssa Annalena Cogoni Dott. Pierluigi Cortis Esame finale anno accademico 2018 – 2019 Tesi discussa nella sessione d’esame Febbraio –Aprile 2019 2 Table of contents Chapter 1 Abstract Riassunto………………………………………………………………………………………….. 4 Preface ………………………………………………………………………………………………………. 6 Chapter 2 Introduction …………………………………………………………………………………………………. 8 Aim of the study…………………………………………………………………………………………….. 14 Chapter 3 What we didn‘t know, we know and why is important working on island's orchids. A synopsis of Sardinian studies……………………………………………………………………………………………………….. 17 Chapter 4 Ophrys annae and Ophrys chestermanii: an impossible love between two orchid sister species…………. 111 Chapter 5 Does size really matter? A comparative study on floral traits in two different orchid's pollination strategies……………………………………………………………………………………………………. 133 Chapter 6 General conclusions………………………………………………………………………………………... 156 3 Chapter 1 Abstract Orchids are globally well known for their highly specialized mechanisms of pollination as a result of their complex biology. Based on natural selection, mutation and genetic drift, speciation occurs simultaneously in organisms linking them in complexes webs called ecosystems. Clarify what a species is, it is the first step to understand the biology of orchids and start protection actions especially in a fast changing world due to human impact such as habitats fragmentation and climate changes. I use the biological species concept (BSC) to investigate the presence and eventually the strength of mechanisms that limit the gene flow between close related taxa.