2018 Boden and Hutt DMS DMSO

Total Page:16

File Type:pdf, Size:1020Kb

2018 Boden and Hutt DMS DMSO University of Plymouth PEARL https://pearl.plymouth.ac.uk Faculty of Science and Engineering School of Biological and Marine Sciences 2018-10-31 Bacterial Metabolism of C1 Sulfur Compounds Boden, R http://hdl.handle.net/10026.1/12734 Springer Nature Switzerland All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author. Bacterial Metabolism of C1 Sulfur Compounds Rich Boden and Lee P. Hutt Contents 1 Introduction and Overview ................................................................... 2 2 Handling, Quantifying, and Synthesizing C1 Organosulfur Compounds ................... 5 2.1 Quality, Storage, and Disposal ......................................................... 5 2.2 Determination of C1 Organosulfur Compounds in Cultures . ........................ 8 2.3 Isotopic Labeling for Ecological and Physiological Studies . .. .. .. .. .. .. .. .. .. .. 12 3 Pathways of C1 Organosulfur Compound Metabolism ...................................... 18 3.1 De Bont Pathway ....................................................................... 20 3.2 Visscher-Taylor Pathway ............................................................... 20 3.3 Smith-Kelly Pathway ................................................................... 21 3.4 De Zwart-Kuenen Pathway ............................................................. 22 3.5 Boden-Kelly Pathway .................................................................. 22 3.6 Padden-Wood Pathway ................................................................. 23 3.7 Borodina-Wood pathway ............................................................... 24 3.8 Kino-Wicht pathway .................................................................... 25 3.9 Koch-Dahl Pathway .................................................................... 25 4 Enzymology of C1 Organosulfur Compound Metabolism . ... ... ... ... ... ... ... .. ... ... ... 26 4.1 Dissimilatory Dimethylsulfide Monooxygenase (EC 1.14.13.131) .................. 27 4.2 Assimilatory Dimethylsulfide S-Monooxygenase (EC 1.8.1.x) ...................... 28 4.3 Dissimilatory Dimethylsulfide Demethylase (EC 2.1.1.x)........................... 29 4.4 Methanethiol Oxidase (EC 1.8.3.4) ................................................... 30 R. Boden (*) School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Plymouth, UK Sustainable Earth Institute, Faculty of Science and Engineering, University of Plymouth, Plymouth, UK e-mail: [email protected] L. P. Hutt School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Plymouth, UK e-mail: [email protected] # Springer Nature Switzerland AG 2019 1 F. Rojo (ed.), Aerobic Utilization of Hydrocarbons, Oils and Lipids, Handbook of Hydrocarbon and Lipid Microbiology, https://doi.org/10.1007/978-3-319-39782-5_9-1 2 R. Boden and L. P. Hutt 4.5 Methanethiol S-methyltransferase (EC 2.1.1.334) ................................... 31 4.6 Dimethylsulfide-Cytochrome c Reductase (EC 1.8.2.4) ... .. ... ... .. ... .. ... .. ... .. 31 4.7 Respiratory Dimethylsulfoxide Reductase (EC 1.8.5.3) .. .. .. .. ... .. .. .. .. ... .. .. .. 32 4.8 Dissimilatory Dimethylsulfoxide Reductase (EC 1.8.1.x)........................... 32 4.9 Dissimilatory Dimethylsulfone Reductase (EC 1.8.1.17) ............................ 33 4.10 Assimilatory Dimethylsulfone Monooxygenase (EC 1.14.14.35), Assimilatory Methanesulfonate Monooxygenase (EC 1.14.14.34), and Dissimilatory Methanesulfonate Monooxygenase (EC 1.14.13.111) . .. .. .. .. .. .. .. .. .. .. .. .. 33 4.11 Putative Dissimilatory Dimethylsulfide Hydrolase ................................... 35 5 Ecological Theory and Strategies ............................................................ 35 6 Research Needs ............................................................................... 37 References ........................................................................................ 37 Abstract The metabolism of C1 organosulfur compounds by the Bacteria is important in the biogeochemical cycling of sulfur and carbon and in climate regulation in terms of mediating release of, e.g., dimethylsulfide from the oceans. Herein we review the canon of work on the metabolism of dimethylsulfide, dimethylsulfoxide, dimethylsulfone, methanesulfonate, dimethyldisulfide, and methanethiol, in terms of dissimilation to formaldehyde or carbon dioxide when used as carbon and energy sources by methylotrophs or autotrophs, oxidation to sulfite prior to assimilation as sulfur sources, and use as respiratory terminal electron acceptors. We discuss the enzymology of the metabolism of these compounds and propose a revision to the Enzyme Commission classification to some of them where multiple enzymes are clearly grouped under one name at present. We also provide methodologies for enzyme assays, for the safe handling and quantification of these compounds, and for the synthesis of carbon-14, carbon-11, sulfur-34, and sulfur- 34 compounds for use in physiological and ecological studies. 1 Introduction and Overview The diversity of one-carbon (C1) compounds containing sulfur is given in Table 1, including both organic and inorganic examples, and the abbreviations for them used in this chapter. The bacterial metabolism of C1 organosulfur compounds is largely limited in understanding to methanethiol (MT), dimethylsulfide (DMS), dimethylsulfoxide (DMSO), dimethylsulfone (DMSO2), methanesulfonate (MSA), and dimethyldisulfide (DMDS), but as Table 1 shows, there is considerable scope for broadening our understanding with many unstudied compounds with regard to microbiology. The roles, sources, sinks, and chemistry of the C1 organosulfur compounds in the environment (atmospheric chemistry, etc.) are touched on in this chapter where important, but for good reviews on core aspects of the subject, the reader should consult Kelly (1996), Keine (1993, 1996), Wood (1996), and Kelly et al. (1993) for short reviews and perspectives that, while over 20 years old, are very useful – for a longer and more up-to-date review on the subject, Schäfer et al. (2010) give much Bacterial Metabolism of C1 Sulfur Compounds 3 Table 1 Diversity and properties of one-carbon (C1) sulfur compounds, defined by their absence of carbon-carbon bonds Compound and abbreviation Melting point (C) Boiling point (C) Formula Organic Methanethiol (MT) À123 +6 CH3SH a Methanethial (CH2S) N.D. N.D.CH2S 1,2,3-trithiane (Thioform) 215 230 (CH2)3S3 Dimethylsulfide (DMS) À98 +35 (CH3)2S Dimethylsulfoxide (DMSO) +19 +189 (CH3)2SO Dimethylsulfone (DMSO2) +109 +248 (CH3)2SO2 Dimethylsulfide (DMDS) À85 +110 (CH3)2S2 Dimethyltrisulfide (DMTS) À68 +170 (CH3)2S3 Dimethyltetrasulfide (DMQS) N.D. +243 (CH3)2S4 Dimethylsulfite (DSMO3) N.D. +126 (CH3O)2SO Dimethylsulfate (DMSO4) À32 +188 (CH3O)2SO2 Lenthionine +60 N.D. (CH2)2S5 1,4,2-dithiazole-5-thione +78 +280 CHNSCSS 1,3,4-oxathiazol-2-one +36 +226 CHNSCOO b À Methanesulfonate (MSA) ––CH3SO3 b À Methanesulfinate (MSiA) ––CH3SO2 Methylmethanesulfonate (MMSA) +20 +202 CH3SO3CH3 Thiourea +182 C(NH2)2S Inorganic Carbon disulfide (CS2) À112 +46 CS2 Carbon monosulfide (CS) N.D. N.D.CS Carbonyl sulfide (COS) À139 À50 COS b 2À Thiocarbonate (TC) ––CO2S aSpontaneously oligomerizes into 1,3,5-trithiane bUsed in the form of the sodium or potassium salts, which are currently both commercially available for both MSA and MSiA more depth. Obviously, the reader is directed to Charlson et al. (1987) for the overarching significance of these compounds in the environment, particularly DMS. In this chapter, we cover the physiological pathways of C1 organosulfur com- pound metabolism, as well as give detail on each enzyme involved and the structure, function, ecology, and evolution thereof. Since the assay methods for these enzymes have not been curated in any other text, we have included them for completeness. We also give consideration to the practicalities and safety of working with C1 organosulfur compounds, as well as methods for their determination in the micro- biology laboratory and methods for the synthesis of stable (carbon-13, sulfur-34) and radiolabeled (carbon-11, carbon-14, sulfur-35) compounds for use in physiological and ecological studies – this is particularly important since some of the key questions and gaps in our understanding can (at present) only be resolved using such meth- odologies and these labeled compounds are not commercially available, or, where they are, it is for >£20,000 (US$26,500, €23,000) as a custom synthesis, which 4 R. Boden and L. P. Hutt prohibits work for many laboratories. Since these methods are not especially com- plex, we have included them with hopefully enough detail for the non-chemist to reproduce them without too much difficulty! The oxidation of C1 organosulfur compounds to sulfate or partially to other C1 organosulfur species is well known in methylotrophic and heterotrophic Bacteria, respectively. For illustration of the bioenergetics of these oxidations, those of dimethylsulfide (DMS), dimethylsulfoxide (DMSO), dimethylsulfone (DMSO2), methanethiol (MT), and dimethyldisulfide (DMDS) to sulfate and carbon dioxide are given, along with the oxidation of DMS to DMSO found in heterotrophs
Recommended publications
  • The Role of Earthworm Gut-Associated Microorganisms in the Fate of Prions in Soil
    THE ROLE OF EARTHWORM GUT-ASSOCIATED MICROORGANISMS IN THE FATE OF PRIONS IN SOIL Von der Fakultät für Lebenswissenschaften der Technischen Universität Carolo-Wilhelmina zu Braunschweig zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte D i s s e r t a t i o n von Taras Jur’evič Nechitaylo aus Krasnodar, Russland 2 Acknowledgement I would like to thank Prof. Dr. Kenneth N. Timmis for his guidance in the work and help. I thank Peter N. Golyshin for patience and strong support on this way. Many thanks to my other colleagues, which also taught me and made the life in the lab and studies easy: Manuel Ferrer, Alex Neef, Angelika Arnscheidt, Olga Golyshina, Tanja Chernikova, Christoph Gertler, Agnes Waliczek, Britta Scheithauer, Julia Sabirova, Oleg Kotsurbenko, and other wonderful labmates. I am also grateful to Michail Yakimov and Vitor Martins dos Santos for useful discussions and suggestions. I am very obliged to my family: my parents and my brother, my parents on low and of course to my wife, which made all of their best to support me. 3 Summary.....................................................………………………………………………... 5 1. Introduction...........................................................................................................……... 7 Prion diseases: early hypotheses...………...………………..........…......…......……….. 7 The basics of the prion concept………………………………………………….……... 8 Putative prion dissemination pathways………………………………………….……... 10 Earthworms: a putative factor of the dissemination of TSE infectivity in soil?.………. 11 Objectives of the study…………………………………………………………………. 16 2. Materials and Methods.............................…......................................................……….. 17 2.1 Sampling and general experimental design..................................................………. 17 2.2 Fluorescence in situ Hybridization (FISH)………..……………………….………. 18 2.2.1 FISH with soil, intestine, and casts samples…………………………….……... 18 Isolation of cells from environmental samples…………………………….……….
    [Show full text]
  • Ferric Reductase Activity of the Arsh Protein from Acidithiobacillus Ferrooxidans
    J. Microbiol. Biotechnol. (2011), 21(5), 464–469 doi: 10.4014/jmb.1101.01020 First published online 13 April 2011 Ferric Reductase Activity of the ArsH Protein from Acidithiobacillus ferrooxidans Mo, Hongyu1,2, Qian Chen1,2, Juan Du1, Lin Tang1, Fang Qin1, Bo Miao2, Xueling Wu2, and Jia Zeng1,2* 1College of Biology, Hunan University, Changsha, Hunan 410082, P. R. China 2Department of Bioengineering, Central South University, Changsha, Hunan 410083, P. R. China Received: January 14, 2011 / Revised: March 10, 2011 / Accepted: March 11, 2011 The arsH gene is one of the arsenic resistance system in iron (free or chelated) into ferrous iron before its incorporation bacteria and eukaryotes. The ArsH protein was annotated into heme and nonheme iron-containing proteins. Ferric as a NADPH-dependent flavin mononucleotide (FMN) reductase catalyzes the reduction of complexed Fe3+ to reductase with unknown biological function. Here we complexed Fe2+ using NAD(P)H as the electron donor. The report for the first time that the ArsH protein showed resulting Fe2+ is subsequently released and incorporated high ferric reductase activity. Glu104 was an essential into iron-containing proteins [17]. residue for maintaining the stability of the FMN cofactor. Here we report for the first time that the ArsH protein The ArsH protein may perform an important role for showed high ferric reduction activity. The ArsH from A. cytosolic ferric iron assimilation in vivo. ferrooxidans may perform an important role as a NADPH- Keywords: Acidithiobacillus ferrooxidans, ArsH, flavoprotein, dependent ferric reductase for cytosolic ferric iron assimilation ferric reductase in vivo. MATERIALS AND METHODS Arsenic resistance genes are widespread in nature.
    [Show full text]
  • Sulfite Dehydrogenases in Organotrophic Bacteria : Enzymes
    Sulfite dehydrogenases in organotrophic bacteria: enzymes, genes and regulation. Dissertation zur Erlangung des akademischen Grades des Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Konstanz Fachbereich Biologie vorgelegt von Sabine Lehmann Tag der mündlichen Prüfung: 10. April 2013 1. Referent: Prof. Dr. Bernhard Schink 2. Referent: Prof. Dr. Andrew W. B. Johnston So eine Arbeit wird eigentlich nie fertig, man muss sie für fertig erklären, wenn man nach Zeit und Umständen das möglichste getan hat. (Johann Wolfgang von Goethe, Italienische Reise, 1787) DANKSAGUNG An dieser Stelle möchte ich mich herzlich bei folgenden Personen bedanken: . Prof. Dr. Alasdair M. Cook (Universität Konstanz, Deutschland), der mir dieses Thema und seine Laboratorien zur Verfügung stellte, . Prof. Dr. Bernhard Schink (Universität Konstanz, Deutschland), für seine spontane und engagierte Übernahme der Betreuung, . Prof. Dr. Andrew W. B. Johnston (University of East Anglia, UK), für seine herzliche und bereitwillige Aufnahme in seiner Arbeitsgruppe, seiner engagierten Unter- stützung, sowie für die Übernahme des Koreferates, . Prof. Dr. Frithjof C. Küpper (University of Aberdeen, UK), für seine große Hilfsbereitschaft bei der vorliegenden Arbeit und geplanter Manuskripte, als auch für die mentale Unterstützung während der letzten Jahre! Desweiteren möchte ich herzlichst Dr. David Schleheck für die Übernahme des Koreferates der mündlichen Prüfung sowie Prof. Dr. Alexander Bürkle, für die Übernahme des Prüfungsvorsitzes sowie für seine vielen hilfreichen Ratschläge danken! Ein herzliches Dankeschön geht an alle beteiligten Arbeitsgruppen der Universität Konstanz, der UEA und des SAMS, ganz besonders möchte ich dabei folgenden Personen danken: . Dr. David Schleheck und Karin Denger, für die kritische Durchsicht dieser Arbeit, der durch und durch sehr engagierten Hilfsbereitschaft bei Problemen, den zahlreichen wissenschaftlichen Diskussionen und für die aufbauenden Worte, .
    [Show full text]
  • Inactivation Mechanisms of Alternative Food Processes on Escherichia Coli O157:H7
    INACTIVATION MECHANISMS OF ALTERNATIVE FOOD PROCESSES ON ESCHERICHIA COLI O157:H7 DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Aaron S. Malone, M.S. ***** The Ohio State University 2009 Dissertation Committee: Approved by Professor Ahmed E. Yousef, Adviser Professor Polly D. Courtney ___________________________________ Professor Tina M. Henkin Adviser Food Science and Nutrition Professor Robert Munson ABSTRACT Application of high pressure (HP) in food processing results in a high quality and safe product with minimal impact on its nutritional and organoleptic attributes. This novel technology is currently being utilized within the food industry and much research is being conducted to optimize the technology while confirming its efficacy. Escherichia coli O157:H7 is a well studied foodborne pathogen capable of causing diarrhea, hemorrhagic colitis, and hemolytic uremic syndrome. The importance of eliminating E. coli O157:H7 from food systems, especially considering its high degree of virulence and resistance to environmental stresses, substantiates the need to understand the physiological resistance of this foodborne pathogen to emerging food preservation methods. The purpose of this study is to elucidate the physiological mechanisms of processing resistance of E. coli O157:H7. Therefore, resistance of E. coli to HP and other alternative food processing technologies, such as pulsed electric field, gamma radiation, ultraviolet radiation, antibiotics, and combination treatments involving food- grade additives, were studied. Inactivation mechanisms were investigated using molecular biology techniques including DNA microarrays and knockout mutants, and quantitative viability assessment methods. The results of this research highlighted the importance of one of the most speculated concepts in microbial inactivation mechanisms, the disruption of intracellular ii redox homeostasis.
    [Show full text]
  • Methylamine As a Nitrogen Source for Microorganisms from a Coastal Marine
    Methylamine as a Nitrogen Source for Microorganisms from a Coastal Marine Environment Martin Tauberta,b, Carolina Grobb, Alexandra M. Howatb, Oliver J. Burnsc, Jennifer Pratscherb, Nico Jehmlichd, Martin von Bergend,e,f, Hans H. Richnowg, Yin Chenh,1, J. Colin Murrellb,1 aAquatic Geomicrobiology, Institute of Ecology, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany bSchool of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK cSchool of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK dDepartment of Molecular Systems Biology, Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany eInstitute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, University of Leipzig, Brüderstraße 32, 04103 Leipzig, Germany fDepartment of Chemistry and Bioscience, University of Aalborg, Fredrik Bajers Vej 7H, 9220 Aalborg East, Denmark. gDepartment of Isotope Biogeochemistry, Helmholtz-Centre for Environmental Research – UFZ, Permoserstrasse 15, 04318 Leipzig, Germany hSchool of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK 1To whom correspondence should be addressed. J. Colin Murrell, Phone: +44 (0)1603 59 2959, Email: [email protected], and Yin Chen, Phone: +44 (0)24 76528976, Email: [email protected] Keywords: marine methylotrophs, 15N stable isotope probing, methylamine, metagenomics, metaproteomics Classification: BIOLOGICAL SCIENCES/Microbiology Short title: Methylamine as a Nitrogen Source for Marine Microbes This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1111/1462-2920.13709 This article is protected by copyright.
    [Show full text]
  • Article-Associated Bac- Teria and Colony Isolation in Soft Agar Medium for Bacteria Unable to Grow at the Air-Water Interface
    Biogeosciences, 8, 1955–1970, 2011 www.biogeosciences.net/8/1955/2011/ Biogeosciences doi:10.5194/bg-8-1955-2011 © Author(s) 2011. CC Attribution 3.0 License. Diversity of cultivated and metabolically active aerobic anoxygenic phototrophic bacteria along an oligotrophic gradient in the Mediterranean Sea C. Jeanthon1,2, D. Boeuf1,2, O. Dahan1,2, F. Le Gall1,2, L. Garczarek1,2, E. M. Bendif1,2, and A.-C. Lehours3 1Observatoire Oceanologique´ de Roscoff, UMR7144, INSU-CNRS – Groupe Plancton Oceanique,´ 29680 Roscoff, France 2UPMC Univ Paris 06, UMR7144, Adaptation et Diversite´ en Milieu Marin, Station Biologique de Roscoff, 29680 Roscoff, France 3CNRS, UMR6023, Microorganismes: Genome´ et Environnement, Universite´ Blaise Pascal, 63177 Aubiere` Cedex, France Received: 21 April 2011 – Published in Biogeosciences Discuss.: 5 May 2011 Revised: 7 July 2011 – Accepted: 8 July 2011 – Published: 20 July 2011 Abstract. Aerobic anoxygenic phototrophic (AAP) bac- detected in the eastern basin, reflecting the highest diver- teria play significant roles in the bacterioplankton produc- sity of pufM transcripts observed in this ultra-oligotrophic tivity and biogeochemical cycles of the surface ocean. In region. To our knowledge, this is the first study to document this study, we applied both cultivation and mRNA-based extensively the diversity of AAP isolates and to unveil the ac- molecular methods to explore the diversity of AAP bacte- tive AAP community in an oligotrophic marine environment. ria along an oligotrophic gradient in the Mediterranean Sea By pointing out the discrepancies between culture-based and in early summer 2008. Colony-forming units obtained on molecular methods, this study highlights the existing gaps in three different agar media were screened for the production the understanding of the AAP bacteria ecology, especially in of bacteriochlorophyll-a (BChl-a), the light-harvesting pig- the Mediterranean Sea and likely globally.
    [Show full text]
  • Smith Bacterial SBP56 Identified As a Cu-Dependent Methanethiol
    Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere EYICE, Özge, MYRONOVA, Nataliia, POL, Arjan, CARRIÓN, Ornella, TODD, Jonathan D, SMITH, Thomas <http://orcid.org/0000-0002-4246-5020>, GURMAN, Stephen J, CUTHBERTSON, Adam, MAZARD, Sophie, MENNINK-KERSTEN, Monique Ash, BUGG, Timothy Dh, ANDERSSON, Karl Kristoffer, JOHNSTON, Andrew Wb, OP DEN CAMP, Huub Jm and SCHÄFER, Hendrik Available from Sheffield Hallam University Research Archive (SHURA) at: http://shura.shu.ac.uk/17252/ This document is the author deposited version. You are advised to consult the publisher's version if you wish to cite from it. Published version EYICE, Özge, MYRONOVA, Nataliia, POL, Arjan, CARRIÓN, Ornella, TODD, Jonathan D, SMITH, Thomas, GURMAN, Stephen J, CUTHBERTSON, Adam, MAZARD, Sophie, MENNINK-KERSTEN, Monique Ash, BUGG, Timothy Dh, ANDERSSON, Karl Kristoffer, JOHNSTON, Andrew Wb, OP DEN CAMP, Huub Jm and SCHÄFER, Hendrik (2018). Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere. The ISME journal, 1 (12), 145-160. Copyright and re-use policy See http://shura.shu.ac.uk/information.html Sheffield Hallam University Research Archive http://shura.shu.ac.uk OPEN The ISME Journal (2017), 1–16 www.nature.com/ismej ORIGINAL ARTICLE Bacterial SBP56 identified as a Cu-dependent methanethiol oxidase widely distributed in the biosphere Özge Eyice1,2,9, Nataliia Myronova1,9, Arjan Pol3, Ornella Carrión4, Jonathan D Todd4, Tom J Smith5, Stephen J Gurman6, Adam Cuthbertson1,
    [Show full text]
  • University of Warwick Institutional Repository
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Warwick Research Archives Portal Repository University of Warwick institutional repository: http://go.warwick.ac.uk/wrap This paper is made available online in accordance with publisher policies. Please scroll down to view the document itself. Please refer to the repository record for this item and our policy information available from the repository home page for further information. To see the final version of this paper please visit the publisher’s website. Access to the published version may require a subscription. Author(s): Hendrik Schäfer, Natalia Myronova and Rich Boden Article Title: Microbial degradation of dimethylsulphide and related C1- sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere Year of publication: 2010 Link to published version: http://dx.doi.org/ 10.1093/jxb/erp355 Publisher statement: This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Journal of Experimental Botany following peer review. The definitive publisher-authenticated version Schäfer, H. et al. (2010). Microbial degradation of dimethylsulphide and related C1-sulphur compounds: organisms and pathways controlling fluxes of sulphur in the biosphere. Journal of Experimental Botany, Vol. 61(2), pp. 315-334 is available online at: http://jxb.oxfordjournals.org/cgi/content/full/61/2/315 Microbial degradation of dimethylsulfide and related C1-sulfur compounds: organisms and pathways controlling fluxes of sulfur in the biosphere Hendrik Schäfer*1, Natalia Myronova1, Rich Boden2 1 Warwick HRI, University of Warwick, Wellesbourne, CV35 9EF, UK 2 Biological Sciences, University of Warwick, Coventry, CV4 7AL, UK * corresponding author Warwick HRI University of Warwick Wellesbourne CV35 9EF Tel: +44 2476 575052 [email protected] For submission to: Journal of Experimental Botany 1 Abstract 2 Dimethylsulfide (DMS) plays a major role in the global sulfur cycle.
    [Show full text]
  • Which Organisms Are Used for Anti-Biofouling Studies
    Table S1. Semi-systematic review raw data answering: Which organisms are used for anti-biofouling studies? Antifoulant Method Organism(s) Model Bacteria Type of Biofilm Source (Y if mentioned) Detection Method composite membranes E. coli ATCC25922 Y LIVE/DEAD baclight [1] stain S. aureus ATCC255923 composite membranes E. coli ATCC25922 Y colony counting [2] S. aureus RSKK 1009 graphene oxide Saccharomycetes colony counting [3] methyl p-hydroxybenzoate L. monocytogenes [4] potassium sorbate P. putida Y. enterocolitica A. hydrophila composite membranes E. coli Y FESEM [5] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) K. pneumonia ATCC13883 P. aeruginosa BAA-1744 composite membranes E. coli Y SEM [6] (unspecified/unique sample type) S. aureus (unspecified/unique sample type) graphene oxide E. coli ATCC25922 Y colony counting [7] S. aureus ATCC9144 P. aeruginosa ATCCPAO1 composite membranes E. coli Y measuring flux [8] (unspecified/unique sample type) graphene oxide E. coli Y colony counting [9] (unspecified/unique SEM sample type) LIVE/DEAD baclight S. aureus stain (unspecified/unique sample type) modified membrane P. aeruginosa P60 Y DAPI [10] Bacillus sp. G-84 LIVE/DEAD baclight stain bacteriophages E. coli (K12) Y measuring flux [11] ATCC11303-B4 quorum quenching P. aeruginosa KCTC LIVE/DEAD baclight [12] 2513 stain modified membrane E. coli colony counting [13] (unspecified/unique colony counting sample type) measuring flux S. aureus (unspecified/unique sample type) modified membrane E. coli BW26437 Y measuring flux [14] graphene oxide Klebsiella colony counting [15] (unspecified/unique sample type) P. aeruginosa (unspecified/unique sample type) graphene oxide P. aeruginosa measuring flux [16] (unspecified/unique sample type) composite membranes E.
    [Show full text]
  • (12) STANDARD PATENT (11) Application No. AU 2010224615 B2 (19) AUSTRALIAN PATENT OFFICE
    (12) STANDARD PATENT (11) Application No. AU 2010224615 B2 (19) AUSTRALIAN PATENT OFFICE (54) Title Dietary supplement (51) International Patent Classification(s) A23K 1/175 (2006.01) A23K1/18 (2006.01) (21) Application No: 2010224615 (22) Date of Filing: 2010.02.12 (87) WIPONo: WO10/106351 (30) Priority Data (31) Number (32) Date (33) Country 0904584.0 2009.03.17 GB (43) Publication Date: 2010.09.23 (44) Accepted Journal Date: 2014.05.08 (71) Applicant(s) Calinnova Ltd (72) Inventor(s) Green, Malcolm Geoffrey (74) Agent / Attorney Davies Collison Cave, Level 14 255 Elizabeth Street, Sydney, NSW, 2000 (56) Related Art ARNBJERG, J. "Hypokalcaemi hos hest. En kasuistik med diskussion (Hypocalcemia in the horse. A case report)" Nord Vet Med, 1980, Volume 32, Issue 5 Pages 207-211 US 2003/0077254 A1 (RAMAEKERS) 24 April 2003 FR 2625415 A1 (UNICOR UNION COOP AGRICOLES) 07 July 1989 HUDSON, NPH et al., "Primary Hypothyroidism in Two Horses" Australian Veterinary Journal, 1999, Volume 77, Number 8, Pages 504-508 GRUBB, T.L. et al., "Hemodynamic Effects of Calcium Gluconate Administered to Conscious Horses" Journal of Veterinary Internal Medicine, 1996, Volume 10 Number 6 Pages 401-404 US 2008/0014304 A1 (ZELLER et al.) 17 January 2008 ANONYMOUS, "Finish Line Thia-cal" [Retrieved on 23 April 2013] Retrieved from internet <URL: http://www.doversaddlery.eom/finish-line-thia-cal-gallon/p/X1-22069/> published on 30 December 2005 ANONYMOUS, "Humavyte" [Retrieved on 23 April 2013] Retrieved from internet <URL: http://web.archive.org/web/20080719131829/http://www.ranvet.com.au/
    [Show full text]
  • Generate Metabolic Map Poster
    Authors: Pallavi Subhraveti Anamika Kothari Quang Ong Ron Caspi An online version of this diagram is available at BioCyc.org. Biosynthetic pathways are positioned in the left of the cytoplasm, degradative pathways on the right, and reactions not assigned to any pathway are in the far right of the cytoplasm. Transporters and membrane proteins are shown on the membrane. Ingrid Keseler Peter D Karp Periplasmic (where appropriate) and extracellular reactions and proteins may also be shown. Pathways are colored according to their cellular function. Csac1394711Cyc: Candidatus Saccharibacteria bacterium RAAC3_TM7_1 Cellular Overview Connections between pathways are omitted for legibility. Tim Holland TM7C00001G0420 TM7C00001G0109 TM7C00001G0953 TM7C00001G0666 TM7C00001G0203 TM7C00001G0886 TM7C00001G0113 TM7C00001G0247 TM7C00001G0735 TM7C00001G0001 TM7C00001G0509 TM7C00001G0264 TM7C00001G0176 TM7C00001G0342 TM7C00001G0055 TM7C00001G0120 TM7C00001G0642 TM7C00001G0837 TM7C00001G0101 TM7C00001G0559 TM7C00001G0810 TM7C00001G0656 TM7C00001G0180 TM7C00001G0742 TM7C00001G0128 TM7C00001G0831 TM7C00001G0517 TM7C00001G0238 TM7C00001G0079 TM7C00001G0111 TM7C00001G0961 TM7C00001G0743 TM7C00001G0893 TM7C00001G0630 TM7C00001G0360 TM7C00001G0616 TM7C00001G0162 TM7C00001G0006 TM7C00001G0365 TM7C00001G0596 TM7C00001G0141 TM7C00001G0689 TM7C00001G0273 TM7C00001G0126 TM7C00001G0717 TM7C00001G0110 TM7C00001G0278 TM7C00001G0734 TM7C00001G0444 TM7C00001G0019 TM7C00001G0381 TM7C00001G0874 TM7C00001G0318 TM7C00001G0451 TM7C00001G0306 TM7C00001G0928 TM7C00001G0622 TM7C00001G0150 TM7C00001G0439 TM7C00001G0233 TM7C00001G0462 TM7C00001G0421 TM7C00001G0220 TM7C00001G0276 TM7C00001G0054 TM7C00001G0419 TM7C00001G0252 TM7C00001G0592 TM7C00001G0628 TM7C00001G0200 TM7C00001G0709 TM7C00001G0025 TM7C00001G0846 TM7C00001G0163 TM7C00001G0142 TM7C00001G0895 TM7C00001G0930 Detoxification Carbohydrate Biosynthesis DNA combined with a 2'- di-trans,octa-cis a 2'- Amino Acid Degradation an L-methionyl- TM7C00001G0190 superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis (E.
    [Show full text]
  • Use of Endophytic and Rhizosphere Bacteria to Improve
    Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils by Autochthonous Betula celtiberica Victoria Mesa, Alejandro Navazas, Ricardo González, Aida González, Nele Weyens, Béatrice Lauga, Jose Luis R. Gallego, Jesús Sánchez, Ana Isabel Peláez To cite this version: Victoria Mesa, Alejandro Navazas, Ricardo González, Aida González, Nele Weyens, et al.. Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Indus- trial Soils by Autochthonous Betula celtiberica. Applied and Environmental Microbiology, American Society for Microbiology, 2017, 83 (8), 10.1128/AEM.03411-16. hal-01644095 HAL Id: hal-01644095 https://hal.archives-ouvertes.fr/hal-01644095 Submitted on 11 Jan 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. ENVIRONMENTAL MICROBIOLOGY crossm Use of Endophytic and Rhizosphere Bacteria To Improve Phytoremediation of Arsenic-Contaminated Industrial Soils Downloaded from by Autochthonous Betula celtiberica Victoria Mesa,a Alejandro Navazas,b,c Ricardo González-Gil,b Aida González,b Nele Weyens,c Béatrice Lauga,d Jose Luis R. Gallego,e Jesús Sánchez,a Ana Isabel Peláeza a Departamento de Biología Funcional–IUBA, Universidad de Oviedo, Oviedo, Spain ; Departamento de Biología http://aem.asm.org/ de Organismos y Sistemas–IUBA, Universidad de Oviedo, Oviedo, Spainb; Centre for Environmental Sciences (CMK), Hasselt University, Hasselt, Belgiumc; Equipe Environnement et Microbiologie (EEM), CNRS/Univ.
    [Show full text]