Isotopic and Molecular Evidence of Ectomycorrhizal Liaisons Between Forest Orchids and Trees Author(S): Martin I

Total Page:16

File Type:pdf, Size:1020Kb

Isotopic and Molecular Evidence of Ectomycorrhizal Liaisons Between Forest Orchids and Trees Author(S): Martin I Changing Partners in the Dark: Isotopic and Molecular Evidence of Ectomycorrhizal Liaisons between Forest Orchids and Trees Author(s): Martin I. Bidartondo, Bastian Burghardt, Gerhard Gebauer, Thomas D. Bruns and David J. Read Source: Proceedings: Biological Sciences, Vol. 271, No. 1550 (Sep. 7, 2004), pp. 1799-1806 Published by: The Royal Society Stable URL: http://www.jstor.org/stable/4142864 Accessed: 12-04-2015 21:09 UTC REFERENCES Linked references are available on JSTOR for this article: http://www.jstor.org/stable/4142864?seq=1&cid=pdf-reference#references_tab_contents You may need to log in to JSTOR to access the linked references. Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The Royal Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings: Biological Sciences. http://www.jstor.org This content downloaded from 169.229.32.36 on Sun, 12 Apr 2015 21:09:01 UTC All use subject to JSTOR Terms and Conditions Received 30 March 2004 174in THE ROYAL Accepted 17 May 2004 r1$EW'. SOCIETY Published online 30 July 2004 Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees Martin I. Bidartondol*, Bastian Burghardt2, Gerhard Gebauer2, Thomas D. Bruns' and David J. Read3 1Departmentof Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA 2Lehrstuhlfur Pflanzen6kologie, Universitdt Bayreuth, 95440 Bayreuth, Germany 3Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK In the mycorrhizal symbiosis, plants exchange photosynthates for mineral nutrients acquired by fungi from the soil. This mutualistic arrangement has been subverted by hundreds of mycorrhizal plant species that lack the ability to photosynthesize. The most numerous examples of this behaviour are found in the largest plant family, the Orchidaceae. Although non-photosynthetic orchid species are known to be highly specialized exploiters of the ectomycorrhizal symbiosis, photosynthetic orchids are thought to use free-living saprophytic or pathogenic fungal lineages. However, we present evidence that putatively photosynthetic orchids from five species that grow in the understorey of forests (i) form mycorrhizas with ectomycorrhizal fungi of forest trees and (ii) have stable-isotope signatures indicating distinctive pathways for nitrogen and carbon acquisition approaching those of non-photosynthetic orchids that associate with ectomycorrhizal fungi of forest trees. These findings represent a major shift in our understanding of both orchid ecology and evolution because they explain how orchids can thrive in low-irradiance niches and they show that a shift to exploiting ectomycorrhizal fungi precedes viable losses of photosynthetic ability in orchid lineages. Keywords: Epipactis; Cephalanthera; mycorrhizae; partial myco-heterotrophy; symbiosis; Tuber 1. INTRODUCTION Currently, there are two known mature-orchid nutritional The Orchidaceae is the largest and most diverse family of modes: (i) obligate autotrophy (i.e. photosynthetic) with plants on Earth. One of its most distinctive characteristics over 17 000 species; and (ii) obligate myco-heterotrophy is the production of minute seeds that contain only mini- (i.e. non-photosynthetic) with over 200 species. However, mal reserves of nutrients (Arditti & Ghani 2000). This it has been proposed recently that a third nutritional mode makes orchids dependent upon mycorrhizal fungi for the in which fungi subsidize the nutrition of putatively photo- provision of the resources necessary for germination and synthetic orchids ('partial myco-heterotrophy') accounts for growth, at least in the early stages of their development for a significant number of the forest-understorey species (Bernard 1909; Burgeff 1959). Such fungus-dependent currently considered obligate autotrophs (Gebauer & modes of nutrition, referred to as myco-heterotrophy, have Meyer 2003). evolved independently several times during plant evolu- Since early in the last century, it has been widely tion (Leake 1994). There is a widespread assumption that accepted that most orchid mycorrhizal fungi are saprophy- in the majority of orchid species, which are photosynthetic tic or pathogenic rhizoctonia-forming basidiomycete fungi that includes Cerato- in the adult phases of their lives, the ability to photo- (i.e. a polyphyletic assemblage Exidiales and synthesize will provide a release from the dependence on basidiales, Tulasnellales) (Bernard 1909; Roberts studies have shown that these fungi for carbon supplies (Smith & Read 1997). Nonethe- 1999). Experimental cultivable can sustain less, a large proportion of green, and hence putatively pho- easily fungi below-ground develop- ment of some orchids carbon from soil tosynthetic, orchids grow in such deeply shaded forest by transferring matter to & Read habitats that carbon gains from photosynthesis are likely to organic developing seedlings (Smith Interest in the that other functional be minimal. In fact, complete loss of photosynthetic ability, 1997). possibility of be with coupled with obligate myco-heterotrophy into the adult groups fungi might symbiotic partners photo- orchids has been aroused by two sets of phase, may have evolved at least 20 times in the Orchida- synthetic recently observations: (i) molecular ecological analy- ceae (Molvray et al. 2000). Because terrestrial orchids independent ses have shown that several wholly non-photosynthetic include some of the most vulnerable components of plant orchid form orchid mycorrhizas with hardly culti- communities worldwide (Batty et al. 2002), it is of pressing species vable that form with concern to determine how these orchids are sustained fungi simultaneously ectomycorrhizas the roots of neighbouring trees (Taylor & Bruns 1997; throughout their life cycle under natural conditions. Selosse et al. 2002); and (ii) mass-spectrometric analyses of wholly non-photosynthetic orchids, monotropes and orchids & *Author and address for correspondence: Imperial College London and putatively photosynthetic (Gebauer Meyer 2003; Royal Botanic Gardens, Kew TW9 3DS, UK ([email protected]). Trudell et al. 2003) of forest habitats have revealed that Proc. R. Soc. Lond. B (2004) 271, 1799-1806 1799 0 2004 The Royal Society doi: 10. 1098/rspb.2004.2807 This content downloaded from 169.229.32.36 on Sun, 12 Apr 2015 21:09:01 UTC All use subject to JSTOR Terms and Conditions 1800 M. I. Bidartondo and others Orchids use ectomycorrhizalfungi their tissues carry nitrogen and carbon stable-isotope sig- (L = 4), and four species characteristicof open environments,E. natures indicative of alternative pathways for the acqui- atrorubens (Hoffm. ex Bernh.) Besser (L = 6), Platanthera chlor- sition of these elements. In fact, Gebauer and Meyer antha (Cust.) Rchb. p. (L = 6), E. palustris (L.) Crantz (L = 8) postulated that putatively photosynthetic forest orchids are and Dactylorhizamajalis s.l. (L = 8). For the current status of connected both to typical orchid mycorrhizal fungi (i.e. the Neottiaeae phylogenetics (including Epipactisand Cephalanthera) rhizoctonia-forming fungi) 'and to basidiomycetes forming see Bateman et al. (2004). ectomycorrhizas with trees' (p. 221). We combine molecular and mass-spectrometric approa- (c) Mass-spectroscopy analysis ches and apply them to the same individual plants of eight Following a sampling methodology described elsewhere orchid species growing in their natural plant communities (Gebauer & Meyer 2003), in July 2003 we collected, from each of at four sites in Germany. These species represent three the four sites, four replicate leaves of between one and four photo- functional groups: photosynthetic orchids of open habitats, synthetic orchid species and leaves of accompanying non-orchid putatively photosynthetic orchids of shaded habitats and ground vegetation (for species lists see electronic Appendix A). wholly non-photosynthetic orchids. We show that the latter On the three forest sites, the non-orchid plants encompassed four two groups are colonized by fungi that are ectomycorrhizal functional types: ectomycorrhizalplants (ECM), plants forming associates of trees and that their shoot nitrogen and carbon arbuscular mycorrhizas or non-mycorrhizal plants (AM/NM), signatures are sufficiently distinct from those of orchids and leguminous plants potentially living in symbiosis with colonized by rhizoctonia-forming fungi to indicate reliance nitrogen-fixing bacteria and forming arbuscular mycorrhizas upon alternative nutritional pathways. We also surveyed (AM/FIX). At the non-forested wetland site, the non-orchid the mycorrhizal fungi of three additional orchid species at plants included AM/NM and AM/FIX plants only. In addition, 12 locations outside Germany and confirmed that associa- we sampled one wholly myco-heterotrophic orchid species from tions between putatively photosynthetic orchids of shaded forest site 1. Soil samples from the uppermost 5 cm were collected habitats and ectomycorrhizal fungi are widespread and adjacent to each orchid plant.
Recommended publications
  • The Genomic Impact of Mycoheterotrophy in Orchids
    fpls-12-632033 June 8, 2021 Time: 12:45 # 1 ORIGINAL RESEARCH published: 09 June 2021 doi: 10.3389/fpls.2021.632033 The Genomic Impact of Mycoheterotrophy in Orchids Marcin J ˛akalski1, Julita Minasiewicz1, José Caius2,3, Michał May1, Marc-André Selosse1,4† and Etienne Delannoy2,3*† 1 Department of Plant Taxonomy and Nature Conservation, Faculty of Biology, University of Gdansk,´ Gdansk,´ Poland, 2 Institute of Plant Sciences Paris-Saclay, Université Paris-Saclay, CNRS, INRAE, Univ Evry, Orsay, France, 3 Université de Paris, CNRS, INRAE, Institute of Plant Sciences Paris-Saclay, Orsay, France, 4 Sorbonne Université, CNRS, EPHE, Muséum National d’Histoire Naturelle, Institut de Systématique, Evolution, Biodiversité, Paris, France Mycoheterotrophic plants have lost the ability to photosynthesize and obtain essential mineral and organic nutrients from associated soil fungi. Despite involving radical changes in life history traits and ecological requirements, the transition from autotrophy Edited by: Susann Wicke, to mycoheterotrophy has occurred independently in many major lineages of land Humboldt University of Berlin, plants, most frequently in Orchidaceae. Yet the molecular mechanisms underlying this Germany shift are still poorly understood. A comparison of the transcriptomes of Epipogium Reviewed by: Maria D. Logacheva, aphyllum and Neottia nidus-avis, two completely mycoheterotrophic orchids, to other Skolkovo Institute of Science autotrophic and mycoheterotrophic orchids showed the unexpected retention of several and Technology, Russia genes associated with photosynthetic activities. In addition to these selected retentions, Sean W. Graham, University of British Columbia, the analysis of their expression profiles showed that many orthologs had inverted Canada underground/aboveground expression ratios compared to autotrophic species. Fatty Craig Barrett, West Virginia University, United States acid and amino acid biosynthesis as well as primary cell wall metabolism were among *Correspondence: the pathways most impacted by this expression reprogramming.
    [Show full text]
  • Date Plant Collector Locality Vc Inst 1868 5 0 Primula Polyantha Crespigny, E
    natstand: last updated 14/12/2014 URL: www.natstand.org.uk/pdf/DeCrespignyEC002.pdf Person: De Crespigny, Eyre N. Champion (1821 – 1895) Description: Chronologically arranged list of specimens From various British herbaris. Source: Herbaria @ Home and University of Hull Extraction date: 2014 December 13 Annotated by: Richard Middleton Copyright: Creative Commons Attribution- NonCommercial-NoDerivatives 4.0 International License. Date Plant Collector Locality vc Inst 1868 5 0 Primula polyantha Crespigny, E. de Normandy, France HLU 1869 0 0 Teucrium scordium Crespigny, E. de Braunton Burrows 4 MANCH 1870 7 0 Oenanthe fluviatilis Crespigny, E. de River Lee, Edmonton 21 HLU 1871 0 0 Ranunculus arvensis Crespigny, E. de 21 MANCH 1871 0 0 Ranunculus arvensis Crespigny, E. de 21 MANCH 1871 0 0 Potamogeton friesii Crespigny, E. de Tottenham,Lea Canal 21 MANCH 1872 0 0 Galium tricornutum Crespigny, E. de Croydon 17 MANCH 1872 0 0 Potamogeton crispus Crespigny, E. de Tottenham 21 MANCH 1872 0 0 Potamogeton lucens Crespigny, E. de Tottenham,Lea Canal 21 MANCH 1873 0 0 Schoenoplectus x carinatus Crespigny, E. de Mortlake 17 MANCH 1873 0 0 Anemone nemorosa Crespigny, E. de Hampstead Heath 21 MANCH 1873 0 0 Anemone nemorosa Crespigny, E. de Pinner 21 MANCH 1874 0 0 Potamogeton berchtoldii Crespigny, E. de Woolwich 16 MANCH 1874 0 0 Campanula trachelium Crespigny, E. de Merstham 17 SLBI 1874 0 0 Dianthus deltoides Crespigny, E. de Thames Ditton 17 MANCH 1874 0 0 Carex pallescens Crespigny, E. de Pinner 21 MANCH 1874 0 0 Cochlearia anglica Crespigny, E. de Banks of the Thames, 16 HLU Woolwich, London 1874 6 0 Carex vesicaria Crespigny, E.
    [Show full text]
  • Review Article Conservation Status of the Family Orchidaceae in Spain Based on European, National, and Regional Catalogues of Protected Species
    Hind ile Scientific Volume 2018, Article ID 7958689, 18 pages https://doi.org/10.1155/2018/7958689 Hindawi Review Article Conservation Status of the Family Orchidaceae in Spain Based on European, National, and Regional Catalogues of Protected Species Daniel de la Torre Llorente© Biotechnology-Plant Biology Department, Higher Technical School of Agronomic, Food and Biosystems Engineering, Universidad Politecnica de Madrid, 28140 Madrid, Spain Correspondence should be addressed to Daniel de la Torre Llorente; [email protected] Received 22 June 2017; Accepted 28 December 2017; Published 30 January 2018 Academic Editor: Antonio Amorim Copyright © 2018 Daniel de la Torre Llorente. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Tis report reviews the European, National, and Regional catalogues of protected species, focusing specifcally on the Orchidaceae family to determine which species seem to be well-protected and where they are protected. Moreover, this examination highlights which species appear to be underprotected and therefore need to be included in some catalogues of protection or be catalogued under some category of protection. Te national and regional catalogues that should be implemented are shown, as well as what species should be included within them. Tis report should be a helpful guideline for environmental policies about orchids conservation in Spain, at least at the regional and national level. Around 76% of the Spanish orchid fora are listed with any fgure of protection or included in any red list, either nationally (about 12-17%) or regionally (72%).
    [Show full text]
  • Watsonia 14 (1982), 79-100
    Walsonia , 14, 79-100 (\982) 79 Book Reviews Flowers of Greece and the Balkans. A field guide. Oleg Polunin. Pp. xv+592 including 62 pages of line drawings and 21 maps, with 80 colour plates. Oxford University Press, Oxford. 1980. Price £40.00 (ISBN 0-19- 217-6269). This latest of Oleg Polunin's Field guides to the European flora presents a concise, but by no means superficial, picture of the flowering plants and conifers of the Balkan peninsula. The area that is covers takes in the whole of Greece (including the East Aegean Islands, excluded from Flora Europaea), Turkey-in-Europe, Albania, Bulgaria, Jugoslavia as far north as the River Sava, and the small portion of Romania that lies south and east of the River Danube. The author has condensed his account of the rich and varied flora of the region, together with the associated mass of published material, into a form that is attractive, comprehensible and useful to the amateur botanist. A book of this type has been badly needed, as the available floristic texts on the Balkans tend to be over 50 years old, scarce, extremely expensive and written in a foreign language, often Latin. However, the most significant attribute of this book is not that it gives access to diffuse and obscure information, but that it provides a radical alternative to popular botanical accounts of Greece which emphasize the lowland spring flora, notably the orchids and other petaloid monocots. Based on the author's many years of botanical experience and extensive travel in the region, Flowers of Greece and the Balkans demonstrates the wide range of flora and vegetation that the amateur botanist can expect to see in the Balkan peninsula.
    [Show full text]
  • Morphology and Molecules: the Sebacinales, a Case Study
    Mycol Progress DOI 10.1007/s11557-014-0983-1 ORIGINAL ARTICLE Morphology and molecules: the Sebacinales, a case study Franz Oberwinkler & Kai Riess & Robert Bauer & Sigisfredo Garnica Received: 4 April 2014 /Accepted: 8 April 2014 # German Mycological Society and Springer-Verlag Berlin Heidelberg 2014 Abstract Morphological and molecular discrepancies in the irregular germinating spores and inconspicuous cystidia, and biodiversity of monophyletic groups are challenging. The S. flagelliformis with flagelliform dikaryophyses from intention of this study was to find out whether the high S. epigaea s.str. Additional clades in Sebacina, based on molecular diversity in Sebacinales can be verified by micro- molecular differences, cannot be distinguished morphologi- morphological characteristics. Therefore, we carried out mo- cally at present. lecular and morphological studies on all generic type species of Sebacinales and additional representative taxa. Our results encouraged us to disentangle some phylogenetic and taxo- Introduction nomic discrepancies and to improve sebacinalean classifica- tions. This comprises generic circumscriptions and affilia- Based on longitudinally septate meiosporangia in their mature tions, as well as higher taxon groupings. At the family level, stage, sebacinoid fungi were originally grouped together with we redefined the Sebacinaceae, formerly the Sebacinales tremelloid and exidioid taxa. Sebacinales in the present cir- group A, and set it apart from the Sebacinales group B. For cumscription were reviewed in detail recently (Oberwinkler taxonomical purposes, it seems appropriate to refer et al. 2013). We refer to this publication for traditional classi- Paulisebacina, Craterocolla, Chaetospermum, fication of genera and interpretation of some species. Here, we Globulisebacina, Tremelloscypha, and Sebacina to the summarize data that accumulated within several years of Sebacinaceae and Piriformospora, and Serendipita to the intensive sampling, from morphological and molecular stud- Sebacinales group B.
    [Show full text]
  • The Red Data List of Irish Plants
    The Red Data List of Irish Plants The risks that species face are each very different, however, as a guide to the susceptibility of a given species, an agreed set of categories has been established internationally, and these are used to determine the potential risk that a species could become extinct. These categories are:- CRITICALLY ENDANGERED or CR - Species that are declining at a fast rate, and face imminent risk of extinction. ENDANGERED or E - Species that are declining, or grow in habitats likely to be disturbed, 'developed' or facing an ongoing degradation. VULNERABLE or V - Species that are currently not endangered, but would be extremely vulnerable if their habitats are disturbed in the future. There are seven species of plant that require immediate intervention (CR) if we are to save them from joining the fate of 11 other species that are now known to be extinct in Ireland. A number of these are already extinct in the Republic, and are not therefore legally protected under the 1999 Flora Protection Act. In the list below, 188 species of plant are listed, of which 64 are flowering plants, 4 ferns, 14 mosses, 4 liverworts, 1 lichen and 2 algae. Protected=1999 Flora Protection Order; (protected)= formerly protected by 1987 Order; {protected}= formerly protected by 1980 Order; (NI)= protected in Northern Ireland only. EXTINCT (9) Pheasant's-eye Adonis annua -- Corncockle Agrostemma githago Cogal Corn Chamomile Anthemis arvensis Fíogadán goirt Purple Spurge Euphorbia peplis Spuirse dhearg Sea Stock Matthiola sinuata Tonóg chladaigh
    [Show full text]
  • Forma Nov.: a New Peloric Orchid from Ibaraki Prefecture, Japan
    The Japanese Society for Plant Systematics ISSN 1346-7565 Acta Phytotax. Geobot. 65 (3): 127–139 (2014) Cephalanthera falcata f. conformis (Orchidaceae) forma nov.: A New Peloric Orchid from Ibaraki Prefecture, Japan 1,* 1 1 HirosHi Hayakawa , CHiHiro Hayakawa , yosHinobu kusumoto , tomoko 1 1 2 3,4 nisHida , Hiroaki ikeda , tatsuya Fukuda and Jun yokoyama 1National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan. *[email protected] (author for correspondences); 2Faculty of Agriculture, Kochi University, Nan- koku, Kochi 783-8502, Japan; 3Faculty of Science, Yamagata University, Kojirakawa, Yamagata 990-8560, Japan; 4Institute for Regional Innovation, Yamagata University, Kaminoyama, Yamagata 999-3101, Japan We recognize a new peloric form of the orchid Cephalanthera falcata (Thunb.) Blume f. conformis Hi- ros. Hayak. et J. Yokoy., which occurs in the vicinity of the Tsukuba mountain range in Ibaraki Prefec- ture, Japan. This peloric form is sympatric with C. falcata f. falcata. The peloric flowers have a petal-like lip. The flowers are radially symmetrical and the perianth parts spread weakly compared to normal flow- ers. The stigmas are positioned at the column apex, thus neighboring stigmas and the lower parts of the pollinia are conglutinated. We observed similar vegetative traits among C. falcata f. falcata, C. falcata f. albescens S. Kobayashi, and C. falcata f. conformis. The floral morphology in C. falcata f. conformis resembles that of C. nanchuanica (S.C. Chen) X.H. Jin et X.G. Xiang (i.e., similar petal-like lip and stig- ma position at the column apex; syn. Tangtsinia nanchuanica S.C.
    [Show full text]
  • Handbook a “Improving the Availability of Data and Information
    Improving the availability of data and information on species, habitats and sites Focus Area A Handbook on the application of existing scientific approaches, methods, tools and knowledge for a better implementation of the Birds and Habitat Directives Environment FOCUS AREA A IMPROVING THE AVAILABILITY OF DATA AND i INFORMATION ON SPECIES, HABITATS AND SITES Imprint Disclaimer This document has been prepared for the European Commis- sion. The information and views set out in the handbook are Citation those of the authors only and do not necessarily reflect the Schmidt, A.M. & Van der Sluis, T. (2021). E-BIND Handbook (Part A): Improving the availability of data and official opinion of the Commission. The Commission does not information on species, habitats and sites. Wageningen Environmental Research/ Ecologic Institute /Milieu Ltd. guarantee the accuracy of the data included. The Commission Wageningen, The Netherlands. or any person acting on the Commission’s behalf cannot be held responsible for any use which may be made of the information Authors contained therein. Lead authors: This handbook has been prepared under a contract with the Anne Schmidt, Chris van Swaay (Monitoring of species and habitats within and beyond Natura 2000 sites) European Commission, in cooperation with relevant stakehold- Sander Mücher, Gerard Hazeu (Remote sensing techniques for the monitoring of Natura 2000 sites) ers. (EU Service contract Nr. 07.027740/2018/783031/ENV.D.3 Anne Schmidt, Chris van Swaay, Rene Henkens, Peter Verweij (Access to data and information) for evidence-based improvements in the Birds and Habitat Kris Decleer, Rienk-Jan Bijlsma (Approaches and tools for effective restoration measures for species and habitats) directives (BHD) implementation: systematic review and meta- Theo van der Sluis, Rob Jongman (Green Infrastructure and network coherence) analysis).
    [Show full text]
  • “Dynamic Speciation Processes in the Mediterranean Orchid Genus Ophrys L
    “DYNAMIC SPECIATION PROCESSES IN THE MEDITERRANEAN ORCHID GENUS OPHRYS L. (ORCHIDACEAE)” Tesi di Dottorato in Biologia Avanzata, XXIV ciclo (Indirizzo Sistematica Molecolare) Universitá degli Studi di Napoli Federico II Facoltá di Scienze Matematiche, Fisiche e Naturali Dipartimento di Biologia Strutturale e Funzionale 1st supervisor: Prof. Salvatore Cozzolino 2nd supervisor: Prof. Serena Aceto PhD student: Dott. Hendrik Breitkopf 1 Cover picture: Pseudo-copulation of a Colletes cunicularius male on a flower of Ophrys exaltata ssp. archipelagi (Marina di Lesina, Italy. H. Breitkopf, 2011). 2 TABLE OF CONTENTS GENERAL INTRODUCTION CHAPTER 1: MULTI-LOCUS NUCLEAR GENE PHYLOGENY OF THE SEXUALLY DECEPTIVE ORCHID GENUS OPHRYS L. (ORCHIDACEAE) CHAPTER 2: ANALYSIS OF VARIATION AND SPECIATION IN THE OPHRYS SPHEGODES SPECIES COMPLEX CHAPTER 3: FLORAL ISOLATION IS THE MAIN REPRODUCTIVE BARRIER AMONG CLOSELY RELATED SEXUALLY DECEPTIVE ORCHIDS CHAPTER 4: SPECIATION BY DISTURBANCE: A POPULATION STUDY OF CENTRAL ITALIAN OPHRYS SPHEGODES LINEAGES CONTRIBUTION OF CO-AUTHORS ACKNOWLEDGEMENTS 3 GENERAL INTRODUCTION ORCHIDS With more than 22.000 accepted species in 880 genera (Pridgeon et al. 1999), the family of the Orchidaceae is the largest family of angiosperm plants. Recently discovered fossils document their existence for at least 15 Ma. The last common ancestor of all orchids has been estimated to exist about 80 Ma ago (Ramirez et al. 2007, Gustafsson et al. 2010). Orchids are cosmopolitan, distributed on all continents and a great variety of habitats, ranging from deserts and swamps to arctic regions. Two large groups can be distinguished: Epiphytic and epilithic orchids attach themselves with aerial roots to trees or stones, mostly halfway between the ground and the upper canopy where they absorb water through the velamen of their roots.
    [Show full text]
  • Ectomycorrhizal Fungal Community Structure in a Young Orchard of Grafted and Ungrafted Hybrid Chestnut Saplings
    Mycorrhiza (2021) 31:189–201 https://doi.org/10.1007/s00572-020-01015-0 ORIGINAL ARTICLE Ectomycorrhizal fungal community structure in a young orchard of grafted and ungrafted hybrid chestnut saplings Serena Santolamazza‑Carbone1,2 · Laura Iglesias‑Bernabé1 · Esteban Sinde‑Stompel3 · Pedro Pablo Gallego1,2 Received: 29 August 2020 / Accepted: 17 December 2020 / Published online: 27 January 2021 © The Author(s) 2021 Abstract Ectomycorrhizal (ECM) fungal community of the European chestnut has been poorly investigated, and mostly by sporocarp sampling. We proposed the study of the ECM fungal community of 2-year-old chestnut hybrids Castanea × coudercii (Castanea sativa × Castanea crenata) using molecular approaches. By using the chestnut hybrid clones 111 and 125, we assessed the impact of grafting on ECM colonization rate, species diversity, and fungal community composition. The clone type did not have an impact on the studied variables; however, grafting signifcantly infuenced ECM colonization rate in clone 111. Species diversity and richness did not vary between the experimental groups. Grafted and ungrafted plants of clone 111 had a diferent ECM fungal species composition. Sequence data from ITS regions of rDNA revealed the presence of 9 orders, 15 families, 19 genera, and 27 species of ECM fungi, most of them generalist, early-stage species. Thirteen new taxa were described in association with chestnuts. The basidiomycetes Agaricales (13 taxa) and Boletales (11 taxa) represented 36% and 31%, of the total sampled ECM fungal taxa, respectively. Scleroderma citrinum, S. areolatum, and S. polyrhizum (Boletales) were found in 86% of the trees and represented 39% of total ECM root tips. The ascomycete Cenococcum geophilum (Mytilinidiales) was found in 80% of the trees but accounted only for 6% of the colonized root tips.
    [Show full text]
  • Description and Identification of Ostryopsis Davidiana Ectomycorrhizae in Inner Mongolia Mountain Forest of China
    Österr. Z. Pilzk. 26 (2017) – Austrian J. Mycol. 26 (2017) 17 Description and identification of Ostryopsis davidiana ectomycorrhizae in Inner Mongolia mountain forest of China QING-ZHI YAO1 WEI YAN2 HUI-YING ZHAO1 JIE WEI2 1 Life Science College 2 Forestry College Inner Mongolia Agriculture University Huhhot, 010018, P. R. China Email: [email protected] Accepted 27. March 2017. © Austrian Mycological Society, published online 23. August 2017 YAO, Q.-Z., YAN, W., ZHAO, H.-Y., WEI, J., 2017: Description and identification of Ostryopsis davidi- ana ectomycorrhizae in Inner Mongolia mountain forest of China. – Austrian J. Mycol. 26: 17–25. Key words: ECM, Mountain forest, Ostryopsis davidiana, morpho-anatomical features. Abstract: The ectomycorrhizal (ECM) fungal composition and anatomical structures of root samples of the shrub Ostryopsis davidiana were examined. The root samples were collected from two plots in the Daqing Mountain and Han Mountain around Hohhot, Inner Mongolia of China. Basing on mor- pho-anatomical features of the samples, we have got totally 12 ECM morphotypes. Twelve fungal taxa were identified via sequencing of the internal transcribed spacer region of their nuclear rDNA. Nine species are Basidiomycotina, incl. Thelephoraceae (Tomentella), Cortinariaceae (Inocybe and Cortinarius), Tremellaceae (Sebacina), Russulaceae (Lactarius), and Tricholomataceae (Tricholoma), three Ascomycotina, incl. Elaphomycetaceae (Cenococcum), Tuberaceae (Tuber), and Pyronema- taceae (Wilcoxina). Cenococcum geophilum was the dominant species in O. davidiana. The three To- mentella and the two Inocybe ECMF of O. davidiana are very common in Inner Mongolia. Zusammenfassung: Die Pilzdiversität der Ektomykorrhiza (ECM) und deren anatomische Strukturen von Wurzelproben des Strauches Ostryopsis davidiana wurden untersucht. Die Wurzelproben wurden aus zwei Untersuchungsflächen im Daqing Berg und Han Berg nahe Hohhot, Innere Mongolei, China, gesammelt.
    [Show full text]
  • Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local Study)
    plants Article Phytogeographical Analysis and Ecological Factors of the Distribution of Orchidaceae Taxa in the Western Carpathians (Local study) Lukáš Wittlinger and Lucia Petrikoviˇcová * Department of Geography and Regional Development, Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, 94974 Nitra, Slovakia; [email protected] * Correspondence: [email protected]; Tel.: +421-907-3441-04 Abstract: In the years 2018–2020, we carried out large-scale mapping in the Western Carpathians with a focus on determining the biodiversity of taxa of the family Orchidaceae using field biogeographical research. We evaluated the research using phytogeographic analysis with an emphasis on selected ecological environmental factors (substrate: ecological land unit value, soil reaction (pH), terrain: slope (◦), flow and hydrogeological productivity (m2.s−1) and average annual amounts of global radiation (kWh.m–2). A total of 19 species were found in the area, of which the majority were Cephalenthera longifolia, Cephalenthera damasonium and Anacamptis morio. Rare findings included Epipactis muelleri, Epipactis leptochila and Limodorum abortivum. We determined the ecological demands of the abiotic environment of individual species by means of a functional analysis of communities. The research confirmed that most of the orchids that were studied occurred in acidified, calcified and basophil locations. From the location of the distribution of individual populations, it is clear that they are generally arranged compactly and occasionally scattered, which results in ecological and environmental diversity. During the research, we identified 129 localities with the occurrence of Citation: Wittlinger, L.; Petrikoviˇcová, L. Phytogeographical Analysis and 19 species and subspecies of orchids. We identify the main factors that threaten them and propose Ecological Factors of the Distribution specific measures to protect vulnerable populations.
    [Show full text]