Arifin Sandhi

Total Page:16

File Type:pdf, Size:1020Kb

Arifin Sandhi ARSENIC REMOVAL BY PHYTOFILTRATION AND SILICON TREATMENT A POTENTIAL SOLUTION FOR LOWERING ARSENIC CONCENTRATIONS IN FOOD CROPS Arifin Sandhi April 2017 TRITA-LWR PHD-2017:02 ISSN 1650-8602 ISBN 978-91-7729-332-3 Arifin Sandhi TRITA-LWR PHD-2017:02 © Arifin Sandhi 2017 Doctoral Thesis in Land and Water Resources Engineering Department of Sustainable Development, Environmental Science & Engineering KTH Royal Institute of Technology SE-100 44 STOCKHOLM, Sweden Reference to this publication should be written as: Sandhi, A (2017) “Arsenic removal by phytofiltration and silicon treatment-A potential solution for lowering arsenic concentrations in food crops” TRITA-LWR PHD-2017:02 ii Arsenic phytofiltration and silicon application-lowering arsenic concentrations in food crops Dedicated to My Parents & the millions of people affected by arsenic contamination around the globe iii Arifin Sandhi TRITA-LWR PHD-2017:02 iv Arsenic phytofiltration and silicon application-lowering arsenic concentrations in food crops SUMMARY IN SWEDISH Halvmetallen arsenik (As) tillhör ett av de grundämnen som blivit ett globalt hälsohot. Mer än 100 miljoner människor runt om i världen har redan direkt eller indirekt påverkats av denna metall som en förorening. Befolkningen i många utvecklingsländer får sitt dricksvatten från lokala brunnar med arsenikhaltigt vatten och där reningsmetoder saknas. Förutom till dricksvatten, används grundvatten till jordbruket och om det är förorenat med arsenik kan det tas upp i livsmedelsgrödor. Vid odling av ris är risfälten ofta vattendränkta för att skapa förutsättning för tillväxt och omfattande användning av grundvatten påverkar upptaget av arsenik i riskorn. Ett antal förorenade områden finns särskilt i södra Asien, där innehållet av arsenik i ris lokalt är relativt högre än ris från andra delar av världen. Jämfört med maximalt tillåtet innehåll i dricksvatten (10 mikrogram/L eller 10 ppb), så finns inte regler för tillåtet innehåll i livsmedel i flertalet utvecklingsländer. I avhandlingen undersöktes innehållet av arsenik i hybridiserade sorter av ris och i lokala rissorter (Oryza sativa) för att bestämma variationen beroende på vilka jordbruksmetoder (t.ex. bevattningskrav) som använts. Resultaten visade för såväl riskorn som skal att det beror på den s.k. ackumuleringsfaktorn (AF). Detta AF värde verkade påverkas av den specifika odlingsjorden och koncentration av arsenik i denna samt de olika rissorterna. Genom screening av rissorternas AF värde kan man få en effektiv strategi för att minska upptaget av arsenik i livsmedelskedjan. Följaktligen bör också innehållet av arsenik i bladgrönsaker uppmärksammas särskilt då de konsumeras som råa grönsaker (t.ex. sallad). Användningen av kisel (Si), ett av de mest förekommande grundämnena i jordskorpan och med en kemi som liknar arsenikens, har befunnits kunna minska upptaget i spannmålsgrödor t exvete. I avhandlingen undersöktes hur koncentrationen av arsenik i sallad (Lactuca sativa) påverkades av tillförsel av kisel och det konstaterades att det kunde minska koncentrationen i den ätliga delen av salladen. Slutsatsen var att kisel kan tillföras jorden för att arsenikupptaget ska minska till grödor och grönsaker, särskilt i förorenade områden. Det är känt att vissa växter har särskilt stor förmåga att ta upp arsenik och ansamla det i vävnaden. Denna egenskap kan utnyttjas vid en saneringsmetod av arsenikförorenad mark eller vatten som kallas fytoremediering. Jämfört med mekanisk och kemisk sanering, har växtbaserade saneringstekniker blivit uppmärksammade på grund av att de är ekonomiska och har fördelar ur hållbarhetsperspektiv. Bland de växtarter som inte undersökts så mycket är fytoremediering mha undervattensväxter s.k. fytofiltrering. En akvatisk mossart (Warnstorfia fluitans) som växer i gruvområden i norra delen av Sverige, där hög koncentration av arsenik konstaterades i vattensystemen, studerades med avseende på fytofiltrering. I avhandlingen undersöktes därför om denna vattenmossa har förmåga att binda arsenik som är löst i vatten och v Arifin Sandhi TRITA-LWR PHD-2017:02 om dess upptag från vattnet kan bidra till att minska innehållet av arsenik i livsmedelsgrödor. Vattenmossan (W. fluitans) odlades i vatten med låg koncentration av arsenik (74 µg As/L) och försöket visade ett snabbt avlägsnande (upp till 82%) inom kort tid. Mossan befanns fast fixera oorganiska arsenikformer (arsenat och arsenit) i sin växtvävnad. Slutsatsen av försöket var att denna vattenmossa har hög potential för fytofiltrering av arsenik i synnerhet i tempererade områden. När det gäller effekter av vattnets pH, temperatur och syresättning på mossans arsenikupptag så visade det sig att låga pH-nivåer (pH 2,5) orsakade stress hos mossan och lägre upptag oavsett oorganisk form av arsenik. Förmågan att hålla kvar arsenik i vävnaden testades vid både låga (12°C) och höga (30°C) vattentemperaturer. Inga tecken syntes på att arsenik skulle frisläppas utom när vattnet innehöll arsenat efter behandlingstiden 96 timmar. Lågt syreinnehåll i vattnet visade sig påverka arsenik upptaget positivt jämfört med hög syresättning. Möjligheten att använda den studerade vattenmossan som fytofilter i en anlagd våtmark för att rena vattnet innan det används för salladsodling, visade att metoden avsevärt skulle minska innehållet av arsenik i ätbara delar. Slutsatsen är att lämpliga strategier att minska koncentrationen av arsenik i livsmedel t ex ris, är att tillämpa screening av AF-värdet på grödor i hot-spot områden eller att tillföra kisel under odlingen. Förutom dessa verkar den studerade vattenmossan ha potential att ackumulera arsenik från förorenat vatten, åtminstone i tempererade klimatområden, och därmed bidra till en hållbar och miljövänlig lösning för att minska innehållet i grödor vid bevattning. vi Arsenic phytofiltration and silicon application-lowering arsenic concentrations in food crops ACKNOWLEDGMENT First, I would like to warmly acknowledge my supervisor at Stockholm University, Maria Greger, who has always been full of creativeness, motivation and support. The research question that I focused on in my PhD thesis was very unique and we could not find any external agency funding in the beginning, despite intense efforts. Maria realised the magnitude and significance of this problem and in discussions she encouraged me to take on the challenge. I been working with her since my Master’s studies at Stockholm University in 2009 and she is really a great group leader and the best supervisor any student could ask for. I was fortunate to have such a mentor in the initial period of my research career. I strongly believe the passion for research in my mind was greatly nourished by her continuous support and encouragement. I wish to be a similar example to my future students, providing the same level of inspiration, motivation and kindness that she gave to me. I also want to thank my principal supervisor at KTH, Gunno Renman, for providing real-time support at a very crucial time in my PhD studies, without you it would have been almost an impossible task to move forward. Gunnar Jacks, for providing practical help during the initial period of my PhD studies at KTH and also during the reviewing process for the rice manuscript. Tommy Landberg, I deeply acknowledge your support since my postgraduate studies started in Sweden. Your kind smile and help in the learning process in the laboratory made me confident in different kinds of critical analysis, especially arsenic speciation in plant samples. I am sure that in my future career, I will always miss your smile in the laboratory. My former colleague from the Plant Metal Research Group at Stockholm University, Claes Bergqvist, I owe you great thanks. You have given me so much practical information about arsenic analysis. Besides the laboratory, you were one of the best office roomies in my whole life. I will miss your cheerful talk in lunch hours. Tariq Javed, thanks a lot for your kind support during your time in the Plant Metal group. Sylvia Lindberg, I will never forget your caring smile during my whole study period. Special thanks to Hsinyu Wang for your outstanding work and help during one of my experiments. You did great work during your exchange study time in our group. A number of guest researchers worked in our Plant Metal group during my PhD studies, I am really thankful to Kader vai, Kabir vai, Marek, Basir, Jieyuan, Maria for your nice company. Staffan Mellvig, thank you very much for your time and helpful advice. You inspired me a lot to go to the gym after work! Eva Roubeau, your exchange time in our Plant Metal group was so memorable and joyful, many thanks from me. Nicoleta and Lillvor, thanks a lot for your help in the laboratory. Thanks to Olle Wahlberg, Dept. of Chemical Engineering, KTH, for giving me the chance to take part in the water chemistry course, which I enjoyed very much. I also acknowledge my co-authors in my scientific articles: Meththika Vithanage, Beata Dabrowska, Arun Mukherjee and Prosun Bhattacharya. vii Arifin Sandhi TRITA-LWR PHD-2017:02 Head of the department Ove Eriksson, former head Peter Hambäck and head of Plant Physiology Division Lisbeth Jonsson from the Dept. of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, are greatly acknowledged for giving me their permission to continue my research work and to use the facilities at SU. The faculties at DEEP, Stockholm University, especially Ulla, Jonas, Clare, Mats, Barbro, Ellen, Sara, Lotta, Lina, and PhD student Konrad, Pil, Thomas, Van, Chen, Olle and Marco, all of you are greatly acknowledged for your support and good company during my time in DEEP. Thanks also to DEEP staff who provided administrative and logistics support during my studies, especially Siw, Åsa, Erica, Johan, Lars, Erik, Susanne, Anna, Ingela, Ahmed and Peter. Special thanks to my work colleagues and friends Tobias Robinson, Clara Neuschütz and Daniel Nordstrand for making my study period a good time. To my former and present colleagues from Land and Water Resources Engineering Division, KTH, Jon Petter, Helfrid, Ashis, Carin, Alireza, Agnieszka, Lily, Zou, Rajabu, Ezekiel, Lea and so many others! Thanks a lot – I had a really good time there.
Recommended publications
  • (Warnstorfia Fluitans (Hedw.) Loeske) from a High Arctic Lake: Effect of Nutrient Concentration Tenna Riis,1,2 Birgit Olesen,1 Casper K
    ARCTIC VOL. 63, NO. 1 (MARCH 2010) P. 100–106 Growth Rate of an Aquatic Bryophyte (Warnstorfia fluitans (Hedw.) Loeske) from a High Arctic Lake: Effect of Nutrient Concentration Tenna RIIS,1,2 BIrgIT OLESen,1 CASPer K. Katborg1 and KIRSten S. ChrIStoFFerSen3 (Received 12 September 2008; accepted in revised form 7 April 2009) ABSTRACT. The High Arctic is one of the regions most susceptible to climate change on a global scale. Increased temperature, precipitation, and cloud cover are anticipated in the region, with consequent increases in nutrient runoff to surface waters. Mosses are often the dominant submerged macrophyte in Arctic and High Arctic lakes. If the growth rate of mosses in these lakes is nutrient-limited, then production could increase with climate changes that result in higher nutrient concentrations. We conducted a laboratory study to 1) measure the growth response of Warnstorfia fluitans (Hedw.) Loeske from a High Arctic lake to nitrogen and phosphorus availability; and 2) determine whether growth rate was N- or P-limited by examining its relationship to internal P and N content. The growth rates of W. fluitans were generally low, ranging from 0.003 to 0.012 day-1. The growth rates increased with increasing plant P content, but not with increasing N content, indicating that moss growth was P-limited at low P availability in the experiment. Critical plant P concentration for maximum growth rate was 0.086% dry weight. This is the first time a critical P threshold has been calculated. The results imply that if climate changes result in increased P concentrations in surface waters, a higher production of moss could occur in High Arctic lakes.
    [Show full text]
  • Bibliography of Publications 1974 – 2019
    W. SZAFER INSTITUTE OF BOTANY POLISH ACADEMY OF SCIENCES Ryszard Ochyra BIBLIOGRAPHY OF PUBLICATIONS 1974 – 2019 KRAKÓW 2019 Ochyraea tatrensis Váňa Part I. Monographs, Books and Scientific Papers Part I. Monographs, Books and Scientific Papers 5 1974 001. Ochyra, R. (1974): Notatki florystyczne z południowo‑wschodniej części Kotliny Sandomierskiej [Floristic notes from southeastern part of Kotlina Sandomierska]. Zeszyty Naukowe Uniwersytetu Jagiellońskiego 360 Prace Botaniczne 2: 161–173 [in Polish with English summary]. 002. Karczmarz, K., J. Mickiewicz & R. Ochyra (1974): Musci Europaei Orientalis Exsiccati. Fasciculus III, Nr 101–150. 12 pp. Privately published, Lublini. 1975 003. Karczmarz, K., J. Mickiewicz & R. Ochyra (1975): Musci Europaei Orientalis Exsiccati. Fasciculus IV, Nr 151–200. 13 pp. Privately published, Lublini. 004. Karczmarz, K., K. Jędrzejko & R. Ochyra (1975): Musci Europaei Orientalis Exs‑ iccati. Fasciculus V, Nr 201–250. 13 pp. Privately published, Lublini. 005. Karczmarz, K., H. Mamczarz & R. Ochyra (1975): Hepaticae Europae Orientalis Exsiccatae. Fasciculus III, Nr 61–90. 8 pp. Privately published, Lublini. 1976 006. Ochyra, R. (1976): Materiały do brioflory południowej Polski [Materials to the bry‑ oflora of southern Poland]. Zeszyty Naukowe Uniwersytetu Jagiellońskiego 432 Prace Botaniczne 4: 107–125 [in Polish with English summary]. 007. Ochyra, R. (1976): Taxonomic position and geographical distribution of Isoptery‑ giopsis muelleriana (Schimp.) Iwats. Fragmenta Floristica et Geobotanica 22: 129–135 + 1 map as insertion [with Polish summary]. 008. Karczmarz, K., A. Łuczycka & R. Ochyra (1976): Materiały do flory ramienic środkowej i południowej Polski. 2 [A contribution to the flora of Charophyta of central and southern Poland. 2]. Acta Hydrobiologica 18: 193–200 [in Polish with English summary].
    [Show full text]
  • Mosses: Weber and Wittmann, Electronic Version 11-Mar-00
    Catalog of the Colorado Flora: a Biodiversity Baseline Mosses: Weber and Wittmann, electronic version 11-Mar-00 Amblystegiaceae Amblystegium Bruch & Schimper, 1853 Amblystegium serpens (Hedwig) Bruch & Schimper var. juratzkanum (Schimper) Rau & Hervey WEBER73B. Amblystegium juratzkanum Schimper. Calliergon (Sullivant) Kindberg, 1894 Calliergon cordifolium (Hedwig) Kindberg WEBER73B; HERMA76. Calliergon giganteum (Schimper) Kindberg Larimer Co.: Pingree Park, 2960 msm, 25 Sept. 1980, [Rolston 80114), !Hermann. Calliergon megalophyllum Mikutowicz COLO specimen so reported is C. richardsonii, fide Crum. Calliergon richardsonii (Mitten) Kindberg WEBER73B. Campyliadelphus (Lindberg) Chopra, 1975 KANDA75 Campyliadelphus chrysophyllus (Bridel) Kanda HEDEN97. Campylium chrysophyllum (Bridel) J. Lange. WEBER63; WEBER73B; HEDEN97. Hypnum chrysophyllum Bridel. HEDEN97. Campyliadelphus stellatus (Hedwig) Kanda KANDA75. Campylium stellatum (Hedwig) C. Jensen. WEBER73B. Hypnum stellatum Hedwig. HEDEN97. Campylophyllum Fleischer, 1914 HEDEN97 Campylophyllum halleri (Hedwig) Fleischer HEDEN97. Nova Guinea 12, Bot. 2:123.1914. Campylium halleri (Hedwig) Lindberg. WEBER73B; HERMA76. Hypnum halleri Hedwig. HEDEN97. Campylophyllum hispidulum (Bridel) Hedenäs HEDEN97. Campylium hispidulum (Bridel) Mitten. WEBER63,73B; HEDEN97. Hypnum hispidulum Bridel. HEDEN97. Cratoneuron (Sullivant) Spruce, 1867 OCHYR89 Cratoneuron filicinum (Hedwig) Spruce WEBER73B. Drepanocladus (C. Müller) Roth, 1899 HEDEN97 Nomen conserv. Drepanocladus aduncus (Hedwig) Warnstorf WEBER73B.
    [Show full text]
  • Warnstorfia Fluitans Drepanocladus Fluitans Floating Hook-Moss Key 321
    Hypnales Warnstorfia fluitans Drepanocladus fluitans Floating Hook-moss Key 321 2 mm Slightly curved leaves Identification This lax, straggling, dingy, dark green pleurocarp lacks red tones. Its leaves are always curved, but seldom very strongly so. This and its long, irregular branches give W. fluitans a distinctive appearance. Rhizoids are sometimes produced on the leaf tip. Shoots may be many centimetres long, and leaves are 3–5.5 mm long. Curved, cylindrical capsules occasionally form, borne on a seta about 4–8 cm long. Similar species Typical plants of W. exannulata (p. 716) look strikingly different thanks to their orange or red colours, more strongly curved leaves, shorter, more regular branches and more upright growth form. However, W. fluitans and W. exannulata both vary in appearance and can be very hard to distinguish. The large cells in the basal angles of the leaves of W. exannulata, visible through a hand lens when leaves are stripped from the stem and held between finger nails, are different from the small ones ofW. fluitans, but this should be confirmed microscopically. Otherwise, habitat is the best pointer for distinguishing W. fluitans from Drepanocladus aduncus (p. 714), lax plants of which can look identical in the field –D. aduncus grows in nutrient-rich, neutral or base-rich conditions. If rhizoids are present on the leaf tip, a specimen cannot be D. aduncus. Habitat Typical of nutrient-poor, base-poor, still water, especially pools fed by rainwater in the uplands. It may grow among floating lawns ofSphagnum cuspidatum or as the sole bryophyte, usually in unshaded places or below a sparse cover of bottle sedge (Carex rostrata).
    [Show full text]
  • Comparison of Habitat Requirements of the Mosses Hamatocaulis Vernicosus, Scorpidium Cossonii and Warnstorfia Exannulata in Different Parts of Temperate Europe
    Preslia 80: 399–410, 2008 399 Comparison of habitat requirements of the mosses Hamatocaulis vernicosus, Scorpidium cossonii and Warnstorfia exannulata in different parts of temperate Europe Porovnání stanovištních nároků mechů Hamatocaulis vernicosus, Scorpidium cossonii a Warnstorfia exan- nulata v různých částech temperátní Evropy Táňa Š t e c h o v á1, Michal H á j e k2,3, Petra H á j k o v á2,3 & Jana N a v r á tilová2,3 1Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 31, CZ–370 05 České Budějovice, Czech Republic, e-mail: [email protected]; 2De- partment of Botany and Zoology, Masaryk University, Kotlářská 2, CZ-611 37 Brno, Czech Republic, e-mail: [email protected], [email protected], [email protected]; 3Institute of Botany, Academy of Sciences of the Czech Republic, Poříčí 3b, CZ-60300 Brno, Czech Republic Štechová T., Hájek M., Hájková P. & Navrátilová J. (2008): Comparison of habitat requirements of the mosses Hamatocaulis vernicosus, Scorpidium cossonii and Warnstorfia exannulata in different parts of temperate Europe. – Preslia 80: 399–410. Habitat affinities of the red-listed and EU Habitat Directive moss species Hamatocaulis vernicosus and the more widely distributed allied species Scorpidium cossonii and Warnstorfia exannulata were analysed. Ecological preferences of these fen mosses, with respect to water pH, water conduc- tivity, Ellenberg’s moisture and nutrient indicator values, were compared in three different Euro- pean locations (Bohemian Massif, the West Carpathians and Bulgaria) using logistic regressions fitted by means of Huisman-Olff-Fresco models. Inter-specific co-occurrences of the species were also investigated.
    [Show full text]
  • Tracing a Hornwort-Consuming Beast
    Volume 86 January 1996 ISSN 0253-4738 Contents Tracing a hornwort-consuming beast .................... 1 Graduate Assistantships in Bryology .................... 2 Biographies of German Bryologists ...................... 2 New addresses ...................................................... 2 Nees von Esenbeck, Christian Gottfried Daniel (1776-1858) .................................................... 3 BRYONET is running .......................................... 4 News from the Bryology Lab., Kumaon Univ ....... 4 Some Reminiscences of Olle Mårtensson .............. 4 News from Helsinki .............................................. 5 IAB Conference, Mexico City 1995 ..................... 6 Flora Neotropica: progress report for 1995 ........... 7 Cryptogamica Helvetica ....................................... 7 New editors of the Bryological Times ................... 8 New publications .................................................. 8 Bryology revival at the University of Kentucky .... 9 Kinabalu Guide again available ........................... 9 DIARY ............................................................... 10 Tracing a hornwort-consuming beast Irene Bisang, Department of Botany, Stockholm University, S-106 91 Stockholm Heike Hofmann, Institut für Systematische Botanik, Zollikerstrasse 107, CH-8008 Zürich Luc Lienhard, Unterer Quai 14, CH-2503 Biel As usually in autumn, we collected (Bisang 1995). Therefore, it was very found. The larvae are about 1.5 cm long plants of Anthoceros agrestis Paton and surprising and unexpected
    [Show full text]
  • Bryological Notes Lectotypification of Bryum Moravicum Podp. (Bryopsida
    Journal of Bryology (2005) 27: 000–000 Bryological Notes Lectotypification of Bryum moravicum Podp. (Bryopsida: Bryaceae) Bryum moravicum was recently adopted (Holyoak, 2004) as The same taxon has also been incorrectly referred to in the oldest name for the species named as Bryum laevifilum recent literature as B. flaccidum Brid. or B. subelegans by Syed (1973), a European member of the Bryum Kindb. capillare Hedw. complex with filiform axillary gemmae Josef Podpeˇra often labelled more than one specimen as that commonly grows as an epiphyte on deciduous trees. type when he introduced a new name. In these cases it is Figure 1. Four leaves from lectotype of Bryum moravicum Podp. to show variation in leaf shape. Note presence of filamentous gemmae. Journal of Bryology jbrNotes.3d 5/4/05 23:37:59 The Charlesworth Group, Wakefield +44(0)1924 369598 - Rev 7.51n/W (Jan 20 2003) 2 BRYOLOGICAL NOTES desirable to locate the relevant specimens, check their identification and designate a lectotype to ensure that the name is correctly applied. Both Syed (1973) and Holyoak (2004) studied a specimen labelled as a type of Bryum moravicum by Podpeˇra that is housed in the Stockholm herbarium (S). However, in the original description Podpeˇra (1906) stated that his newly described species grew ‘in several places’, so that it might be inferred that several type specimens existed in his herbarium. Such additional type material might show greater variability than the specimen in S or perhaps even belong to other taxa within the Bryum capillare complex. The present paper describes the additional type material of Bryum moravicum and designates a lectotype.
    [Show full text]
  • Biodiversity
    Appendix I Biodiversity Appendix I1 Literature Review – Biodiversity Resources in the Oil Sands Region of Alberta Syncrude Canada Ltd. Mildred Lake Extension Project Volume 3 – EIA Appendices December 2014 APPENDIX I1: LITERATURE REVIEW – BIODIVERSITY RESOURCES IN THE OIL SANDS REGION OF ALBERTA TABLE OF CONTENTS PAGE 1.0 BIOTIC DIVERSTY DATA AND SUMMARIES ................................................................ 1 1.1 Definition ............................................................................................................... 1 1.2 Biodiversity Policy and Assessments .................................................................... 1 1.3 Environmental Setting ........................................................................................... 2 1.3.1 Ecosystems ........................................................................................... 2 1.3.2 Biota ...................................................................................................... 7 1.4 Key Issues ............................................................................................................. 9 1.4.1 Alteration of Landscapes and Landforms ............................................. 9 1.4.2 Ecosystem (Habitat) Alteration ........................................................... 10 1.4.3 Habitat Fragmentation and Edge Effects ............................................ 10 1.4.4 Cumulative Effects .............................................................................. 12 1.4.5 Climate Change .................................................................................
    [Show full text]
  • Volume 1, Chapter 8-1: Nutrient Relations: Requirements and Sources
    Glime, J. M. 2017. Nutrient Relations: Requirements and Sources. Chapt. 8-1. In: Glime, J. M. Bryophyte Ecology. Volume 1. 8-1-1 Physiological Ecology. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 17 July 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 8-1 NUTRIENT RELATIONS: REQUIREMENTS AND SOURCES TABLE OF CONTENTS What Do Bryophytes Require? ........................................................................................................................... 8-1-2 Nutrient Requirements ........................................................................................................................................ 8-1-2 Macronutrients ............................................................................................................................................. 8-1-4 Nitrogen ................................................................................................................................................ 8-1-4 Phosphorus ............................................................................................................................................ 8-1-5 N:P Ratios ............................................................................................................................................. 8-1-6 Calcium and Magnesium ...................................................................................................................... 8-1-6 Iron .......................................................................................................................................................
    [Show full text]
  • MOSS BASED CONSTRUCTED WETLAND SYSTEM: IS IT POSSIBLE to USE AQUATIC MOSS (Warnstorfia Fluitans) for REMOVAL of AS in an ECO-FRIENDLY APPROACH?
    Linnaeus ECO-TECH 2018 Kalmar, Sweden, November 19-21, 2018 MOSS BASED CONSTRUCTED WETLAND SYSTEM: IS IT POSSIBLE TO USE AQUATIC MOSS (Warnstorfia fluitans) FOR REMOVAL OF AS IN AN ECO-FRIENDLY APPROACH? Arifin Sandhi1,2 Maria Greger1 1) Department of Ecology, Environmental Science, Stockholm University, SE-114 18 Stockholm, Sweden 2) Department of Biology and Environmental Science, Linnaeus University, SE- 391 82 Kalmar, Sweden Abstract The heavy metal and metalloid contaminated groundwater is considered as one of the major global environmental disasters that need sustainable solutions. One sustainable environment- friendly solution is using plant-based remediation, or phytoremediation. For contaminated water aquatic plant based phytofiltration could be applied. A Swedish aquatic moss species (Warnstorfia fluitans) have been discovered to accumulate high levels of As (arsenic) from the water. In a number of areas in Sweden, the As content in the groundwater is high due to mining activities and geochemical conditions. Our hypothesis was that since this moss species could accumulate As from contaminated water it would be possible to apply in constructed wetland system for removal of As from water. The aim of this study was to investigate the removal of As from the outlet water by using W. fluitans in constructed mesocosm type wetland systems with various water flow speeds under greenhouse conditions. Besides these, As content in the vegetables (lettuce, Latuca sativa) grown in this outlet water was also analysed. The total As concentration was analysed with hydride generated atomic absorption spectrophotometry (HG- AAS). Results showed that W. fluitans could reduce the As concentration in the water with 36 and 56% from initial As concentration at high (5 mL/min) and low (1.5 mL/min) water flow rate, respectively.
    [Show full text]
  • Warnstorfia (Bryopsida, Calliergonaceae) in the Iberian Peninsula
    Cryptogamie, Bryologie, 2006, 27 (2): 225-239 © 2006 Adac. Tous droits réservés Warnstorfia (Bryopsida, Calliergonaceae) in the Iberian Peninsula EstherFUERTESa*, G.OLIVÁNb and M.ACÓNc a Departamento de Biología Vegetal I, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain ([email protected]) b Departamento de Biología Vegetal I, Facultad de Biología, Universidad Complutense de Madrid, E-28040 Madrid, Spain ([email protected]) c Departamento de Biología (Botánica), Facultad de Ciencias, Universidad Autónoma de Madrid, E-28049 Madrid, Spain ([email protected]) (Received 5 February 2004 , accepted 18 November 2004) Abstract – A revision of Warnstorfia Loeske from the Iberian Peninsula has been undertaken based on examination of two hundred and four herbarium specimens. The following species are recognized for the Spanish bryological flora: W. exannulata (Schimp.) Loeske, W. fluitans (Hedw.) Loeske and W. sarmentosa (Wahlenb.) Hedenäs. W. exannulata is confirmed in Portugal and Andorra and W. fluitans is excluded from the checklist for Portugal and Balearic Islands. All specimens determined in Iberian herbaria as Drepanocladus aduncus var. asturicus (Renauld) Riehm., D. exannulatus subfo. falcifolius Moenk.,D. exannulatus var. alpinus (Grav.) Wijk & Margad. and D. fluitans var. falcatus (C.E.O. Jensen) G. Roth, have been re-identified as Warnstorfia exannulata. Warnstorfia exannulata is common in the mountainous areas of the Eurosiberian and Mediterranean Regions of the northern and central part of the Iberian Peninsula, in three distinct areas: Pyrenees, Iberian-Atlantic Ranges (Galician-Portuguese Massif, Cantabrian Range, and Central Range), and Sierra Nevada (south Spain), although it is very rare in the latter. W. fluitans and W.
    [Show full text]
  • Volume 2, Chapter 4-3: Invertebrates: Nematodes
    Glime, J. M. 2017. Invertebrates: Nematodes. Chapt. 4-3. In: Glime, J. M. Bryophyte Ecology. Volume 2. Bryological 4-3-1 Interaction. Ebook sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 19 April 2021 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology2/>. CHAPTER 4-3 INVERTEBRATES: NEMATODES TABLE OF CONTENTS Nematoda – Roundworms................................................................................................................................... 4-3-2 Densities and Richness........................................................................................................................................ 4-3-3 Habitat Needs...................................................................................................................................................... 4-3-3 Moisture Requirements................................................................................................................................ 4-3-3 Food Supply................................................................................................................................................. 4-3-4 Quality of Food ............................................................................................................................................ 4-3-4 Warming Effect among Bryophytes............................................................................................................. 4-3-4 Unusual Bryophyte Dwellings ....................................................................................................................
    [Show full text]