Use the Right Citrus-Based Cleaning Products to Avoid Corrosion Or Rust Bob Beckley, Project Leader
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Grapefruit Organic Botanical Name: Citrus X Paradisi Origin: Isreal
GC/MS BATCH NUMBER: GK0102 ESSENTIAL OIL: GRAPEFRUIT ORGANIC BOTANICAL NAME: CITRUS X PARADISI ORIGIN: ISREAL KEY CONSTITUENTS PRESENT IN THIS BATCH OF % GRAPEFRUIT ORGANIC OIL LIMONENE 92.9 MYRCENE 1.8 Comments from Robert Tisserand: Exquisite pink Grapefruit odor quality. Does not quite meet the full ISO standards, but this looks like a genuine oil. 510 2nd St S. Twin Falls, ID 83301 * 800-917-6577 * planttherapy.com facebook.com/PlantTherapy * planttherapy.com/blog Date : March 05, 2018 CERTIFICATE OF ANALYSIS - GC PROFILING SAMPLE IDENTIFICATION Internal code : 18C01-PTH2-1-CC Customer identification : Grapefruit Organic - Israel - GK0102191R Type : Essential oil Source : Citrus x paradisi cv. Yellow Customer : Plant Therapy ANALYSIS Method: PC-PA-014-17J19 - Analysis of the composition of an essential oil, or other volatile liquid, by FAST GC-FID (in French); identifications validated by GC-MS. Analyst : Sylvain Mercier, M. Sc., Chimiste Analysis date : March 05, 2018 Checked and approved by : Alexis St-Gelais, M. Sc., chimiste 2013-174 Note: This report may not be published, including online, without the written consent from Laboratoire PhytoChemia. This report is digitally signed, it is only considered valid if the digital signature is intact. Page 1/9 Essential oil, Citrus x paradisi cv. Yellow Report prepared for Internal code: 18C01-PTH2-1-CC Grapefruit Organic - Israel - GK0102191R Plant Therapy PHYSICOCHEMICAL DATA Physical aspect: Bright yellow liquid Refractive index: 1.4745 ± 0.0003 (20 °C) CONCLUSION No adulterant, contaminant -
GRAS Notice 658, Grapefruit Extract
GRAS Notice (GRN) No. 658 GR 11111111111111111111 http://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm ORIGINAL SUBMISSION ., Notice to the US Food and Drug Administration that the use of Vancitrix™, a glycerin Citrus Extract, is Generally Recognized as Safe GRN ODDb58 Submitted and Prepared by the Notifier: r----------, (Pa~(C~~~~[)) Chemie Research & Manufacturing, Co., Inc. JUL 1 2016 OFFICE OF 18 March 2015 (Original subm ission) FOOI3> ADDITIVE SAFETY 07 June 2016 (Revised submission) THOMAS WRIGHT Table of Contents GRAS Exemption Claim 2 Name and Address of Notifier 2 Common or Usual Name 2 Conditions of Use 2 Basis for GRAS Determination 3 Data I Information Availability Statement 3 Characterization 3 Chemical Composition 4 Organic Certification 4 Manufacturing and Production 5 Company Overview 5 Raw Materials 5 Manufacturing 5 Specifications and Batch Analysis 7 Specifications and Quality Control 7 Ascorbic acid, Citric acid, Naringin and other Flavonoids 8 Screening for Pesticides I Bactericides 9 Heavy Metal Analysis 9 Minimum Inhibitory Concentration (MIC) 10 Microbial Assay (USP-51) 11 History of Consumption 12 Production 12 Safety Assessment 13 Toxicological Studies 13 Drug Interactions 13 Current Regulatory Status 14 Regulatory Status of Citrus Fruit 14 Regulatory Status of Additional Vancitrix™ Components 14 Intended Use 14 Estimated Daily Intake (EDI) 15 General Recognition I Basis for GRAS Determination 16 References 17 1 .. GRAS Exemption Claim Chemie Research & Manufacturing, Co., Inc. (the notifier) has determined that Vancitrix™ grapefruit extract, hereafter referred to as Vancitrix™, is Generally Recognized as Safe (GRAS) for its intended use, consistent with section 201 (s) of the Federal Food, Drug and Cosmetic Act. -
Neuroprotective Potential of Limonene and Limonene Containing Natural Products
molecules Review Neuroprotective Potential of Limonene and Limonene Containing Natural Products Lujain Bader Eddin 1 , Niraj Kumar Jha 2 , M. F. Nagoor Meeran 1 , Kavindra Kumar Kesari 3,4 , Rami Beiram 1 and Shreesh Ojha 1,* 1 Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain 17666, United Arab Emirates; [email protected] (L.B.E.); [email protected] (M.F.N.M.); [email protected] (R.B.) 2 Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India; [email protected] 3 Department of Applied Physics, School of Science, Aalto University, 00076 Espoo, Finland; kavindra.kesari@aalto.fi 4 Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, 00076 Espoo, Finland * Correspondence: [email protected] Abstract: Limonene is a monoterpene confined to the family of Rutaceae, showing several biological properties such as antioxidant, anti-inflammatory, anticancer, antinociceptive and gastroprotective characteristics. Recently, there is notable interest in investigating the pharmacological effects of limonene in various chronic diseases due to its mitigating effect on oxidative stress and inflam- mation and regulating apoptotic cell death. There are several available studies demonstrating the neuroprotective role of limonene in neurodegenerative diseases, including Alzheimer’s disease, Citation: Eddin, L.B.; Jha, N.K.; multiple sclerosis, epilepsy, anxiety, and stroke. The high abundance of limonene in nature, its Meeran, M.F.N.; Kesari, K.K.; Beiram, safety profile, and various mechanisms of action make this monoterpene a favorable molecule to R.; Ojha, S. -
Biosynthesis of Natural Products
63 2. Biosynthesis of Natural Products - Terpene Biosynthesis 2.1 Introduction Terpenes are a large and varied class of natural products, produced primarily by a wide variety of plants, insects, microoroganisms and animals. They are the major components of resin, and of turpentine produced from resin. The name "terpene" is derived from the word "turpentine". Terpenes are major biosynthetic building blocks within nearly every living creature. Steroids, for example, are derivatives of the triterpene squalene. When terpenes are modified, such as by oxidation or rearrangement of the carbon skeleton, the resulting compounds are generally referred to as terpenoids. Some authors will use the term terpene to include all terpenoids. Terpenoids are also known as Isoprenoids. Terpenes and terpenoids are the primary constituents of the essential oils of many types of plants and flowers. Essential oils are used widely as natural flavor additives for food, as fragrances in perfumery, and in traditional and alternative medicines such as aromatherapy. Synthetic variations and derivatives of natural terpenes and terpenoids also greatly expand the variety of aromas used in perfumery and flavors used in food additives. Recent estimates suggest that over 30'000 different terpenes have been characterized from natural sources. Early on it was recognized that the majority of terpenoid natural products contain a multiple of 5C-atoms. Hemiterpenes consist of a single isoprene unit, whereas the monoterpenes include e.g.: Monoterpenes CH2OH CHO CH2OH OH Myrcens -
Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings Part 4. Evaluation of the Activate
EPA/600/R-11/156C November 2012 Laboratory Study of Polychlorinated Biphenyl (PCB) Contamination and Mitigation in Buildings Part 4. Evaluation of the Activated Metal Treatment System (AMTS) for On-site Destruction of PCBs Xiaoyu Liu and Zhishi Guo U.S. Environmental Protection Agency Office of Research and Development National Risk Management Research Laboratory Air Pollution Prevention and Control Division Research Triangle Park, NC 27711 and Corey A. Mocka, R. Andy Stinson, Nancy F. Roache, and Joshua A. Nardin ARCADIS, US Inc. 4915 Prospectus Dr., Suite F Durham, NC 27709 NOTICE This document has been reviewed internally and externally in accordance with the U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Executive Summary E.1 Background Polychlorinated biphenyls (PCBs) were once used as a plasticizer in certain building materials such as caulking, sealants, and paints from the 1950s through the late 1970s. Because PCBs have a variety of adverse health effects in animals and human, federal regulations have specific requirements for use and disposal of PCB-containing materials (U.S. EPA, 2005; 2009). Briefly, building materials that contain 50 ppm or more PCBs are not authorized for use and must be disposed of as PCB bulk product waste according the Code of Federal Regulations 40 CFR §761.3 and §761.62. If PCBs have contaminated either the surrounding building materials or adjacent soil, these materials are considered PCB remediation waste, which is subject to the cleanup and disposal requirements according 40 CFR §761.61. -
Factors Affecting the Rate of Maturation of Citrus Fruits
Proc. Fla. State Hort. Soc. 97: 40-44.1984. FACTORS AFFECTING THE RATE OF MATURATION OF CITRUS FRUITS Dan A. Kimball1 one sample a day for every day that fruit was received California Citrus Producers, Inc., from that particular packinghouse, and correlated with P. O. Box C, the accumulated temperatures (F°) during a given period. Lindsay, CA 93247 Climatic data were obtained from Lindsay-Strathmore Ir rigation District, which is centrally located in Tulare Additional index words, heat, navel, 'Valencia', limonin, county's citrus belt. Crop data were obtained from the Brix, acid. Tulare County Agricultural Commissioner's office. Limonin analyses were done by mixing reconstituted juice with Abstract. 'Washington navel' and 'Valencia' [Citrus sinensis diatomaceus earth, extracting with five 30-ml portions of (L.) Osb.] sample data (Brix/acid ratios) from routine pro chloroform using vacuum filtration, and evaporating the cessing plant tests were correlated directly with local climatic filtrate in a rotary evaporator. The flask from the rotary data throughout 7 seasons in California to yield linear re* evaporator was rinsed with several 2 ml portions of chloro lationships with r2 factors of 0.96 or better for navels. The form and analyzed, using a Perkin Elmer series 10 HPLC y-intercepts and slopes were found to strongly correlate with pump, LC-75 UV detector set at 210 nm, and a model R100 the accumulated maximum heat from the first 4 months after chart recorder. A CN column and precolumn were used bloom, crop load, and tree growth with r2 factors of 0.96. with a solvent system consisting of ethylene glycol mono- Equations were derived to enable (Brix/acid) ratio prediction. -
(C5–C20) Emissions of Downy Birches
Atmos. Chem. Phys., 21, 8045–8066, 2021 https://doi.org/10.5194/acp-21-8045-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. Sesquiterpenes and oxygenated sesquiterpenes dominate the VOC (C5–C20) emissions of downy birches Heidi Hellén1, Arnaud P. Praplan1, Toni Tykkä1, Aku Helin1, Simon Schallhart1, Piia P. Schiestl-Aalto2,3,4, Jaana Bäck2,3, and Hannele Hakola1 1Atmospheric Composition Research Unit, Finnish Meteorological Institute, P.O. Box 503, 00101 Helsinki, Finland 2Institute for Atmospheric and Earth System Research/Forest Sciences, Helsinki, Finland 3Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland 4Department of Forest Ecology and Management, SLU, 901 83 Umeå, Sweden Correspondence: Heidi Hellén (heidi.hellen@fmi.fi) Received: 2 December 2020 – Discussion started: 16 December 2020 Revised: 23 March 2021 – Accepted: 28 April 2021 – Published: 26 May 2021 Abstract. Biogenic volatile organic compounds (BVOCs) 24 % and 17 % of the total SQT and OSQT emissions, re- emitted by the forests are known to have strong impacts in spectively. A stressed tree growing in a pot was also stud- the atmosphere. However, lots of missing reactivity is found, ied, and high emissions of α-farnesene and an unidentified especially in the forest air. Therefore better characterization SQT were detected together with high emissions of GLVs. of sources and identification/quantification of unknown re- Due to the relatively low volatility and the high reactivity of active compounds is needed. While isoprene and monoter- SQTs and OSQTs, downy birch emissions are expected to pene (MT) emissions of boreal needle trees have been studied have strong impacts on atmospheric chemistry, especially on quite intensively, there is much less knowledge on the emis- secondary organic aerosol (SOA) production. -
Immobilization of P. Digitatum and Bioconversion of Limonene to Alpha-Terpineol. Qiang Tan Louisiana State University and Agricultural & Mechanical College
Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1996 Immobilization of P. Digitatum and Bioconversion of Limonene to Alpha-Terpineol. Qiang Tan Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Tan, Qiang, "Immobilization of P. Digitatum and Bioconversion of Limonene to Alpha-Terpineol." (1996). LSU Historical Dissertations and Theses. 6312. https://digitalcommons.lsu.edu/gradschool_disstheses/6312 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. -
Part I. Isolation of (R)-(+)-Limonene from Grapefruit Or Orange Peel
EXPERIMENT 5 ISOLATION OF LIMONENE FROM NATURAL PRODUCTS: STEAM DISTILLATION AND SOXHLET EXTRACTION OF CITRUS PEELS & MINT LEAVES Part 1: Isolation of limonene from citrus peel by steam distillation Part 2: Isolation of limonene from mint leaves by soxhlet extraction Students will work in teams of two. Each team will do one steam distillation, and one soxhlet extraction. If there is an odd number of students, then the student will do either a steam distillation or extraction, depending on availability of glassware. Reading Assignment: Pavia, Sections 18.1-18.4, 12.12 Pre-lab Questions: 1) Questions #1, 2, Pavia p. 284 - 285 2) In the spearmint leaf extraction, indicate which of the following solvents may or may not be suitable as a replacement for the hexane used in the experiment: acetone, diethyl ether, ethanol. Briefly explain your choices. Part I. Isolation of (R)-(+)-Limonene from Grapefruit or Orange Peel: (R)-(+)-limonene Line and 3-D structures of (R)-(+)-limonene. The major constituent of the steam-volatile oil of grapefruit or orange peel is (R)-(+)-limonene. It can be isolated as an esential oil of about 97% purity by a steam distillation of citrus fruit peels. Attempting to distill this essential oil directly from plant CHEM M52LA/H52LA Experiment 5 Page 1 763 material is generally not feasible. Limonene is a high-boiling liquid (bp = 175.5-176 °C) which decomposes under the high heat needed to bring it to a boil. Steam distillation is a much gentler way to obtain essential oils, as it allows the distillation of co-mixture of oil and water at a boiling point less than 100 °C. -
Improvement of Subtropical Fruit Crops: Citrus
IMPROVEMENT OF SUBTROPICAL FRUIT CROPS: CITRUS HAMILTON P. ÏRAUB, Senior Iloriiciilturist T. RALPH ROBCNSON, Senior Physiolo- gist Division of Frnil and Vegetable Crops and Diseases, Bureau of Plant Tndusiry MORE than half of the 13 fruit crops known to have been cultivated longer than 4,000 years,according to the researches of DeCandolle (7)\ are tropical and subtropical fruits—mango, oliv^e, fig, date, banana, jujube, and pomegranate. The citrus fruits as a group, the lychee, and the persimmon have been cultivated for thousands of years in the Orient; the avocado and papaya were important food crops in the American Tropics and subtropics long before the discovery of the New World. Other types, such as the pineapple, granadilla, cherimoya, jaboticaba, etc., are of more recent introduction, and some of these have not received the attention of the plant breeder to any appreciable extent. Through the centuries preceding recorded history and up to recent times, progress in the improvement of most subtropical fruits was accomplished by the trial-error method, which is crude and usually expensive if measured by modern standards. With the general accept- ance of the Mendelian principles of heredity—unit characters, domi- nance, and segregation—early in the twentieth century a starting point was provided for the development of a truly modern science of genetics. In this article it is the purpose to consider how subtropical citrus fruit crops have been improved, are now being improved, or are likel3^ to be improved by scientific breeding. Each of the more important crops will be considered more or less in detail. -
Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action
molecules Review Medically Useful Plant Terpenoids: Biosynthesis, Occurrence, and Mechanism of Action Matthew E. Bergman 1 , Benjamin Davis 1 and Michael A. Phillips 1,2,* 1 Department of Cellular and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada; [email protected] (M.E.B.); [email protected] (B.D.) 2 Department of Biology, University of Toronto–Mississauga, Mississauga, ON L5L 1C6, Canada * Correspondence: [email protected]; Tel.: +1-905-569-4848 Academic Editors: Ewa Swiezewska, Liliana Surmacz and Bernhard Loll Received: 3 October 2019; Accepted: 30 October 2019; Published: 1 November 2019 Abstract: Specialized plant terpenoids have found fortuitous uses in medicine due to their evolutionary and biochemical selection for biological activity in animals. However, these highly functionalized natural products are produced through complex biosynthetic pathways for which we have a complete understanding in only a few cases. Here we review some of the most effective and promising plant terpenoids that are currently used in medicine and medical research and provide updates on their biosynthesis, natural occurrence, and mechanism of action in the body. This includes pharmacologically useful plastidic terpenoids such as p-menthane monoterpenoids, cannabinoids, paclitaxel (taxol®), and ingenol mebutate which are derived from the 2-C-methyl-d-erythritol-4-phosphate (MEP) pathway, as well as cytosolic terpenoids such as thapsigargin and artemisinin produced through the mevalonate (MVA) pathway. We further provide a review of the MEP and MVA precursor pathways which supply the carbon skeletons for the downstream transformations yielding these medically significant natural products. Keywords: isoprenoids; plant natural products; terpenoid biosynthesis; medicinal plants; terpene synthases; cytochrome P450s 1. -
Chemical Variability of Peel and Leaf Essential Oils in the Citrus Subgenus Papeda (Swingle) and Few Relatives
plants Article Chemical Variability of Peel and Leaf Essential Oils in the Citrus Subgenus Papeda (Swingle) and Few Relatives Clémentine Baccati 1, Marc Gibernau 1, Mathieu Paoli 1 , Patrick Ollitrault 2,3 ,Félix Tomi 1,* and François Luro 2 1 Laboratoire Sciences Pour l’Environnement, Equipe Chimie et Biomasse, Université de Corse—CNRS, UMR 6134 SPE, Route des Sanguinaires, 20000 Ajaccio, France; [email protected] (C.B.); [email protected] (M.G.); [email protected] (M.P.) 2 UMR AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, 20230 San Giuliano, France; [email protected] (P.O.); [email protected] (F.L.) 3 CIRAD, UMR AGAP, 20230 San Giuliano, France * Correspondence: [email protected]; Tel.: +33-495-52-4122 Abstract: The Papeda Citrus subgenus includes several species belonging to two genetically distinct groups, containing mostly little-exploited wild forms of citrus. However, little is known about the potentially large and novel aromatic diversity contained in these wild citruses. In this study, we characterized and compared the essential oils obtained from peels and leaves from representatives of both Papeda groups, and three related hybrids. Using a combination of GC, GC-MS, and 13C-NMR spectrometry, we identified a total of 60 compounds in peel oils (PO), and 76 compounds in leaf oils (LO). Limonene was the major component in almost all citrus PO, except for C. micrantha and C. hystrix, where β-pinene dominated (around 35%). LO composition was more variable, with different Citation: Baccati, C.; Gibernau, M.; major compounds among almost all samples, except for two citrus pairs: C.