New Acid Citrus Selections for Florida
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Crop Profile for Citrus (Minor) Lime, Pummelo, and Kumquat in Florida
Crop Profile for Citrus (Minor) Lime, Pummelo, and Kumquat in Florida Prepared: November, 2001 General Production Information ● Lime in this crop profile refers to the 'Tahiti' lime (Citrus latifolia). Pest management practices of other members of the Rutaceae such as Key lime (Citrus aurantifolia), pummelo (Citrus grandis), and kumquat (Fortunella sp.) may also be described, since survey questionnaires grouped these four tropical fruits together. All of these species of citrus are grown for the fresh market. ● The 1997-1998 average yield of limes in Florida was 14,344 pounds per acre. At a price of $5.02 per box, the Florida crop (440,000 boxes) was worth approximately $2.21 million (1). ● In 2000-2001, 1,171 acres in Florida produced 22 million pounds of 'Tahiti' lime. This is a 58 percent decrease from the previous year, when 53 million pounds were recorded (2,3). ● As of the end of 2000, there has been a 63 percent reduction in lime acreage since 1996 (bearing acreage of 3,168 acres). Except for 20 acres, all of the lime production is located in Miami-Dade County. Consequently, ninety-eight percent of 'Tahiti' lime production occurs in this county (3). ● Florida was ranked first in the United States in lime production. No other states were listed as leading lime-producers (1). ● Reductions in lime acreage have occurred due to Hurricane Andrew and citrus canker. Bearing acreage before Andrew was approximately 6,000 acres, which dropped drastically to 1,668 acres after this event (4). An estimated 290,000 lime trees (2,800 acres) have been lost to citrus canker in the 2000-2001 period (2). -
About Limes by George Geary CCP
All About Limes By George Geary CCP Lime History In the eighteenth century, Scottish naval surgeon Sir James Lind learned by his observation of long-haul sailors that citrus fruits conquered the dreaded scurvy (lack of Vitamin C) which had divested the ranks of the British navy more than any enemy. Between 1795 and 1815, some 1.6 million gallons of lime Juice drastically reduced the mortality rate of seamen. Along with their daily ration of rum, British sailors were required to consume a daily ration of lime Juice; hence British seamen became known as limeys. Since Britain was often at war with Mediterranean countries that exported lemons, limes imported cheaply from the English colony of Jamaica were substituted as the citrus of choice. Key Lime (also known as Mexican Lime and West Indies Lime) Cultivated for thousands of years in the Indo-Malayan region, this variety has long been treasured for its fruit and decorative foliage. The Key lime made its way to North Africa and the Near East via Arabian traders, and then carried on to Palestine and Mediterranean Europe by the Crusaders. Columbus is credited with bringing the Key lime to Haiti, where Spanish settlers to Florida carried it on. It flourished in South Florida, particularly the Florida Keys, hence the current common name of Key lime. Due to hurricane-depleted soils, locals switched from pineapple commercial crops to limes in 1906, and business boomed until a hurricane once again reared and wiped out the lime groves, never to be restored. Today, most Key limes come from Mexico. -
Key Lime Pie Pollination ______
Key Lime Pie pollination ______ Headstash x Key Lime Pie Type: Sativa Finish time indoor / outdoor: 9-10 / October 5th - October 18th Yield: Medium Terp profile: Gas This hybrid yields very well in both flower and resin production. With the Key Lime Pie male you have a solid work horse combined with the award winning Headstash potency and flavor. A mouth watering range of smells will be expressed from the plants: skunk, gasoline, pepper, vanilla cake frosting, and fermenting liqueur. Phenotypically, this hybrid doesn’t have all the hues you would see in other cookie hybrids but has all the other qualities you could ask for. ______ Dosidos x Key Lime Pie Type: Hybrid Finish time indoor / outdoor: 9 - 10 / October 5th - October 18th Yield: Medium Terp profile: Exotic Dosidos is another award winning strain that has quickly become a popular variety, that crossed with Key Lime Pie gives the strain some much desired improvements. Yield has been increased, structure improved, and all the no- ceiling potency of the Dosidos is still there. Terpene profile on these plants has been broadened and they exhibit a variation of aromas including burnt rubber, vanilla, pinesol, gasoline, and hints of papaya. Plants also can turn a dark purple hue on some phenotypes. ______ Gelato #45 x Key Lime Pie Type: Indica Finish time indoor / outdoor: 8 - 9 / September 28th - October 5th Yield: High Terp profile: Exotic An indica dominant cross which produces bright orange pistils with white resin that coats deep purple hued flowers. Expect phenotypes that will produce large flowers with short node spacing and a medium stature. -
December HOTM Citrus
February's Harvest of the Month is... Citr u s The Wonderful World of Citrus Fruit While the orange is a favorite among citrus, there are many other unique varieties of citrus that you may not be as familiar with. See below for information about some lesser known varieties that might encourage students to try something new! Car a Car a Or ange Discovered in the m id-70s in Venezuela, the cara cara orange is a cross betw een the Washington navel and the Brazilian Bahia navel. The outside of this fruit looks like any other com m on navel, but opens up to beautiful pink flesh and a com plex, sw eet flavor, w ith hints of berries and roses. P om elo If you're not a grapefruit fan due to its bitter tang, then a pom elo m ay be just w hat you need. One of the largest citrus fruits, pom elos com e in a variety of colors, w ith their skin ranging from yellow to green and the flesh varying betw een pink and w hite. The taste is sim ilar to a grapefruit, though significantly sw eeter and lacking that distinct bitter bite. Tangelo Tangelos are the result of super-sw eet tangerines that have been crossbred w ith either a pom elo or a grapefruit. The result is a sw eet, easy-to-peel treat that has the color of a tangerine, but a m ore m ild sw eetness. You can tell a tangelo apart from an orange by its slight bell-shape and a sm all bum p w here the stem attached to the fruit. -
Canker Resistance: Lesson from Kumquat by Naveen Kumar, Bob Ebel the Development of Asiatic Citrus Throughout Their Evolution, Plants and P.D
Canker resistance: lesson from kumquat By Naveen Kumar, Bob Ebel The development of Asiatic citrus Throughout their evolution, plants and P.D. Roberts canker in kumquat leaves produced have developed many defense mecha- anthomonas citri pv. citri (Xcc) localized yellowing (5 DAI) or necro- nisms against pathogens. One of the is the causal agent of one of sis (9-12 DAI) that was restricted to most characteristic features associated the most serious citrus diseases the actual site of inoculation 7-12 DAI with disease resistance against entry X (Fig. 2). of a pathogen is the production of worldwide, Asiatic citrus canker. In the United States, Florida experienced In contrast, grapefruit epidermis hydrogen peroxide (H2O2). Hydrogen three major outbreaks of Asiatic citrus became raised (5 DAI), spongy (5 peroxide is toxic to both plant and canker in 1910, 1984 and 1995, and it DAI) and ruptured from 7 to 8 DAI. pathogen and thus restricts the spread is a constant threat to the $9 billion On 12 DAI, the epidermis of grape- by directly killing the pathogen and citrus industry. fruit was thickened, corky, and turned the infected plant tissue. Hydrogen Citrus genotypes can be classified brown on the upper side of the leaves. peroxide concentrations in Xcc-in- into four broad classes based on sus- Disease development and popula- fected kumquat and grapefruit leaves ceptibility to canker. First, the highly- tion dynamics studies have shown that were different. Kumquat produces susceptible commercial genotypes are kumquat demonstrated both disease more than three times the amount of Key lime, grapefruit and sweet lime. -
Citrus Varieties in Egypt: an Impression
International Research Journal of Applied Sciences Short Communication pISSN: 2663-5577, eISSN: 2663-5585 Citrus Varieties in Egypt: An Impression Waleed Fouad Abobatta Department of Citrus, Horticulture Research Institute, Agriculture Research Center, Egypt ARTICLE INFORMATION ABSTRACT Received: Citrus industry is very important for Egyptian economy, citrus fruit is the leading exportable agricultural product of Egypt and is an important source of national income. Citrus cultivation Accepted: area represents about 29% of the total fruit area, there are different citrus varieties cultivated in Egypt. This work aims to provide a short description of main citrus varieties cultivated in Published: Egypt through providing information about fruit size, maturity periods, seediness and productivity average and main cultivated areas for each variety. However Washington Navel Corresponding Author: and Valencia orange are the main varieties followed by Mandarins group varieties, lemon, Waleed Fouad Abobatta, Balady orange, while other varieties like Grapefruit, Sour orange and Kumquat are cultivated Department of Citrus, in small areas. Horticulture Research Institute, Agriculture Research Center, Egypt Key words: Citrus industry, navel orange, valencia orange, mandarins group, citrus varieties INTRODUCTION Citrus is a genus from Rutaceae family, subfamily Aurantoideae1 and there are several species in this genus; but there are major species such as sweet orange (Citrus sinensis (L.) Osbeck), mandarins group, grapefruits (Citrus paradisi ), lime (Citrus aurantifolia) and sour orange (Citrus aurantium L.)2. Citrus is a diploid genus origin in tropical, subtropical, but now it is produced mainly in arid and semiarid regions. Citrus species are among the most widely grown fruit crops in the world and have a huge market all over the world3. -
Citrus from Seed?
Which citrus fruits will come true to type Orogrande, Tomatera, Fina, Nour, Hernandina, Clementard.) from seed? Ellendale Tom McClendon writes in Hardy Citrus Encore for the South East: Fortune Fremont (50% monoembryonic) “Most common citrus such as oranges, Temple grapefruit, lemons and most mandarins Ugli Umatilla are polyembryonic and will come true to Wilking type. Because most citrus have this trait, Highly polyembryonic citrus types : will mostly hybridization can be very difficult to produce nucellar polyembryonic seeds that will grow true to type. achieve…. This unique characteristic Citrus × aurantiifolia Mexican lime (Key lime, West allows amateurs to grow citrus from seed, Indian lime) something you can’t do with, say, Citrus × insitorum (×Citroncirus webberii) Citranges, such as Rusk, Troyer etc. apples.” [12*] Citrus × jambhiri ‘Rough lemon’, ‘Rangpur’ lime, ‘Otaheite’ lime Monoembryonic (don’t come true) Citrus × limettioides Palestine lime (Indian sweet lime) Citrus × microcarpa ‘Calamondin’ Meyer Lemon Citrus × paradisi Grapefruit (Marsh, Star Ruby, Nagami Kumquat Redblush, Chironja, Smooth Flat Seville) Marumi Kumquat Citrus × sinensis Sweet oranges (Blonde, navel and Pummelos blood oranges) Temple Tangor Citrus amblycarpa 'Nasnaran' mandarin Clementine Mandarin Citrus depressa ‘Shekwasha’ mandarin Citrus karna ‘Karna’, ‘Khatta’ Poncirus Trifoliata Citrus kinokuni ‘Kishu mandarin’ Citrus lycopersicaeformis ‘Kokni’ or ‘Monkey mandarin’ Polyembryonic (come true) Citrus macrophylla ‘Alemow’ Most Oranges Citrus reshni ‘Cleopatra’ mandarin Changshou Kumquat Citrus sunki (Citrus reticulata var. austera) Sour mandarin Meiwa Kumquat (mostly polyembryonic) Citrus trifoliata (Poncirus trifoliata) Trifoliate orange Most Satsumas and Tangerines The following mandarin varieties are polyembryonic: Most Lemons Dancy Most Limes Emperor Grapefruits Empress Tangelos Fairchild Kinnow Highly monoembryonic citrus types: Mediterranean (Avana, Tardivo di Ciaculli) Will produce zygotic monoembryonic seeds that will not Naartje come true to type. -
Italian Grapes
Sicilian Red Oranges (Citrus sinensis) Sicilian Red Oranges Citrus fruits have been cultivated in Italy since ancient times. In Sicily, the “blood” orange gained its nickname because of its ruby flesh that contains the red pigment, anthocyanin, a strong antioxidant. Today, blood oranges are considered the hallmark of Sicilian fruit. Three blood orange varieties, Tarocco, Moro and Sanguinello, can be traced to the hilly areas and plains surrounding the Mt. Etna volcano in Sicily. Temperatures in this region range from intense daylight to frigid temperatures at night. It also has other variables, including modest rainfall and rich soil. The combination of these factors results in a Sicilian Red orange that has incomparable sweetness and distinguishable color. Sicily combines the juiciness of the Florida oranges with the appearance of the Californian oranges. On average, Sicilian blood oranges contain at least 35-percent juice, as compared to its California counterpart which contain 20-percent. The fruit is easy to peel, and most varieties are seedless. The Sicilian Red orange is clearly connected to it natural Mediterranean environment, resulting in fruit with superb flavor that cannot be replicated. These factors position Sicily as the largest producer in the world. It is also why the European Union recognizes the Eastern Sicily area as a Protected Geographical indication, Arancia Rossa di Sicilia, for cultivating pure Tarocco, Moro and Sanguinello varieties. Sicilian Red Oranges Varieties Moro: The Moro variety is believed to have originated at the beginning of the 19th century in the citrus-growing area around Lentini (in the Province of Siracusa in Sicily) as a bud mutation of the “Sanguigno.” Moro are “full-blood” oranges, meaning that the flesh ranges from orange veined with ruby coloration, to vermilion, to vivid crimson and to nearly black. -
Generation of Sexual and Somatic Hybrids in Acid Citrus Fruits
GENERATION OF SEXUAL AND SOMATIC HYBRIDS IN ACID CITRUS FRUITS By ZENAIDA JOSEFINA VILORIA VILLALOBOS A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2003 Copyright 2003 by Zenaida Josefina Viloria Villalobos This dissertation is dedicated to my darling mother Olivia and to the memory of my beloved father Dimas, and to my sisters Celina, Doris, Celmira, and Olivia, and brothers Dimas, Silfredo and Alejandro, with love. ACKNOWLEDGMENTS This work was completed with the generous collaboration of many people to whom I will always be grateful. First I wish to thank my supervisor Dr. Jude Grosser, for his guidance, suggestions, and financial assistance during the last period of my studies. I also want to thank the University of Zulia and Fondo Nacional de Ciencias, Tecnologia e Innovation for giving me the opportunity to do my doctoral studies. I thank very much Dr. Renee Goodrich, Dr. Frederick Gmitter, Dr. Michael Kane and Dr. Dennis Gray for being members of my committee and for their contributions to this work. Thanks go to Dr. Glem Wright (University of Arizona) for making it possible to generate more lemon progenies in this study. I appreciate very much the supervision and help in completing the canker screening study from Dr. Graham, Diana Drouillard and Diane Bright. I thank very much Dr. Ramon Littell and Belkys Bracho for their assistance on the statistical analysis of my experiments. Thanks go to the Division of Plant Industry (Lake Alfred, FL), particularly to Mrs. -
The Satsuma Mandarin1 Peter C
HS195 The Satsuma Mandarin1 Peter C. Andersen and James J. Ferguson2 Scientific Name Family Citrus unshiu Marcovitch Rutaceae Common Name Origin In most citrus producing areas, satsuma mandarin is the China and Japan preferred name, but satsuma tangerine is also used (Figures 1 and 2). Distribution Satsumas are grown in cool subtropical regions of Japan, Spain, central China, Korea, Turkey, along the Black Sea in Russia, southern South Africa, South America, and on a small scale in central California and northern Florida. The world’s largest satsuma industry is located in southern Ja- pan where climatic conditions are favorable for the produc- tion of early ripening satsuma mandarins of high quality. Selection of slight mutations and seedlings from controlled pollinations over many years has resulted in a collection of Figure 1. A satsuma orchard in north Florida. over 100 cultivars that differ in date of maturity, fruit shape, Credits: P. C. Andersen color, and quality. ‘Owari’ is the primary satsuma cultivar commercially grown in Florida, but ‘Brown Select’, ‘Early St. Ann’, ‘Silverhill’, and ‘Kimbrough’ are also available. History Satsuma mandarin may have originated in China, but it was first reported in Japan more than 700 years ago, where it is now the major citrus species grown. The first recorded introduction into the United States was in Florida by George R. Hall in 1876. The name “satsuma” is credited to Figure 2. Mature satsumas ready for harvest. the wife of a United States minister to Japan, General Van Credits: P. C. Andersen 1. This document is HS195, one of a series of the Horticultural Sciences Department, UF/IFAS Extension. -
In This Issue
The Fruit Leaff April http://www.crfg.org 2010 Next Meeting In this April 10, 2010 Emma Prusch Park issue Social and set-up 12:30 Next meeting .................... 1 Lindcove citrus ................ 2 Meeting 1pm to 4pm The Banana Report .......... 5 Victory Gardens 2.0 ......... 7 Three Speakers in April! If you’ve ever wanted to build your own tree, here’s your chance to learn how to do it, at the annual green scionwood Membership exchange and April CRFG meeting. This month, CRFG is For information on chapter lucky to be hosting three citrus experts at Prusch Park, membership, notification starting at 1:00 in the afternoon on April 10th. of address and phone number changes, please Fixing what goes wrong contact: If you’ve ever had a citrus or avocado tree that didn’t do well, it might not have been your fault. You might have just picked the wrong variety for your conditions. Master Sara Sherfy gardener Nancy Garrison will talk about which citrus 9140 Paseo Tranquillo varieties are best for Bay Area microclimates. Gilroy, Ca 95020 (408) 825-9700 And if you need to know what’s eating your orange tree, [email protected] Aaron Dillon of Four Winds Nursery might be able to help. He’ll give a talk about a myriad of citrus diseases and healthy cultivation practices. Submit articles or Build it yourself questions to: But perhaps the most interesting facet of the meeting is the green scionwood exchange, where you can find rare Lisa Stapleton varieties of oranges, lemons, avocados, guavas, sapotes, 4254 Indigo Dr. -
UC Riverside Electronic Theses and Dissertations
UC Riverside UC Riverside Electronic Theses and Dissertations Title A Molecular Genetic Approach to Evaluate a Novel Seedless Phenotype Found in Tango, a New Variety of Mandarin Developed From Gamma-Irradiated W. Murcott Permalink https://escholarship.org/uc/item/1gp2m8vb Author Crowley, Jennifer Robyn Publication Date 2011 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA RIVERSIDE A Molecular Genetic Approach to Evaluate a Novel Seedless Phenotype Found in Tango, a New Variety of Mandarin Developed From Gamma-Irradiated W. Murcott Doctor of Philosophy in Genetics, Genomics and Bioinformatics by Jennifer Robyn Crowley December 2011 Dissertation Committee: Dr. Mikeal Roose, Chairperson Dr. Linda Walling Dr. Katherine Borkovich Copyright by Jennifer Robyn Crowley 2011 The Dissertation of Jennifer Robyn Crowley is approved: ________________________________________________________________________ ________________________________________________________________________ Committee Chairperson University of California, Riverside Acknowledgments I would like to acknowledge and give my many thanks to several people who contributed both their time and their effort towards my dissertation work. I would like to thank Dr. David Carter for his instruction regarding the correct use of the Leica SP2 confocal microscope, as well as for his help in gathering quality computerized images. I would like to thank Dr. Chandrika Ramadugu and Dr. Manjunath Keremane for their assistance with the use of the Stratagene MX thermocycler, as well as for their help in qPCR data interpretation. To Dr. Chandrika Ramadugu, I would also like to extend my gratitude for the contribution she made towards my research project by providing me with clones of a DNA sequence of interest.