Improvement of Subtropical Fruit Crops: Citrus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
TRISTEZA the Worldwide Threat from Destructive Isolates of Citrus
TRISTEZA The Worldwide Threat from Destructive Isolates of Citrus Tristeza Virus-A Review C. N. Roistacher and P. Moreno ABSTRACT. This paper reviews the effects of extremely destructive forms of citrus tristeza virus (CTV) which poses serious threats to citrus industries worldwide. These include Capao Bonito CTV in Brazil, navel orange stem pitting CTV in Peru, stem pitting 12B CTV found in the university orchards in Southern California, severe grapefruit stem pitting CTV found in South Africa, recent forms of CTV responsible for decline of sweet orange on sour orange rootstock in Florida and Israel and other severe CTV isolatesreported from Spainand elsewhere. Many ofthesedestructive CTVisolates are transmitted by Toxoptera citricidus but most can be transmitted by Aphis gossypii at relatively high levels of efficiency. The impact of recent changes in aphid transmissibility and population dynamics, and the threat of movement of T. citricidus into new regions of the world are reviewed. The appearance and impact of new strains or mutants of CTV differing in pathogenic capacities or in aphid transmissibility are discussed. Methods for the identification of new or destructive isolates of CTV are also reviewed. Concepts for prevention which include quarantine, eradication and education are presented. The immediate need is to test for presence of CTV in those countries where sour orange is the predominant rootstock. Also, to test for and eliminate very destructive forms of CTV, to strengthen quarantine laws and regulations, and to educate scientists, nurseryman and growers to the dangers involved in budwood importation and virus or vector spread. Tristeza, caused by the citrus ravages of tristeza once it begins to tristeza virus (CTV) remains today as spread. -
Lulav-And-Etrog-Instructions.Pdf
אֶּתְ רֹוג לּולָב LULAV AND ETROG: THE FOUR SPECIES What they are and what to do with them INTRODUCTION The commandment regarding the four species (of the lulav and etrog) is found in the Torah. After discussing the week-long Sukkot festival, specific instructions for how to celebrate the holiday are given. Leviticus 23:40 instructs: םּולְקַחְתֶּ לָכֶּם בַּיֹוםהָרִ אׁשֹון פְרִ י עֵץ הָדָרכַפֹּת תְ מָרִ ים וַעֲנַף עֵץ־עָבֹּת וְעַרְ בֵי־נָחַל ּושְ מַחְתֶּ ם לִפְ נֵי ה' אֱֹלהֵיכֶּם ׁשִבְ עַת יָמִ ים “On the first day you shall take the product of hadar trees, branches of palm trees, boughs of leafy trees, and willows of the brook, and you shall rejoice before Adonai your God seven days." These are the four species that form the lulav and etrog. The four species are waved in the synagogue as part of the service during the holiday of Sukkot. Traditionally, they are not waved on Shabbat because bringing these items to the synagogue would violate the prohibition against carrying. Some liberal synagogues do wave the lulav and etrog on Shabbat. While it is customary for each individual to have a lulav and etrog, many synagogues leave some sets in the synagogue sukkah for the use of their members. The lulav and etrog may also be waved at home. Below you will find some basic information about the lulav and etrog, reprinted with permission from The Jewish Catalogue: A Do-It-Yourself Kit, edited by Richard Siegel, Michael Strassfeld and Sharon Strassfeld, published by the Jewish Publication Society. HOW THE FOUR PARTS FIT TOGETHER The lulav is a single palm branch and occupies the central position in the grouping. -
California Citrus State Historic Park 9400 Dufferin Ave
Our Mission California The mission of California State Parks is to provide for the health, inspiration and rassy, tree-shaded education of the people of California by helping G Citrus to preserve the state’s extraordinary biological diversity, protecting its most valued natural and areas evoke a quieter cultural resources, and creating opportunities State Historic Park for high-quality outdoor recreation. time — an era when the American dream might be found in a leafy evergreen grove, heavy California State Parks supports equal access. with golden fruit. Prior to arrival, visitors with disabilities who need assistance should contact the park at (951) 780-6222. If you need this publication in an alternate format, contact [email protected]. CALIFORNIA STATE PARKS P.O. Box 942896 Sacramento, CA 94296-0001 For information call: (800) 777-0369 (916) 653-6995, outside the U.S. 711, TTY relay service www.parks.ca.gov California Citrus State Historic Park 9400 Dufferin Ave. / Mail: 1879 Jackson St. Riverside, CA 92504 (951) 780-6222 © 2003 California State Parks (Rev. 2016) V isitors to California Citrus State NATIVE PEOPLE trauma, honoring their Historic Park are greeted at the park The area that is now Riverside County was cultural traditions, and entrance by a replica of an old-fashioned inhabited for centuries by diverse native contributing as vital roadside fruit stand. This charming “big peoples, including Serrano, Luiseño, community members. orange” structure, on the corner of Van Gabrielino-Tongva, Cupeño, Chemehuevi, CREATING THE Buren Boulevard and Dufferin Avenue in and Cahuilla. California Indians traveled CITRUS INDUSTRY Riverside, recalls an era that forever changed seasonally from village to village, following the landscape their food sources and The mission padres of Southern trade routes. -
Gin & Mixers Gins
GIN & MIXERS Some of our current favourites Malfy Grapefruit Mediterranean tonic, grapefruit 6.9 Hoxton Ginger ale, grapefruit 7.4 Boe Passion Fruit Lemonade, lime 5.8 King of Soho Mediterranean tonic, orange 7.4 Slingsby Gooseberry Tonic, lime 7.4 Silent Pool Tonic, orange 7.4 Tarquin’s Blackberry Lemonade, mint 6.3 Please ask us about our ‘Gin of the Week’ GINS 5th Gin Black Air Classic London Dry 5 Alkemist Muscat Grapes, Citrus, Rose 5.5 Audemus Pink Pepper Pink Pepper, Honey, Vanilla, Tonka Bean 5 Aviation Lavender, Anise, Sarsparilla 5 Beefeater 24 Green Tea, Sevilla Orange, Grapefruit 4.5 Beefeater Blood Orange Classic London Dry, Bittersweet Citrus Twist 4 Beefeater Peach & Raspberry Fresh Peach, Raspberry Tang 4 Beefeater Pink Strawberry Creamy Vanilla, Black Pepper, Soft Strawberry 4 Berliner Brandstifter Juniper, Fresh Blossoms, Elderflower 5.5 Bishops Lemongrass, Nasturtium Leaves, Lemon 5 Bitter Truth Juniper, Lemon, Caraway, Fennel 5 Black Tomato Black Tomatoes, Fresh Salt Water 5 Blackwoods Vintage Dry Juniper, Coriander, Lime 4.5 Bloom Honeysuckle, Chamomile, Pomelo 4.5 Blue Bottle Gorse Flowers, Nutmeg, Cubeb Pepper 5.5 Bobby’s Scheidam Cloves, Lemongrass, Cubeb Pepper 5 Boe Peach & Hibiscus Peach & Hibiscus Liqueur 4.5 Boe Violet Violet, Floral, Citrus 5 Boe Passion Fruit Passionfruit, Orange, Black Pepper 4.5 Bombay Sapphire Classic London Dry 4.5 Botanist Bog Myrtle, Mugwort, Meadowsweet 5 Brecon Botanicals Orange, Cinnamon, Cloves 4.5 Brecon Special Reserve Juniper, Coriander, Nutmeg, Cinnamon 4.5 Brockmans Blueberry, -
GRAS Notice 658, Grapefruit Extract
GRAS Notice (GRN) No. 658 GR 11111111111111111111 http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm ORIGINAL SUBMISSION ., Notice to the US Food and Drug Administration that the use of Vancitrix™, a glycerin Citrus Extract, is Generally Recognized as Safe GRN ODDb58 Submitted and Prepared by the Notifier: r----------, (Pa~(C~~~~[)) Chemie Research & Manufacturing, Co., Inc. JUL 1 2016 OFFICE OF 18 March 2015 (Original subm ission) FOOI3> ADDITIVE SAFETY 07 June 2016 (Revised submission) THOMAS WRIGHT Table of Contents GRAS Exemption Claim 2 Name and Address of Notifier 2 Common or Usual Name 2 Conditions of Use 2 Basis for GRAS Determination 3 Data I Information Availability Statement 3 Characterization 3 Chemical Composition 4 Organic Certification 4 Manufacturing and Production 5 Company Overview 5 Raw Materials 5 Manufacturing 5 Specifications and Batch Analysis 7 Specifications and Quality Control 7 Ascorbic acid, Citric acid, Naringin and other Flavonoids 8 Screening for Pesticides I Bactericides 9 Heavy Metal Analysis 9 Minimum Inhibitory Concentration (MIC) 10 Microbial Assay (USP-51) 11 History of Consumption 12 Production 12 Safety Assessment 13 Toxicological Studies 13 Drug Interactions 13 Current Regulatory Status 14 Regulatory Status of Citrus Fruit 14 Regulatory Status of Additional Vancitrix™ Components 14 Intended Use 14 Estimated Daily Intake (EDI) 15 General Recognition I Basis for GRAS Determination 16 References 17 1 .. GRAS Exemption Claim Chemie Research & Manufacturing, Co., Inc. (the notifier) has determined that Vancitrix™ grapefruit extract, hereafter referred to as Vancitrix™, is Generally Recognized as Safe (GRAS) for its intended use, consistent with section 201 (s) of the Federal Food, Drug and Cosmetic Act. -
Tropical Horticulture: Lecture 32 1
Tropical Horticulture: Lecture 32 Lecture 32 Citrus Citrus: Citrus spp., Rutaceae Citrus are subtropical, evergreen plants originating in southeast Asia and the Malay archipelago but the precise origins are obscure. There are about 1600 species in the subfamily Aurantioideae. The tribe Citreae has 13 genera, most of which are graft and cross compatible with the genus Citrus. There are some tropical species (pomelo). All Citrus combined are the most important fruit crop next to grape. 1 Tropical Horticulture: Lecture 32 The common features are a superior ovary on a raised disc, transparent (pellucid) dots on leaves, and the presence of aromatic oils in leaves and fruits. Citrus has increased in importance in the United States with the development of frozen concentrate which is much superior to canned citrus juice. Per-capita consumption in the US is extremely high. Citrus mitis (calamondin), a miniature orange, is widely grown as an ornamental house pot plant. History Citrus is first mentioned in Chinese literature in 2200 BCE. First citrus in Europe seems to have been the citron, a fruit which has religious significance in Jewish festivals. Mentioned in 310 BCE by Theophrastus. Lemons and limes and sour orange may have been mutations of the citron. The Romans grew sour orange and lemons in 50–100 CE; the first mention of sweet orange in Europe was made in 1400. Columbus brought citrus on his second voyage in 1493 and the first plantation started in Haiti. In 1565 the first citrus was brought to the US in Saint Augustine. 2 Tropical Horticulture: Lecture 32 Taxonomy Citrus classification based on morphology of mature fruit (e.g. -
'Orlando' Tangelos on 10 Rootstocks
Literature Cited Proc. Int. Soc. Citriculture. (In press) 3. Reece, P. C, and F. E. Gardner. 1959. Robinson, Osceola and Lee- 1. Hearn, C. J., P. C. Reece, and R. Fenton. 1968. Effects of pollen new early maturing tangerine hybrids. Proc. Fla. State Hort. Soc. source on fruit characteristics and set of four citrus hybrids. Proc. 72:48-51. Fla. State Hort. Soc. 81:94-98. 4. , , and C. J. Hearn. 1963. Page orange—a prom 2. Krezdorn, A. H. 1977. Influence of rootstock on mandarin cultivars. ising variety. Proc. Fla. State Hort. Soc. 76:53-54. Proc. Fla. State Hort. Soc. 90:47-49. 1977. THE PERFORMANCE OF 'NOVA' AND 'ORLANDO' TANGELOS ON 10 ROOTSTOCKS D. J. Hutchison and C. J. Hearn1 The rootstocks were Carrizo (CAR), Rusk (RSK), and Agricultural Research Service, Troyer (TROY) citranges (C. sinensis (L.) Osbeck X U.S. Department of Agriculture, Poncirus trifoliata (L.) Raf.); Estes rough lemon (RL) (C. Orlando, FL 32803 Union (L.) Burm. L); Milam (MIL) (rough lemon hybrid?); Seville sour orange (SO) (C. aurantium L.); Cleopatra mandarin (CLEO) (C. reticulata); Large Flower trifoliate Additional index words. Citrus. orange (LETO) (P. trifoliata); Orlando tangelo (ORL); and Sanguine Grosse Ronde sweet orange (SANG) (C. Abstract. 'Nova' and 'Orlando' tangelos were evaluated sinensis). on 10 rootstocks during 1968-1976. 'Nova' and 'Orlando' tangelos propagated on rough lemon rootstock produced the largest trees. The highest yields were 'Nova' on rough lemon Results and Discussion and 'Orlando' on Troyer rootstocks. The highest total soluble The time of bloom indicated by percentage petal drop solids were produced by 'Nova' on sour orange and 'Or in 1969 and 1971 is shown in Table 1. -
Varietal Update
November 17, 2016 FRESH NEWSLETTER FOR A NEW SEASON We are pleased to introduce an updated grower newsletter format that continues to provide seasonal varietal information, report on Sunkist sales and marketing activities while also highlighting consumer and industry trends that inform our sales and marketing strategies. Our staff will continue to share important regulatory information with growers separately from the newsletter to ensure timely news is communicated with the necessary urgency. Additionally, we encourage grower members to leverage the industry resources noted at the end of this newsletter for regular updates on important industry issues. As always, your feedback is important to us. Please e-mail questions, comments and suggestions about the newsletter to [email protected]. VARIETAL UPDATE ORANGES The Valencia orange crop has finished as the Navel orange season ramps up. The Navel crop is starting off with very good flavor and internal color. Focus is currently on sizes 88 and smaller as we wait for the season to progress with better overall color and more sizing options. Organic Navel oranges have also started shipping, with good availability and slightly larger sizing than the conventional crop; organic navels are currently at an 88/72/113 peak. The first packs of Cara Cara Navel oranges are expected the week of November 21/28, with initial sizing projected to be 88/72/113/56. Blood oranges are expected to start shipping the week of December 5. LEMONS Demand for lemons continues to grow, with bookings ahead of the past two years. Shipments are currently from districts 1 (D1), 2 (D2) and 3 (D3). -
Use the Right Citrus-Based Cleaning Products to Avoid Corrosion Or Rust Bob Beckley, Project Leader
United States Department of Agriculture Facilities Forest Service Technology & Development Program March 2006 0673–2319–MTDC 7300/7100/5100/2400/2300 Use the Right Citrus-Based Cleaning Products to Avoid Corrosion or Rust Bob Beckley, Project Leader itrus-based cleaning products are commonly found in metal on their chain saws. The crew stopped using citrus-based residential and commercial settings. The ingredients in products because they believed citric acid was causing the these products vary widely (figure 1). While some of damage. However, the damage probably was caused by a C water-based citrus cleaning product. What To Look for in a Citrus-Based Cleaning Product The Material Safety Data Sheets (MSDSs) for chemical products list their ingredients. The MSDS for a citrus-based cleaner should list D-Limonene among the ingredients. D- Limonene is in the terpene family, which includes citrus and pine oils. Terpenes are generally not corrosive or harmful to metals or most plastics and polymers. Terpenes won’t cause rusting, pitting, etching, or staining. Citrus-based terpenes can dissolve heavy petroleum greases and residues in about 30 Figure 1—Citrus-based cleaners are commonly used in residential and minutes when they are used at ambient temperatures. commercial settings, but users often are unaware of the difference between citrus oil-based cleaning products and water-based products. A citrus oil-based cleaning product will not cause corrosion these products can cause corrosion or rust, others do not. The or rust. Such products are made from the oil found in the difference is based on the ingredients. Hundreds of cleaning orange peel, rather than the pulp and juice of the orange. -
Factors Affecting the Rate of Maturation of Citrus Fruits
Proc. Fla. State Hort. Soc. 97: 40-44.1984. FACTORS AFFECTING THE RATE OF MATURATION OF CITRUS FRUITS Dan A. Kimball1 one sample a day for every day that fruit was received California Citrus Producers, Inc., from that particular packinghouse, and correlated with P. O. Box C, the accumulated temperatures (F°) during a given period. Lindsay, CA 93247 Climatic data were obtained from Lindsay-Strathmore Ir rigation District, which is centrally located in Tulare Additional index words, heat, navel, 'Valencia', limonin, county's citrus belt. Crop data were obtained from the Brix, acid. Tulare County Agricultural Commissioner's office. Limonin analyses were done by mixing reconstituted juice with Abstract. 'Washington navel' and 'Valencia' [Citrus sinensis diatomaceus earth, extracting with five 30-ml portions of (L.) Osb.] sample data (Brix/acid ratios) from routine pro chloroform using vacuum filtration, and evaporating the cessing plant tests were correlated directly with local climatic filtrate in a rotary evaporator. The flask from the rotary data throughout 7 seasons in California to yield linear re* evaporator was rinsed with several 2 ml portions of chloro lationships with r2 factors of 0.96 or better for navels. The form and analyzed, using a Perkin Elmer series 10 HPLC y-intercepts and slopes were found to strongly correlate with pump, LC-75 UV detector set at 210 nm, and a model R100 the accumulated maximum heat from the first 4 months after chart recorder. A CN column and precolumn were used bloom, crop load, and tree growth with r2 factors of 0.96. with a solvent system consisting of ethylene glycol mono- Equations were derived to enable (Brix/acid) ratio prediction. -
FEMA GRAS Assessment of Natural Flavor Complexes Citrus-Derived
Food and Chemical Toxicology 124 (2019) 192–218 Contents lists available at ScienceDirect Food and Chemical Toxicology journal homepage: www.elsevier.com/locate/foodchemtox FEMA GRAS assessment of natural flavor complexes: Citrus-derived T flavoring ingredients Samuel M. Cohena, Gerhard Eisenbrandb, Shoji Fukushimac, Nigel J. Gooderhamd, F. Peter Guengeriche, Stephen S. Hechtf, Ivonne M.C.M. Rietjensg, Maria Bastakih, ∗ Jeanne M. Davidsenh, Christie L. Harmanh, Margaret McGowenh, Sean V. Taylori, a Havlik-Wall Professor of Oncology, Dept. of Pathology and Microbiology, University of Nebraska Medical Center, 983135 Nebraska Medical Center, Omaha, NE, 68198- 3135, USA b Food Chemistry & Toxicology, Kühler Grund 48/1, 69126 Heidelberg, Germany c Japan Bioassay Research Center, 2445 Hirasawa, Hadano, Kanagawa, 257-0015, Japan d Dept. of Surgery and Cancer, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, United Kingdom e Dept. of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232-0146, USA f Masonic Cancer Center, Dept. of Laboratory Medicine and Pathology, University of Minnesota, Cancer and Cardiovascular Research Building, 2231 6th St. SE, Minneapolis, MN, 55455, USA g Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands h Flavor and Extract Manufacturers Association, 1101 17th Street, NW Suite 700, Washington, DC, 20036, USA i Scientific Secretary to the FEMA Expert Panel, 1101 17th Street, NW Suite 700, Washington, DC,20036,USA ARTICLE INFO ABSTRACT Keywords: In 2015, the Expert Panel of the Flavor and Extract Manufacturers Association (FEMA) initiated a re-evaluation Citrus of the safety of over 250 natural flavor complexes (NFCs) used as flavoring ingredients. This publication isthe Natural flavor complex first in a series and summarizes the evaluation of54 Citrus-derived NFCs using the procedure outlined in Smith Botanical et al. -
Survey of Phenolic Compounds Produced in Citrus
USDA ??:-Z7 S rveyof Phenolic United States Department of Agriculture C mpounds Produced IliIIiI Agricultural Research In Citrus Service Technical Bulletin Number 1856 December 1998 United States Department of Agriculture Survey of Phenolic Compounds Agricultural Produced in Citrus Research Service Mark Berhow, Brent Tisserat, Katherine Kanes, and Carl Vandercook Technical Bulletin Number 1856 December 1998 This research project was conducted at USDA, Agricultural Research Service, Fruit and Vegetable Chem istry laboratory, Pasadena, California, where Berhow was a research chemist, TIsserat was a research geneticist, Kanes was a research associate, and Vandercook, now retired, was a research chemist. Berhow and Tisserat now work at the USDA-ARS National Center for AgriCUltural Utilization Research, Peoria, Illinois, where Berhow is a research chemist and Tisserat is a research geneticist. Abstract Berhow, M., B. Tisserat, K. Kanes, and C. Vandercook. 1998. Survey of Mention of trade names or companies in this publication is solely for the Phenolic Compounds Produced in Citrus. U.S. Department ofAgriculture, purpose of providing specific information and does not imply recommenda Agricultural Research Service, Technical Bulletin No. 1856, 158 pp. tion or endorsement by the U. S. Department ofAgriculture over others not mentioned. A survey of phenolic compounds, especially flavanones and flavone and flavonol compounds, using high pressure liquid chromatography was While supplies last, single copies of this publication may be obtained at no performed in Rutaceae, subfamily Aurantioideae, representing 5 genera, cost from- 35 species, and 114 cultivars. The average number of peaks, or phenolic USDA, ARS, National Center for Agricultural Utilization Research compounds, occurring in citrus leaf, flavedo, albedo, and juice vesicles 1815 North University Street were 21, 17, 15, and 9.3, respectively.