Gears: Insect Pollination of Cultivated Crop Plants Insect Pollination of Cultivated Crop Plants by S.E

Total Page:16

File Type:pdf, Size:1020Kb

Gears: Insect Pollination of Cultivated Crop Plants Insect Pollination of Cultivated Crop Plants by S.E gears: Insect Pollination Of Cultivated Crop Plants Insect Pollination Of Cultivated Crop Plants by S.E. McGregor, USDA Originally published 1976 The First and Only Virtual Beekeeping Book Updated Continously. Additions listed by crop and date. Introduction: Economics of Plant Pollination Flowering and Fruiting of Plants Hybrid Vigor in Plants and its Relationship to Insect Pollination Wild Bees and Wild Bee Culture Wild Flowers and Crop Pollination Pesticides in Relation to Beekeeping and Crop Pollination Pollination Agreements and Services Alphabetical Listing of Crops Dependent upon or Benefited by Insect Pollination Acerola Chapter 1: Alfafa Chapter 2: Almonds Chapter 3: Clover & CHAPTER CONTENTS Relatives ● Alsike Clover ● Persian Clover ● Arrowleaf Clover ● Red Clover ● Ball Clover ● Rose Clover ● Berseem Clover ● Strawberry Clover ● Black Medic/Yellow Trefoil ● Subterranean ● Cider Milkvetch Clover ● Clovers, General ● Sweet Clover ● Crimson Clover ● Sweet Vetch ● Crownvetch ● Trefoil ● Lespedeza ● Vetch ● Peanut ● White Clover ● Zigzag Clover file:///E|/Jason/book/index.html (1 of 4) [1/21/2009 3:45:07 PM] gears: Insect Pollination Of Cultivated Crop Plants Chapter 4: Legumes Chapter Contents & Relatives ● Beans ● Lubines ● Broad Beans and Field Beans ● Mung Bean, Green or Golden ● Cowpea Gram ● Kidneyvetch ● Pigeonpea ● Kudzu ● Sainfoin ● Lima Beans ● Scarlet Runner Bean ● Soybean Chapter 5: Tree Chapter Contents Fruits & Nuts & Exotic Fruits & ● Apple ● Macadamia Nuts ● Apricot ● Mango ● Avocado ● Mangosteen ● Cacao ● Neem ● Cashew ● Oil Palm ● Cherry ● Olive ● Chestnut ● Papaw ● Citrus ● Papaya ● Coconut ● Passionfruit ● Crabapple ● Peach and Nectarine ● Durian ● Pear ● Date ● Persimmon ● Fig ● Plum and Prune ● Litchi ● Pomegranate ● Quince ● Rambutan file:///E|/Jason/book/index.html (2 of 4) [1/21/2009 3:45:07 PM] gears: Insect Pollination Of Cultivated Crop Plants Chapter 6: Common Chapter Contents Vegetables for Seed ● Artichoke and Cardoon ● Leek & Fruit ● Asparagus ● Lettuce ● Balsam Pear ● Muskmelon ● Beet ● Okra ● Broccoli ● Onion ● Brussels Sprouts ● Parsnip ● Carrot ● Pepper, Green ● Cauliflower ● Pumpkin and Squash ● Celeriac ● Radish ● Celery ● Tomato ● Chayote ● Turnip and Rutabaga ● Chicory ● Vegetable Sponge ● Chive ● Watermelon and Cirton ● Cole Crops ● Welsh, or Spring Onion ● Coriander ● White Flowered Gourd ● Cucumber and Gherkins ● White Gourd ● Eggplant ● Endive Chapter 7: Small Chapter Contents Fruits & Brambles ● Blackberry ● Huckleberry ● Blueberry ● Jujube, Tsao, or Chinese Date ● Chinese Gooseberry ● Kenaf ● Coffee ● Kiwi ● Cranberry ● Kolanut ● Currant ● Loquat ● Gooseberry ● Raspberry ● Grapes, Raisins and Currents ● Strawberry ● Guava file:///E|/Jason/book/index.html (3 of 4) [1/21/2009 3:45:07 PM] gears: Insect Pollination Of Cultivated Crop Plants Chapter 8: Misc. Chapter Contents Garden Plants, ● Chervil Foods, ● Dill Flowers ● Drug Plants & Herbs ● Fennel ● Herbs ● Lavender ● Parsley Chapter 9: Crop Chapter Contents Plants and Exotic ● Anise ● Niger Plants ● Black Pepper, White Pepper ● Nutmeg and Mace ● Buckwheat ● Pimento or Allspice ● Carambola ● Pyrethrum ● Caraway ● Rape ● Cardamon ● Safflower ● Cardoon ● Sesame ● Cherimoya ● Sisal and Henequen ● Clove ● Sunflower ● Cotton ● Tea ● Crotalaria ● Tephrosia ● Feijoa ● Tung ● Flax ● Vanilla ● Mamey Sapote ● Vernonia ● Mustard ● White Sapote file:///E|/Jason/book/index.html (4 of 4) [1/21/2009 3:45:07 PM] file:///E|/Jason/book/econ.html INSECT POLLINATION OF CULTIVATED CROP PLANTS By S. E. McGREGOR Apiculturist, retired, Agricultural Research Service Western Region, Tucson, Ariz. ECONOMICS OF PLANT POLLINATION Worldwide, more than 3,000 plant species have been used as food, only 300 of which are now widely grown, and only 12 of which furnish nearly 90 percent of the world's food. These 12 include the grains: rice, wheat, maize (corn), sorghums, millets, rye, and barley, and potatoes, sweet potatoes, cassavas or maniocs, bananas, and coconuts (Thurston 1969).1 The grains are wind-pollinated or self-pollinated, coconuts are partially wind-pollinated and partially insect pollinated, and the others are propagated asexually or develop parthenocarpically. However, more than two-thirds of the world's population is in Southeast Asia where the staple diet is rice. Superficially, it appears that insect-pollination has little effect on the world's food supply - possibly no more than 1 percent. Within the United States, which accounts for only about 6 percent of the world's population, about 286 million acres were cultivated in 1969. About 180 million acres were devoted to the wind pollinated or self- pollinated crops, primarily barley, corn, oats, rice, rye, sorghums and wheat, grass hay crops, sugar beets, sugar cane, potatoes, sweet potatoes, and tobacco. About 60 million acres were devoted to crops that may receive some benefit from insect pollination but are largely self-pollinating (beans, cotton, flax, peanuts, peas, and soybeans). About 40 million acres were devoted to hay crops produced from bee-pollinated seeds (alfalfa, clovers, lespedezas). About 6 million acres were devoted to producing fruits, vegetables, and nuts--most of which are dependent upon insect pollination. Table 1 lists the cultivated crop plants, discussed herein, that are dependent upon or benefited by insect pollination. These plants provide about 15 percent of our diet. The animal products we consume contribute about an equal amount to our diet. These include beef, pork, poultry, lamb, and dairy products--derived one way or another from insect-pollinated legumes such as alfalfa, clover, lespedeza, and trefoil. More than half of the world's diet of fats and oils comes from oilseeds--coconuts, cotton, oil palm, olives, peanuts, rape, soybeans, and sunflower (Guidry 1964). Many of these plants are dependent upon or benefited by insect pollination. When these sources, the animal and plant products, are considered, it appears that perhaps one-third of our total diet is dependent, directly or indirectly, upon insect-pollinated plants. file:///E|/Jason/book/econ.html (1 of 9) [1/21/2009 3:45:10 PM] file:///E|/Jason/book/econ.html In addition, the insect-pollinated legumes have the ability to collect nitrogen from the air, store it in the roots, and ultimately leave it to enrich the soil for other plants. Without this beneficial effect, soils not fertilized by processed minerals would soon be depleted and become economically unproductive. Another value of pollination lies in its effect on quality and efficiency of crop production. Inadequate pollination can result not only in reduced yields but also in delayed yield and a high percentage of culls or inferior fruits. In this connection, Gates (1917) warned the grower that, "he may fertilize, and cultivate the soil, prune, thin and spray the trees, in a word, he may do all of those things which modern practice advocates, yet without his pollinating agents, chief among which are the honey bees, to transfer the pollen from the stamens to the pistil of the blooms, his crop may fail." With ample pollination, the grower may also be able to set his blooms before frost can damage them, set his crop before insects attack, and harvest ahead of inclement weather. Earliness of set is an often overlooked but important phase in the crop economy. The value of pollination on the succeeding generation of crops is also frequently overlooked. The value of hybrid seed is not reflected until the subsequent generation. Vigor of sprouting and emerging from the soil is often a vital factor in the plant's early survival. Other responses to hybrid vigor include earliness of development, plant health,and greater production of fruit or seed. __________ 1 The year in italic after the author's name refers to Literature Cited at the end of each major section. Signs of Inadequate Pollination There are numerous ways a grower, with little or no intimate knowledge of the life and habits of pollinating insects, can measure the effictiveness of the polllination of his crop. He would be wise to determine these ways in connection with the particular [page 2, 3, 4] compact clusters of fruits or seeds, and uniform set. For example, adequate pollination is indicated by two or more muskmelons near the crown or base of the vine, or a majority of the apples developing from the king, or primary flower, at the tip of the cluster. In a watermelon field, adequate pollination would be indicated by a high percentage of melons in the number 1 class, that is, symmetrical, completely developed throughout, and of satisfactory weight. Ecological Relationships The value of insect pollination, the only type of pollination upon which man can exert much influence, is not limited to the cultivated crops. Bohart (1952*)2 pointed out that the most drastic effect of the absence of pollinating insects would be in uncultivated areas, where, as a result, most soil-holding and soil- enriching plants would die out. He also mentioned that springtime would be bleak indeed without the usual gay flowers. file:///E|/Jason/book/econ.html (2 of 9) [1/21/2009 3:45:10 PM] file:///E|/Jason/book/econ.html Baker and Hurd (1968) also recognized this important ecological relationship, for they stated that "insect pollination is still extremely important among the fortes of the grasslands, in the shrub and herb layer of the temperate forest and in the desert. It remains undiminished in the tropics." A simultaneous warning of disaster was recently issued because of our disregard of the importance of pollination.
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • New Acid Citrus Selections for Florida
    New acid citrus selections for Florida Lemon and lime-like selections with niche market potential are being developed with biotechnology at the University of Florida. By Jude Grosser, Zenaida Viloria and Manjul Dutt re you ready for a purple margarita? Would you like a fragrant, juicy lime is a naturally occurring citrus lemon for your iced tea with no seeds to clog your straw or dishwasher triploid, which is why it is seedless. drain? How about some seedless lime trees that are cold-hardy enough The new seedless watermelons in the Afor Central Florida? These and many more interesting acid-citrus marketplace are also triploids. selections are now on the horizon, including some with good ornamental potential. Due to the fact that new and This article will focus on progress in using emerging biotechnologies to develop improved citrus cultivars must be interesting new citrus cultivars in the lemon and lime group. Cultivars include seedless to compete in the national some that will not have regulatory constraints, and also a genetically modified and international marketplace, the organism (GMO)-derived purple Key lime as a teaser for the future. University of Florida’s Citrus Research and Education Center (UF/CREC) LEARNING FROM they are triploids. People and most citrus improvement team (working THE BANANA citrus trees are diploid, meaning with Fred Gmitter) has formulated Have you ever wondered why you there are two sets of chromosomes in several ways to create triploids as a key never find seeds in your bananas? Did each cell. Triploid bananas have three method of developing seedless citrus you know that there are wild-type sets of chromosomes per cell.
    [Show full text]
  • Planting and Aftercare of New Trees
    Where to start? • Fruit plants that fit into to small spaces Producing Fruit for the Home – Apple … on dwarfing rootstocks • Most traditional and local garden centers do not identify specific rootstock ….”Dwarf”, “Semi Dwarf” Ron Perry • Eventual tree size within Dwarf and Semi Dwarf is large Professor Tree Spacing Nursery ID Hort. Department Rootstocks Eventual Height Between Trees Between Rows MSU M.27 or P.22 Dwarf 6 5 10 M.9 Dwarf 8 8 12 M.26 Dwarf 16 10 16 M.7 Semi Dwarf 18 14 22 MM.106 or 111 Semi Dwarf 20 16 22 Where to start? Where to start? • Fruit plants that fit into to small spaces – Cherry - Sour • Select desired fruit which will grow in your area. Tree Spacing Rootstocks • Determine how much space you have available. Varieties Eventual Height Between Trees Between Rows Northstar Mahaleb 10 8 12 • Select varieties which are easiest to grow. Montmorency Gi.5 or 6 12 10 12 Montmorency Mahaleb 12 10 14 – Disease or insect resistant varieties to reduce pest Montmorency Mazzard 14 12 16 pressures. Balaton Mahaleb 14 12 16 – Cherry - Sweet – Assess soil / site conditions Tree Spacing • Full sun VS shade or partial Nursery ID • Soil internal drainage Rootstocks Eventual Height Between Trees Between Rows • Weed competition (lawns are too competitive) Gi.5 Dwarf 12 12 16 Gi.6 Dwarf 14 14 16 Mahaleb Semi Dwarf 20 14 16 Mazzard Semi Dwarf 24 16 20 Average Annual Minimum Temperatures Where to start? (USDA Plant Hardiness Zone Map) Most MI fruit sites Zone 5 (-20oF to -10oF) to 6 (-10oF to 0oF) • Fruit plants that fit into to small spaces – Peach, Nectarine, Apricot and Plums – Can generally plant at a spacing of 10 ft X 15 ft* • * If trained to open center or vase shape • Closer spacing, needs to be trained in Chistmas Tree form (Vertical Axe).
    [Show full text]
  • Classification of the Apidae (Hymenoptera)
    Utah State University DigitalCommons@USU Mi Bee Lab 9-21-1990 Classification of the Apidae (Hymenoptera) Charles D. Michener University of Kansas Follow this and additional works at: https://digitalcommons.usu.edu/bee_lab_mi Part of the Entomology Commons Recommended Citation Michener, Charles D., "Classification of the Apidae (Hymenoptera)" (1990). Mi. Paper 153. https://digitalcommons.usu.edu/bee_lab_mi/153 This Article is brought to you for free and open access by the Bee Lab at DigitalCommons@USU. It has been accepted for inclusion in Mi by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. 4 WWvyvlrWryrXvW-WvWrW^^ I • • •_ ••^«_«).•>.• •.*.« THE UNIVERSITY OF KANSAS SCIENC5;^ULLETIN LIBRARY Vol. 54, No. 4, pp. 75-164 Sept. 21,1990 OCT 23 1990 HARVARD Classification of the Apidae^ (Hymenoptera) BY Charles D. Michener'^ Appendix: Trigona genalis Friese, a Hitherto Unplaced New Guinea Species BY Charles D. Michener and Shoichi F. Sakagami'^ CONTENTS Abstract 76 Introduction 76 Terminology and Materials 77 Analysis of Relationships among Apid Subfamilies 79 Key to the Subfamilies of Apidae 84 Subfamily Meliponinae 84 Description, 84; Larva, 85; Nest, 85; Social Behavior, 85; Distribution, 85 Relationships among Meliponine Genera 85 History, 85; Analysis, 86; Biogeography, 96; Behavior, 97; Labial palpi, 99; Wing venation, 99; Male genitalia, 102; Poison glands, 103; Chromosome numbers, 103; Convergence, 104; Classificatory questions, 104 Fossil Meliponinae 105 Meliponorytes,
    [Show full text]
  • 2011 University of Delaware Watermelon Pollenizer Trial Introduction Materials and Methods
    2011 University of Delaware Watermelon Pollenizer Trial Gordon Johnson & Emmalea Ernest University of Delaware Elbert N. & Ann V. Carvel Research and Education Center 16483 County Seat Highway Georgetown, DE 19947 (302) 856-7303 [email protected] [email protected] Introduction The purpose of the 2011 Watermelon Pollenizer Trial was to evaluate both special pollenizer varieties and regular diploid watermelon varieties in an in-row planting arrangement with standard seedless watermelons. Ten special pollenizer varieties, and five Allsweet type diploid varieties were tested. As a control, a treatment in which no pollenizer was planted was also included. Variety/Treatment Name Source Company Pollenizer Type Summer Flavor 800 Abbot & Cobb Allsweet Type Tropical Harris Moran Allsweet Type Encore Hollar Seeds/Seedway Allsweet Type Sangria Rogers-Syngenta Allsweet Type Stargazer Seminis Allsweet Type POL - 10319 Abbot & Cobb Special Pollenizer POL - 4290 Abbot & Cobb Special Pollenizer POL - 4370 Abbot & Cobb Special Pollenizer POL - 4400 Abbot & Cobb Special Pollenizer Accomplice Harris Moran Special Pollenizer Sidekick Harris Moran Special Pollenizer Polimax Nunhems Special Pollenizer sp-4 Syngenta Special Pollenizer sp-5 Syngenta Special Pollenizer PollenPro Zeraim Gedera/Siegers Special Pollenizer No Pollenizer Materials and Methods Plot Set-Up The trial was set up in a randomized complete block design with four replications. Black plastic mulch beds were laid on 7’ centers. A total of 32 rows of mulch were laid with a 30’ drive row between every 8 beds. Each of the four sections of eight rows was treated as one block. The third and seventh row out of each 8-row section was a treatment row.
    [Show full text]
  • Pollination of Cultivated Plants in the Tropics 111 Rrun.-Co Lcfcnow!Cdgmencle
    ISSN 1010-1365 0 AGRICULTURAL Pollination of SERVICES cultivated plants BUL IN in the tropics 118 Food and Agriculture Organization of the United Nations FAO 6-lina AGRICULTUTZ4U. ionof SERNES cultivated plans in tetropics Edited by David W. Roubik Smithsonian Tropical Research Institute Balboa, Panama Food and Agriculture Organization of the United Nations F'Ø Rome, 1995 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. M-11 ISBN 92-5-103659-4 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the copyright owner. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, Publications Division, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00100 Rome, Italy. FAO 1995 PlELi. uion are ted PlauAr David W. Roubilli (edita Footli-anal ISgt-iieulture Organization of the Untled Nations Contributors Marco Accorti Makhdzir Mardan Istituto Sperimentale per la Zoologia Agraria Universiti Pertanian Malaysia Cascine del Ricci° Malaysian Bee Research Development Team 50125 Firenze, Italy 43400 Serdang, Selangor, Malaysia Stephen L. Buchmann John K. S. Mbaya United States Department of Agriculture National Beekeeping Station Carl Hayden Bee Research Center P.
    [Show full text]
  • Atlas of the Flora of New England: Fabaceae
    Angelo, R. and D.E. Boufford. 2013. Atlas of the flora of New England: Fabaceae. Phytoneuron 2013-2: 1–15 + map pages 1– 21. Published 9 January 2013. ISSN 2153 733X ATLAS OF THE FLORA OF NEW ENGLAND: FABACEAE RAY ANGELO1 and DAVID E. BOUFFORD2 Harvard University Herbaria 22 Divinity Avenue Cambridge, Massachusetts 02138-2020 [email protected] [email protected] ABSTRACT Dot maps are provided to depict the distribution at the county level of the taxa of Magnoliophyta: Fabaceae growing outside of cultivation in the six New England states of the northeastern United States. The maps treat 172 taxa (species, subspecies, varieties, and hybrids, but not forms) based primarily on specimens in the major herbaria of Maine, New Hampshire, Vermont, Massachusetts, Rhode Island, and Connecticut, with most data derived from the holdings of the New England Botanical Club Herbarium (NEBC). Brief synonymy (to account for names used in standard manuals and floras for the area and on herbarium specimens), habitat, chromosome information, and common names are also provided. KEY WORDS: flora, New England, atlas, distribution, Fabaceae This article is the eleventh in a series (Angelo & Boufford 1996, 1998, 2000, 2007, 2010, 2011a, 2011b, 2012a, 2012b, 2012c) that presents the distributions of the vascular flora of New England in the form of dot distribution maps at the county level (Figure 1). Seven more articles are planned. The atlas is posted on the internet at http://neatlas.org, where it will be updated as new information becomes available. This project encompasses all vascular plants (lycophytes, pteridophytes and spermatophytes) at the rank of species, subspecies, and variety growing independent of cultivation in the six New England states.
    [Show full text]
  • Redalyc.CLEPTOPARASITE BEES, with EMPHASIS on THE
    Acta Biológica Colombiana ISSN: 0120-548X [email protected] Universidad Nacional de Colombia Sede Bogotá Colombia ALVES-DOS-SANTOS, ISABEL CLEPTOPARASITE BEES, WITH EMPHASIS ON THE OILBEES HOSTS Acta Biológica Colombiana, vol. 14, núm. 2, 2009, pp. 107-113 Universidad Nacional de Colombia Sede Bogotá Bogotá, Colombia Available in: http://www.redalyc.org/articulo.oa?id=319027883009 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Acta biol. Colomb., Vol. 14 No. 2, 2009 107 - 114 CLEPTOPARASITE BEES, WITH EMPHASIS ON THE OILBEES HOSTS Abejas cleptoparásitas, con énfasis en las abejas hospederas coletoras de aceite ISABEL ALVES-DOS-SANTOS1, Ph. D. 1Departamento de Ecologia, IBUSP. Universidade de São Paulo, Rua do Matão 321, trav 14. São Paulo 05508-900 Brazil. [email protected] Presentado 1 de noviembre de 2008, aceptado 1 de febrero de 2009, correcciones 7 de julio de 2009. ABSTRACT Cleptoparasite bees lay their eggs inside nests constructed by other bee species and the larvae feed on pollen provided by the host, in this case, solitary bees. The cleptoparasite (adult and larvae) show many morphological and behavior adaptations to this life style. In this paper I present some data on the cleptoparasite bees whose hosts are bees specialized to collect floral oil. Key words: solitary bee, interspecific interaction, parasitic strategies, hospicidal larvae. RESUMEN Las abejas Cleptoparásitas depositan sus huevos en nidos construídos por otras especies de abejas y las larvas se alimentan del polen que proveen las hospederas, en este caso, abejas solitarias.
    [Show full text]
  • Pollination and Botanic Gardens Contribute to the Next Issue of Roots
    Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • May 2020 Pollination and botanic gardens Contribute to the next issue of Roots The next issue of Roots is all about education and technology. As this issue goes to press, most botanic gardens around the world are being impacted by the spread of the coronavirus Covid-19. With many Botanic Gardens Conservation International Education Review Volume 16 • Number 2 • October 2019 Citizen gardens closed to the public, and remote working being required, Science educators are having to find new and innovative ways of connecting with visitors. Technology is playing an ever increasing role in the way that we develop and deliver education within botanic gardens, making this an important time to share new ideas and tools with the community. Have you developed a new and innovative way of engaging your visitors through technology? Are you using technology to engage a Botanic Gardens Conservation International Education Review Volume 17 • Number 1 • April 2020 wider audience with the work of your garden? We are currently looking for a variety of contributions including Pollination articles, education resources and a profile of an inspirational garden and botanic staff member. gardens To contribute, please send a 100 word abstract to [email protected] by 15th June 2020. Due to the global impacts of COVID-19, BGCI’s 7th Global Botanic Gardens Congress is being moved to the Australian spring. Join us in Melbourne, 27 September to 1 October 2021, the perfect time to visit Victoria. Influence and Action: Botanic Gardens as Agents of Change will explore how botanic gardens can play a greater role in shaping our future.
    [Show full text]
  • Stingless Bee Nesting Biology David W
    Stingless bee nesting biology David W. Roubik To cite this version: David W. Roubik. Stingless bee nesting biology. Apidologie, Springer Verlag, 2006, 37 (2), pp.124-143. hal-00892207 HAL Id: hal-00892207 https://hal.archives-ouvertes.fr/hal-00892207 Submitted on 1 Jan 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Apidologie 37 (2006) 124–143 124 c INRA/DIB-AGIB/ EDP Sciences, 2006 DOI: 10.1051/apido:2006026 Review article Stingless bee nesting biology* David W. Ra,b a Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Panamá, República de Panamá b Unit 0948, APO AA 34002-0948, USA Received 2 October 2005 – Revised 29 November 2005 – Accepted 23 December 2005 Abstract – Stingless bees diverged since the Cretaceous, have 50 times more species than Apis,andare both distinctive and diverse. Nesting is capitulated by 30 variables but most do not define clades. Both architectural features and behavior decrease vulnerability, and large genera vary in nest habit, architecture and defense. Natural stingless bee colony density is 15 to 1500 km−2. Symbionts include mycophagic mites, collembolans, leiodid beetles, mutualist coccids, molds, and ricinuleid arachnids.
    [Show full text]
  • Fred Carl Harmston (1911-1995)
    MYIA, vol. 7, no. 1, pp. 1-39, figs. 1-29. September 30, 2004 Fred Carl Harmston (1911-1995) Richard L. Hurley*, Justin B. Runyon**, and Paul H. Arnaud, Jr.*** *Department of Entomology, Montana State University, Bozeman, Montana 59717 USA (e-mail: [email protected]); **Department of Entomology, Pennsylvania State University, 501 ASI Building, University Park, PA 16802 USA (e-mail: [email protected]); ***Department of Entomology, California Academy of Sciences, California Academy of Sciences, 875 Howard Street, San Francisco, California 94103 USA (e-mail: [email protected]) Fred Carl Harmston, actually registered Carl Frederick Leon Harmston at birth, was born October 31, 1911, in Roosevelt, Utah, to Marion Eugene Harmston and Isabella Thurston Harmston. He was their fourth child, having two older brothers and an older sister, and was their only child born in Utah. The Harmston branch of the family tree traces its roots back to Lincolnshire, England, where a town bears their name. His father was born in Missouri in 1861 and died in Roosevelt, in 1922. His mother was born in Maine in 1869 and also died in Roosevelt, in 1937. Fred’s parents met in Hyannis, Nebraska, and were married November 27, 1897, in Wessington Springs, South Dakota, the first couple to be wed in the new Congregational Church. Fred’s father was a pharmacist, and a graduate of the College of Optometry in Chicago, Illinois. He operated drug stores in Teluride Colorado, Weiser Idaho, White Lake and Wessington Springs in South Dakota, and finally in Roosevelt Utah. The family arrived in Roosevelt four years after it was settled.
    [Show full text]
  • Pollen and Stamen Mimicry: the Alpine Flora As a Case Study
    Arthropod-Plant Interactions DOI 10.1007/s11829-017-9525-5 ORIGINAL PAPER Pollen and stamen mimicry: the alpine flora as a case study 1 1 1 1 Klaus Lunau • Sabine Konzmann • Lena Winter • Vanessa Kamphausen • Zong-Xin Ren2 Received: 1 June 2016 / Accepted: 6 April 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Many melittophilous flowers display yellow and Dichogamous and diclinous species display pollen- and UV-absorbing floral guides that resemble the most com- stamen-imitating structures more often than non-dichoga- mon colour of pollen and anthers. The yellow coloured mous and non-diclinous species, respectively. The visual anthers and pollen and the similarly coloured flower guides similarity between the androecium and other floral organs are described as key features of a pollen and stamen is attributed to mimicry, i.e. deception caused by the flower mimicry system. In this study, we investigated the entire visitor’s inability to discriminate between model and angiosperm flora of the Alps with regard to visually dis- mimic, sensory exploitation, and signal standardisation played pollen and floral guides. All species were checked among floral morphs, flowering phases, and co-flowering for the presence of pollen- and stamen-imitating structures species. We critically discuss deviant pollen and stamen using colour photographs. Most flowering plants of the mimicry concepts and evaluate the frequent evolution of Alps display yellow pollen and at least 28% of the species pollen-imitating structures in view of the conflicting use of display pollen- or stamen-imitating structures. The most pollen for pollination in flowering plants and provision of frequent types of pollen and stamen imitations were pollen for offspring in bees.
    [Show full text]