Citrus Canker in California
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
How to Fight Citrus Greening Disease (And It’S Not Through Genetic Engineering)
William & Mary Environmental Law and Policy Review Volume 40 (2015-2016) Issue 3 Article 7 May 2016 Saving The Orange: How to Fight Citrus Greening Disease (And It’s Not Through Genetic Engineering) Evan Feely Follow this and additional works at: https://scholarship.law.wm.edu/wmelpr Part of the Agriculture Law Commons, and the Environmental Law Commons Repository Citation Evan Feely, Saving The Orange: How to Fight Citrus Greening Disease (And It’s Not Through Genetic Engineering), 40 Wm. & Mary Envtl. L. & Pol'y Rev. 893 (2016), https://scholarship.law.wm.edu/wmelpr/vol40/iss3/7 Copyright c 2016 by the authors. This article is brought to you by the William & Mary Law School Scholarship Repository. https://scholarship.law.wm.edu/wmelpr SAVING THE ORANGE: HOW TO FIGHT CITRUS GREENING DISEASE (AND IT’S NOT THROUGH GENETIC ENGINEERING) EVAN FEELY* INTRODUCTION The orange is dying. With Florida’s citrus industry already suffer- ing from the growing skepticism of an increasingly health-conscious American public as to orange juice’s benefits,1 the emergence of citrus greening disease over the past two decades has left the orange’s long-term future very much in doubt.2 A devastating virus first documented in China roughly one hundred years ago, citrus greening disease (or “HLB”), has only migrated to Florida in the past twenty years, but has quickly made up for lost time.3 Primarily transmitted by an insect known as the Asian citrus psyllid (“ACP”), the disease has devastated Florida growers in recent years, wiping out entire groves and significantly affecting trees’ overall yield.4 This past year, Florida growers experienced their least productive harvest in forty years, and current estimates of next year’s yield are equally dismal.5 * J.D. -
TRISTEZA the Worldwide Threat from Destructive Isolates of Citrus
TRISTEZA The Worldwide Threat from Destructive Isolates of Citrus Tristeza Virus-A Review C. N. Roistacher and P. Moreno ABSTRACT. This paper reviews the effects of extremely destructive forms of citrus tristeza virus (CTV) which poses serious threats to citrus industries worldwide. These include Capao Bonito CTV in Brazil, navel orange stem pitting CTV in Peru, stem pitting 12B CTV found in the university orchards in Southern California, severe grapefruit stem pitting CTV found in South Africa, recent forms of CTV responsible for decline of sweet orange on sour orange rootstock in Florida and Israel and other severe CTV isolatesreported from Spainand elsewhere. Many ofthesedestructive CTVisolates are transmitted by Toxoptera citricidus but most can be transmitted by Aphis gossypii at relatively high levels of efficiency. The impact of recent changes in aphid transmissibility and population dynamics, and the threat of movement of T. citricidus into new regions of the world are reviewed. The appearance and impact of new strains or mutants of CTV differing in pathogenic capacities or in aphid transmissibility are discussed. Methods for the identification of new or destructive isolates of CTV are also reviewed. Concepts for prevention which include quarantine, eradication and education are presented. The immediate need is to test for presence of CTV in those countries where sour orange is the predominant rootstock. Also, to test for and eliminate very destructive forms of CTV, to strengthen quarantine laws and regulations, and to educate scientists, nurseryman and growers to the dangers involved in budwood importation and virus or vector spread. Tristeza, caused by the citrus ravages of tristeza once it begins to tristeza virus (CTV) remains today as spread. -
SPRO 2005 30 Citrus Greening
FOR INFORMATION DA# 2005-30 September 16, 2005 SUBJECT: New Federal Restrictions to Prevent Movement of Citrus Greening TO: STATE AND TERRITORY AGRICULTURAL REGULATORY OFFICIALS On September 2, 2005, APHIS confirmed the findings of the Florida Department of Agriculture and Consumer Services (FDACS) that identified the first U.S. detection of citrus greening caused by the bacterium, Liberibacter asiaticus. The disease was detected through the APHIS-FDACS’ Cooperative Agricultural Pest Survey Program (CAPS). FDACS has imposed regulations governing the movement of certain material from Miami-Dade County. PPQ is imposing similar restrictions to support our combined efforts to prevent movement of citrus greening disease from infested areas, effectively immediately. All ornamental citrus psyllid host plant material in addition to all citrus is quarantined and prohibited from movement out of Miami-Dade County. A compliance agreement is being developed in conjunction with FDACS that will include recommended controls and treatments for the citrus psyllid. These treatments will allow for citrus psyllid host plant material (other than citrus) from Miami-Dade County to be shipped within the State of Florida and to non-citrus producing states. The certification process for host plants of L. asiaticus is more complex and will take more time to develop certification procedures. For all other counties, the interstate shipping (shipments outside the State of Florida) of all citrus psyllid host plants (including citrus) is permitted, except to citrus producing states (Arizona, California, Louisiana, Texas, and Puerto Rico). If citrus greening disease is detected in additional counties, the regulations established for Miami-Dade County will be applied. The current Citrus Canker quarantine areas remain in effect; these quarantines prohibit the movement of citrus out of the quarantine area. -
Citrus Bacterial Canker Disease and Huanglongbing (Citrus Greening)
PUBLICATION 8218 Citrus Bacterial Canker Disease and Huanglongbing (Citrus Greening) MARYLOU POLEK, Citrus Tristeza Virus Program, California Department of Food and Agriculture, Tulare; GEORGIOS VIDALAKIS, Citrus Clonal Protection Program (CCPP), Department of Plant Pathology, University of California, Riverside; and KRIS GODFREY, UNIVERSITY OF Biological Control Program, California Department of Food and Agriculture, Sacramento CALIFORNIA Division of Agriculture INTroduCTioN and Natural Resources Compared with the rest of the world, the California citrus industry is relatively free of http://anrcatalog.ucdavis.edu diseases that can impact growers’ profits. Unfortunately, exotic plant pathogens may become well established before they are recognized as such. This is primarily because some of the initial symptoms mimic other diseases, mineral deficiencies, or toxicities. In addition, development of disease symptoms caused by some plant pathogenic organisms occurs a long time after initial infection. This long latent period results in significantly delayed disease diagnosis and pathogen detection. Citrus canker (CC) and huanglong- bing (HLB, or citrus greening) are two very serious diseases of citrus that occur in many other areas of the world but are not known to occur in California. If the pathogens caus- ing these diseases are introduced into California, it will create serious problems for the state’s citrus production and nursery industries. CiTrus BACTerial CaNker Disease Citrus bacterial canker disease (CC) is caused by pathotypes or variants of the bacterium Xanthomonas axonopodis (for- merly campestris) pv. citri (Xac). This bacterium is a quaran- tine pest for many citrus-growing countries and is strictly regulated by international phytosanitary programs. Distinct pathotypes are associated with different forms of the disease (Gottwald et al. -
Tropical Horticulture: Lecture 32 1
Tropical Horticulture: Lecture 32 Lecture 32 Citrus Citrus: Citrus spp., Rutaceae Citrus are subtropical, evergreen plants originating in southeast Asia and the Malay archipelago but the precise origins are obscure. There are about 1600 species in the subfamily Aurantioideae. The tribe Citreae has 13 genera, most of which are graft and cross compatible with the genus Citrus. There are some tropical species (pomelo). All Citrus combined are the most important fruit crop next to grape. 1 Tropical Horticulture: Lecture 32 The common features are a superior ovary on a raised disc, transparent (pellucid) dots on leaves, and the presence of aromatic oils in leaves and fruits. Citrus has increased in importance in the United States with the development of frozen concentrate which is much superior to canned citrus juice. Per-capita consumption in the US is extremely high. Citrus mitis (calamondin), a miniature orange, is widely grown as an ornamental house pot plant. History Citrus is first mentioned in Chinese literature in 2200 BCE. First citrus in Europe seems to have been the citron, a fruit which has religious significance in Jewish festivals. Mentioned in 310 BCE by Theophrastus. Lemons and limes and sour orange may have been mutations of the citron. The Romans grew sour orange and lemons in 50–100 CE; the first mention of sweet orange in Europe was made in 1400. Columbus brought citrus on his second voyage in 1493 and the first plantation started in Haiti. In 1565 the first citrus was brought to the US in Saint Augustine. 2 Tropical Horticulture: Lecture 32 Taxonomy Citrus classification based on morphology of mature fruit (e.g. -
Citrus Canker Disease1
HS1130 Dooryard Citrus Production: Citrus Canker Disease1 Timothy M. Spann, Ryan A. Atwood, Jamie D. Yates, and James H. Graham, Jr.2 Citrus canker is a bacterial disease of citrus eradication effort was begun in 1913, by which time caused by the pathogen Xanthomonas axonopodis pv. the disease had spread throughout the Gulf States. In citri. The bacterium causes necrotic lesions on leaves, 1915, quarantine banned the import of all citrus plant stems and fruit of infected trees. Severe cases can material. The last known infected tree was removed cause defoliation, premature fruit drop, twig dieback from Florida in 1933, and the disease was declared and general tree decline. Considerable efforts are eradicated from the United States in 1947. Since that made throughout the world in citrus-growing areas to time, citrus canker has been the focus of regulatory prevent its introduction or limit its spread. rules to prevent its re-introduction into the United States. History of Citrus Canker in Florida Despite regulatory efforts, citrus canker was Not surprisingly, citrus canker is believed to found on residential trees in Hillsborough, Pinellas, have originated in the native home of citrus, Sarasota and Manatee counties in 1986. Shortly after Southeast Asia and India. From there, the disease has these detections the disease was found in nearby spread to most of the citrus-producing areas of the commercial groves. Infected trees were immediately world, including Japan, Africa, the Middle East, removed. The last tree with citrus canker from this Australia, New Zealand, South America and Florida. outbreak was detected in 1992. Citrus canker was Eradication efforts have been successful in South once again declared eradicated in 1994. -
Florida's Citrus Canker Eradication Program (CCEP): Annual Economic Impact on Florida's Processed Orange Industry1
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. FE533 Florida's Citrus Canker Eradication Program (CCEP): Annual Economic Impact on Florida's Processed Orange Industry1 Thomas H. Spreen, Marisa L. Zansler and Ronald P. Muraro2 Rapid expansion and integration of international establish guidelines for averting the spread of the trade, increased tourism, and changes in methods of disease. Currently there is no biological or chemical production in recent decades have increased the cure for citrus canker. All infected trees and citrus likelihood of the introduction of invasive species to trees within a radius of 1900 feet of an infected tree U.S. (United States) agriculture. Invasive species can must be eradicated (1900-foot rule). On-site have adverse environmental and/or economic impacts decontamination of grove workers, field equipment, when introduced into a region. Economic impacts and packinghouses is also mandatory. include marketing, production, and trade implications. The current effort to eradicate citrus canker from the industry, the CCEP, has been mired in One such invasive species imposing adverse controversy associated with public opinion and legal economic impacts to the Florida citrus industry is a action. A benefit-cost analysis was conducted to bacterial disease known as citrus canker (caused by determine whether the CCEP is, indeed, a useful Xanthomonas axanopodis pv. citri). Citrus canker policy tool in combating the economic ramifications causes lesions on the leaves, stems, and fruit of citrus associated with citrus canker. trees. The disease adversely affects the proportion of fruit intended for the fresh market, serves to weaken A model of the world orange juice market was citrus trees, and leads to a reduction in yields and originally developed at the University of Florida in higher costs of production. -
Fundamentals of Citrus Canker Management1
PP-231 Fundamentals of Citrus Canker Management1 L. W. Timmer, J. H. Graham and H. L. Chamberlain2 The 1900-ft rule has been suspended and Protecting Canker-Free Areas eradication of citrus canker-affected trees has ended. The Citrus Health Response Plan (CHRP) was Decontamination developed, and obligatory removal of affected trees is Rules for decontamination are still in place and not a part of that plan. Thus, growers probably have should be followed. With more canker around the to use their best judgment in management of citrus state, the possibility of spread is greater than ever. In canker. The Division of Plant Industry (DPI) has moving equipment and personnel from grove to found canker in most citrus areas of the state except grove, every effort should be made to make sure that the northwestern production areas. DPI will continue plant material is not moved inadvertently and that all to monitor and report detections of the disease in equipment has been thoroughly decontaminated. commercial groves. Currently, 75% of the citrus Decontamination is especially important in acreage is within 5 miles of a canker find. harvesting operations and in any other practices Although it is difficult to predict exactly how involving extensive contact with foliage. Obviously, severe canker will be under Florida conditions, when equipment is moved from blocks where canker indications from outbreaks in the state are that it will is endemic to other infected blocks, decontamination be difficult to control. Areas that are currently serves little purpose. All operations should be canker-free should be protected to the extent possible. -
Citrus Fruits 2020 Summary (August 2020) 3 USDA, National Agricultural Statistics Service
United States Department of Citrus Fruits Agriculture National 2020 Summary Agricultural Statistics Service August 2020 ISSN: 1948-9048 Contents Utilized Citrus Production – United States Chart ................................................................................................................... 6 Citrus Value of Production – United States Chart .................................................................................................................. 6 Citrus Narrative ....................................................................................................................................................................... 7 Citrus Acreage, Production, Utilization, and Value – States and United States: 2017-2018, 2018-2019, and 2019-2020 ........................................................................................................................................................................ 8 Citrus Acreage, Production, Utilization, and Value by Crop – United States: 2017-2018, 2018-2019, and 2019-2020 ........................................................................................................................................................................ 9 Orange Acreage, Yield, Utilization, Price, and Value by Type – States and United States: 2017-2018, 2018-2019, and 2019-2020 ................................................................................................................................................... 10 Bearing Acres of Oranges – United States Chart ................................................................................................................. -
Enhanced Resistance to Citrus Canker in Transgenic Sweet Orange Expressing the Sarcotoxin IA Gene
Eur J Plant Pathol DOI 10.1007/s10658-017-1234-5 Enhanced resistance to citrus canker in transgenic sweet orange expressing the sarcotoxin IA gene Adilson K. Kobayashi & Luiz Gonzaga E. Vieira & João Carlos Bespalhok Filho & Rui Pereira Leite Jr & Luiz Filipe P. Pereira & Hugo Bruno C. Molinari & Viviani V. Marques Accepted: 19 April 2017 # Koninklijke Nederlandse Planteziektenkundige Vereniging 2017 Abstract Citrus canker, caused by the bacterial patho- bacteria, including Xcc. Transgenic BPera^ sweet orange gen Xanthomonas citri subp. Citri (Xcc), is a serious (Citrus sinensis [L.] Osbeck) plants constitutively ex- disease reported in most citrus-producing areas around pressing the sarcotoxin IA peptide fused to the PR1a the world. Although different levels of field resistance to signal peptide from Nicotiana tabacum for secretion in citrus canker have been reported in sweet oranges, they the intercellular space were obtained by Agrobacterium- are usually not sufficient to provide adequate control of mediated transformation using thin sections of mature the disease. Ectopic over-expression of antibacterial explants. Citrus canker resistance evaluation in leaves of genes is one of the potential strategies to increase plant transgenic and non-transgenic plants was performed resistance to bacterial diseases. Previous in vitro results through inoculations with Xcc by infiltration and showed that sarcotoxin IA, an antimicrobial peptide spraying. The Xcc population was up to 2 log unit lower isolated from the flesh fly (Sarcophaga peregrina), can in leaves of the transgenic plants compared to those of be efficient to control different plant pathogenic non-transgenic controls. Incidence of canker lesions was Electronic supplementary material The online version of this article (doi:10.1007/s10658-017-1234-5) contains supplementary material, which is available to authorized users. -
Citrus Fruit
AGRI.G2 - F&V - 2020 WORKING DOCUMENT WG - Working Group for Citrus fruit Vol. 01 - PRODUCTION The citrus market in the EU: production, areas and yields ------ 23 November 2020 -------- Contact point: European Commission - DG Agri G2 Exclusion of liability: this document of the European Commission aims to contribute to the analysis of the citrus fruit market situation in the EU. The Commission accepts no responsibility for the information contained herein. Data sources: data come mainly from experts and official statistics; they may have been supplemented with data from other types of sources. Their reproduction or use is permitted with mention of their source. INDEX Index of tables and graphs INDEX - Part 1 - PRODUCTION Production Table 1.2 1.1 Production (source(source: CLAM) Eurostat) Graph 1.1 Production of citrus fruit by Member State Graph 1.2 Production of oranges by Member State Graph 1.3 Production of small citrus fruit by Member State Graph 1.4 Production of lemons by Member State Graph 1.5 EU citrus production evolution per type Table 1.2 Production of citrus fruit in the EU since 1985 Graph 1.6 Total production of citrus fruit in the EU Graph 1.7 Production of citrus fruit by type Area Table 2.1 Area (source: Eurostat) Graph 2.1 Orange area by Member State Graph 2.2 Small citrus fruit area by Member State Graph 2.3 Lemons area by Member States Graph 2.4 Total citurs area by Member State Yield / (ex withdrawal) Table 3.1 Yield by product (calculated) Graph 3.1 Orange yield by Member State Graph 3.2 Small citrus fruit yield by Member State Graph 3.3 Lemon yield by Member State (ex-Tablex 3.x, Graphs 3.x - discontinued!!) (regime "market withdrawals" discontinued since the reform "FruVet" in 2008) Table 1.1. -
Global Citrus Outlook Methodologies and Sources
Global Citrus Outlook Methodologies and sources Data in T Short-term comparison Long-term comparison EU trade data include covering 1980 to 2017 ranging from last 5 to 10 years internal shipments Currency €/USD USDA World Citrus FAOSTAT EUROSTAT COMTRADE report EU Commission citrus SHAFFE Summer Citrus Freshfel Qlickfresh FRuitTROP Magazines report report Citrus production and export in perspective of global fruit trends Steady growth of fruit production in the last 3 decades (since 1980 ) from 338 Mio T to 865 Mio T Bananas ( 148 Mio T) and citrus ( 146,5 Mio T) are the two leading products Global Fruit production Citrus (140% ) , lower growth rather than world fruit average (155 %) and significantly lower than growth the other fruit ( mangoes, avocadoes, melons, kaki Share of citrus of total fruit production dropping from 18% to 17% => increased competition inside the fruit category and further pressure of overall decline of consumption of fresh produce in many markets Oranges: share drops from 67% to 55% to 73 Mio T (growing in volume by 83%) Soft citrus: up from 13% to 25% to 33 Mio T (growing in volume by 288%) Lemons: increase from 8% to 13% to 17,5 Mio T Citrus (growing in volume by 218%) production & Grapefruits: drop by 1% from 8% to 7% to 9 Mio growth trends T (growing in volume by 100%) by categories Share of citrus production grapefruit 7% lemons 13% oranges 55% soft citrus 25% Steady growth of fruit exports in the last 3 decades from 23 Mio T to 87,5 Mio T Growth of all fruit exports Global Fruit (280%), faster than production growth (+155%).