Tracing a Hornwort-Consuming Beast

Total Page:16

File Type:pdf, Size:1020Kb

Tracing a Hornwort-Consuming Beast Volume 86 January 1996 ISSN 0253-4738 Contents Tracing a hornwort-consuming beast .................... 1 Graduate Assistantships in Bryology .................... 2 Biographies of German Bryologists ...................... 2 New addresses ...................................................... 2 Nees von Esenbeck, Christian Gottfried Daniel (1776-1858) .................................................... 3 BRYONET is running .......................................... 4 News from the Bryology Lab., Kumaon Univ ....... 4 Some Reminiscences of Olle Mårtensson .............. 4 News from Helsinki .............................................. 5 IAB Conference, Mexico City 1995 ..................... 6 Flora Neotropica: progress report for 1995 ........... 7 Cryptogamica Helvetica ....................................... 7 New editors of the Bryological Times ................... 8 New publications .................................................. 8 Bryology revival at the University of Kentucky .... 9 Kinabalu Guide again available ........................... 9 DIARY ............................................................... 10 Tracing a hornwort-consuming beast Irene Bisang, Department of Botany, Stockholm University, S-106 91 Stockholm Heike Hofmann, Institut für Systematische Botanik, Zollikerstrasse 107, CH-8008 Zürich Luc Lienhard, Unterer Quai 14, CH-2503 Biel As usually in autumn, we collected (Bisang 1995). Therefore, it was very found. The larvae are about 1.5 cm long plants of Anthoceros agrestis Paton and surprising and unexpected to realise at and of a dirty-grey, rather unspecific Phaeoceros carolinianus (Michx.) one of the usual controls that all (not to say boring) appearance but have Prosk. in a number of arable fields in hornworts had disappeared! In one of a characteristically looking rear end and the surroundings of Bern, Switzerland, the vessels in Switzerland and in that could therefore be recognised as crane- to provide material for student courses. transported to Sweden, not the slight- fly larvae of the genus Tipula (family The hornworts were divided into three est trace of a thallus or a capsule could Tipulidae of the order Diptera). The rear portions which were placed, on their be detected. The third part of the col- end appears like a grimace due to two original substrate, into small flat pots. lection, however, still grew well and breathing pores and six club-like proc- These were put on moist paper in plas- sporophyte maturation continued. esses. Larvae of crane-flies (daddy- tic vessels and covered with a transpar- It has been observed before in the field long-legs) live on living or dead plant ent foil. Two of the jars stayed in Swit- that hornworts can decay rather fast af- material, depending on the species, and zerland and one was brought to Swe- ter dying. However, it usually takes may occur in the soil in large numbers. den. All collections were kept in a win- more than just a few days and remains It was interesting to notice that horn- dow under natural light conditions, the of sporophytes or of Nostoc colonies can worts have apparently been the selected former at about 10 to 15 °C, the latter often be discovered on the soil surface. diet since plants of Bryum sp. in one of at room temperature. At intervals of a What had thus happened in the culture the collections maintained in Switzer- few days, the pots were checked and soil vessels? Drought? Presumably not, land, and a few phanerogam seedlings and paper moistened if necessary by since the soil was still moist in both pots growing in the pot kept in Sweden re- adding a few drops of water. This tech- after the disappearance of the horn- mained untouched. nique for cultivating hornworts has been worts. Sabotage? This seems also very Earlier field experiments have re- proved to be successful in earlier ex- unlikely - whoever would weed horn- vealed that slugs may feed on horn- periments: they increased in size, de- worts? A careful examination of the pots worts, especially on green sporophytes veloped sporophytes and some popu- brought the potential robber to light. In (Bisang, unpubl. data). This corre- lations of both taxa survived several the soil of both cultures where the sponds with previous reports in the lit- years under the conditions described hornworts had vanished a .... larva was Continued on page 2 2 The Bryological Times No. 86, 1996 Continued from page 1 erature on snails grazing immature Biographies of German Bryologists bryophyte capsules (see, for example, In the past, German bryologists were Hampe, Carl Müller, Limpricht, Mön- Davidson & Longton 1987, Davidson numerous compared with other coun- kemeyer and Roth. A great part of et al. 1989). However, the observation tries. The dictionary of German bryo- bryophyte taxa was described by Ger- that bryophyte gametophytes are eaten logists (Frahm 1995) lists several hun- mans, especially in the last century. by invertebrates is quite unusual. dred professionals, amateurs and Many German bryologists were active We conclude that the crane-fly (Tipu- bryophyte collectors. Many of them be- only on a local scale but considerably la) larvae have most probably eaten up came very famous, e.g. Dillenius was enhanced the knowledge the bryology the living plants of Anthoceros agrestis one of the most important prelinnean of Germany. Many were only plant col- and Phaeoceros carolinianus, both bryologists. Hedwig obtained with his lectors such as Crüger, Deppe, Drege, gametophytes and sporophytes; and we opus „Species Muscorum“ the starting Ecklon, Fendler and many others, who would enjoy to hear if any of the read- point for the nomenclature of mosses. are commemorated in many species ers has made similar observations. Hofmeister unravelled the life cycle of names. However, beside their scientific LITERATURE CITED: bryophytes. Bruch, Schimper und publications little is known about these Bisang I. 1995. On the phenology of Gümbel wrote the Bryologia Europaea, Anthoceros agrestis Paton with special ref- persons, their life and their personali- erence to Central Europe. Fragm. Flor. the first European bryoflora. Gottsche, ties. There were many tragedies and Geobot. 40(1): 513-518. Lindenberg and Stephani were the most many had difficult lives, but these are Davidson A.J. & R.E. Longton 1987. famous hepaticologists of their era. generally not known. Who knows, for Acceptability of mosses as food for a Warnstorf published the only conspec- instance, that Geheeb died mentally dis- herbivor, the slug, Arion hortensis. Symp. tus of the Sphagnum species of the turbed, that Nees had to leave Bonn Biol. Hungarica 35: 707-719. world. Max Fleischer had important University because he had an affair with Davidson A.J., J.B. Harborne & R.E. impact on moss systematics, which was the wife of the rector and was finally Longton 1989. Identification of hydroxy- followed until recently, Herzog devel- fired from his position because he was cinnamic and phenolic acids in Mnium oped the bryogeography. Other famous hornum and Brachythecium rutabulum and a communist and died as a poor man, their possible role in the protection against German bryologists were, amongst oth- or that the specialization of Karl Müller herbivory. Journ. Hattori Bot. Lab. 67: 415- ers, Schwägrichen, Bridel, Funck, Nees in hepaticology went back to his time 422. von Esenbeck, Lehmann, Hornschuch, at high school, when he decided with his classmate Theodor Herzog to share GRADUATE ASSISTANTSHIPS IN bryology between them. Many died without an orbituary because they were BRYOLOGY not professionals but private scientists Under the sponsorship of the National Biology Department offers a selection or because of war times, where journals Science Foundation PEET program, of more than 40 graduate courses, in- were not published. The dictionary of graduate assistantships (Ph.D. or M.S.) cluding three in bryology, taught by 18 German bryologists gives as many de- are available at Southern Illinois Uni- full time faculty. In addition, doctoral tails as could be extracted from the versity-Carbondale, for students inter- student participants in the project will available sources, however, in German. ested in the biology and systematics of have the opportunity to spend one se- Therefore I was asked to translate the liverworts. Each graduate assistant will mester of their studies at the University biographies of some of the more well be mentored by Dr. Raymond Stotler of California at Berkeley, where they known bryologists in a series which and Dr. Barbara Crandall-Stotler as a will participate in a course in phylo- shall be continued. participant in a world-wide mono- genetics, under the supervision of Dr. Jan-Peter Frahm, Botanisches graphic study of the phylogenetically Brent Mishler. Each assistantship pro- Institut, Meckenheimer Allee 170, pivotal, cosmopolitan simple thalloid vides a monthly stipend, complete tui- 53115 Bonn, Germany. liverwort suborder Fossombroniineae. tion and partial payment of fees for the Each participant in the project will gain duration of graduate study. For appli- field experience and learn standard cation information and materials, con- New addresses taxonomic methods as well as statisti- tact: Dr. Raymond Stotler, Department A correction from the last issue is cal methods for analyzing variation of Plant Biology, Mail Code 6509 necessary. The new address of of Prof. patterns, culture techniques, SEM, com- Southern Illinois University, Carbon- S. Rob Gradstein is: Systematisch- puterized image capturing and analy- dale,
Recommended publications
  • Novelties in the Hornwort Flora of Croatia and Southeast Europe
    cryptogamie Bryologie 2019 ● 40 ● 22 DIRECTEUR DE LA PUBLICATION : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEURS EN CHEF / EDITORS-IN-CHIEF : Denis LAMY ASSISTANTS DE RÉDACTION / ASSISTANT EDITORS : Marianne SALAÜN ([email protected]) MISE EN PAGE / PAGE LAYOUT : Marianne SALAÜN RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS Biologie moléculaire et phylogénie / Molecular biology and phylogeny Bernard GOFFINET Department of Ecology and Evolutionary Biology, University of Connecticut (United States) Mousses d’Europe / European mosses Isabel DRAPER Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid (Spain) Francisco LARA GARCÍA Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid (Spain) Mousses d’Afrique et d’Antarctique / African and Antarctic mosses Rysiek OCHYRA Laboratory of Bryology, Institute of Botany, Polish Academy of Sciences, Krakow (Pologne) Bryophytes d’Asie / Asian bryophytes Rui-Liang ZHU School of Life Science, East China Normal University, Shanghai (China) Bioindication / Biomonitoring Franck-Olivier DENAYER Faculté des Sciences Pharmaceutiques et Biologiques de Lille, Laboratoire de Botanique et de Cryptogamie, Lille (France) Écologie des bryophytes / Ecology of bryophyte Nagore GARCÍA MEDINA Department of Biology (Botany), and Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid (Spain) COUVERTURE / COVER : Extraits d’éléments de la Figure 2 / Extracts of
    [Show full text]
  • A Revision of Schoenobryum (Cryphaeaceae, Bryopsida) in Africa1
    Revision of Schoenobryum 147 Tropical Bryology 24: 147-159, 2003 A revision of Schoenobryum (Cryphaeaceae, Bryopsida) in Africa1 Brian J. O’Shea 141 Fawnbrake Avenue, London SE24 0BG, U.K. Abstract. The nine species and two varieties of Schoenobryum reported for Africa were investigated, and no characters were found that uniquely identified any of the taxa to be other than the pantropical Schoenobryum concavifolium. The following nine names become new synonyms of S. concavifolium: Cryphaea madagassa, C. subintegra, Acrocryphaea robusta, A. latifolia, A. subrobusta, A. tisserantii, A. latifolia var. microspora, A. plicatula and A. subintegra var. idanreense; a lectotype is selected for Acrocryphaea latifolia var. microspora P.de la Varde. INTRODUCTION as the majority have not been examined since the type description, and many have never been A recent checklist of Sub-Saharan Africa illustrated. (O’Shea, 1999) included nine species and two varieties of Schoenobryum, most of quite limited The purpose of this paper is to provide an distribution. Recent collecting in both Malawi overview of the genus worldwide, and to review (O’Shea et al., 2001) and Uganda (Wigginton et the taxonomic position of the African taxa. al., 2001) has shown the genus to be not uncommon, although there was only one CRYPHAEACEAE SCHIMP. 1856. previously published collection from the two countries (O’Shea, 1993). Apart from one Cryphaeaceae Schimp., Coroll. Bryol. Eur. 97. African taxon occurring in nine countries, the 1856 [‘1855’]. Type: Cryphaea D.Mohr in other 10 occurred in an average of 1.7 countries. F.Weber This particular profile is typical of unrevised genera in Africa, and indicative of a possible A brief review of the circumscription and need for revision (O’Shea, 1997), particularly systematics of the family, and the distinctions from related families (e.g.
    [Show full text]
  • Anthocerotophyta
    Glime, J. M. 2017. Anthocerotophyta. Chapt. 2-8. In: Glime, J. M. Bryophyte Ecology. Volume 1. Physiological Ecology. Ebook 2-8-1 sponsored by Michigan Technological University and the International Association of Bryologists. Last updated 5 June 2020 and available at <http://digitalcommons.mtu.edu/bryophyte-ecology/>. CHAPTER 2-8 ANTHOCEROTOPHYTA TABLE OF CONTENTS Anthocerotophyta ......................................................................................................................................... 2-8-2 Summary .................................................................................................................................................... 2-8-10 Acknowledgments ...................................................................................................................................... 2-8-10 Literature Cited .......................................................................................................................................... 2-8-10 2-8-2 Chapter 2-8: Anthocerotophyta CHAPTER 2-8 ANTHOCEROTOPHYTA Figure 1. Notothylas orbicularis thallus with involucres. Photo by Michael Lüth, with permission. Anthocerotophyta These plants, once placed among the bryophytes in the families. The second class is Leiosporocerotopsida, a Anthocerotae, now generally placed in the phylum class with one order, one family, and one genus. The genus Anthocerotophyta (hornworts, Figure 1), seem more Leiosporoceros differs from members of the class distantly related, and genetic evidence may even present
    [Show full text]
  • Checklist of the Liverworts and Hornworts of the Interior Highlands of North America in Arkansas, Illinois, Missouri and Oklahoma
    Checklist of the Liverworts and Hornworts of the Interior Highlands of North America In Arkansas, Illinois, Missouri and Oklahoma Stephen L. Timme T. M. Sperry Herbarium ‐ Biology Pittsburg State University Pittsburg, Kansas 66762 and 3 Bowness Lane Bella Vista, AR 72714 [email protected] Paul Redfearn, Jr. 5238 Downey Ave. Independence, MO 64055 Introduction Since the last publication of a checklist of liverworts and hornworts of the Interior Highlands (1997)), many new county and state records have been reported. To make the checklist useful, it was necessary to update it since its last posting. The map of the Interior Highlands of North America that appears in Redfearn (1983) does not include the very southeast corner of Kansas. However, the Springfield Plateau encompasses some 88 square kilometers of this corner of the state and includes limestone and some sandstone and shale outcrops. The vegetation is typical Ozarkian flora, dominated by oak and hickory. This checklist includes liverworts and hornworts collected from Cherokee County, Kansas. Most of what is known for the area is the result of collections by R. McGregor published in 1955. The majority of his collections are deposited in the herbarium at the New York Botanical Garden (NY). This checklist only includes the region defined as the Interior Highlands of North America. This includes the Springfield Plateau, Salem Plateau, St. Francois Mountains, Boston Mountains, Arkansas Valley, Ouachita Mountains and Ozark Hills. It encompasses much of southern Missouri south of the Missouri River, southwest Illinois; most of Arkansas except the Mississippi Lowlands and the Coastal Plain, the extreme southeastern corner of Kansas, and eastern Oklahoma (Fig.
    [Show full text]
  • Cladistic Analysis of the Family Cryphaeaceae (Bryophyta) with Emphasis on Cryphaea: a Study Based on a Comprehensive Morphological Dataset
    DARWINIANA, nueva serie 5(1): S1-S9. 2017 Versión final, efectivamente publicada el 31 de julio de 2017 DOI: 10.14522/darwiniana.2017.51.728 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea CLADISTIC ANALYSIS OF THE FAMILY CRYPHAEACEAE (BRYOPHYTA) WITH EMPHASIS ON CRYPHAEA: A STUDY BASED ON A COMPREHENSIVE MORPHOLOGICAL DATASET SUPPLEMENTARY APPENDIX Jorge R. Flores; Santiago A. Catalano & Guillermo M. Suárez Unidad Ejecutora Lillo (CONICET - Fundación Miguel Lillo); Miguel Lillo 251, 4000 San Miguel de Tucumán, Tucumán, Argentina. Facultad de Ciencias Naturales e Instituto Miguel Lillo - Universidad Nacional de Tucumán; Miguel Lillo 205, 4000 San Miguel de Tucumán, Tucumán, Argentina; [email protected] (autor corresponsal) SPECIMENS EXAMINED Cyclodictyon albicans (Hedw.) Kuntze: M. Schiavone 3303 (LIL). Cryphaea apiculata Schimp.: M. Schiavone Cyclodictyon lorentzii (Müll.) Buck & Schiavo- 2535, 3302 (LIL); G. Suárez 482 (LIL); G. Suárez ne: M. Schiavone 1265 (LIL). & M. Schiavone 97 (LIL). Cyclodictyon varians (Sull.) Kuntze: Costa et Cryphaea brevipila Mitt.: A. Hüebschmann 1 al. 5073 (RB); M. S. Dias s/n (RB 453018). (NY), M. Schiavone et al. 2711(LIL); G. Suárez Dendrocryphaea cuspidata (Sull.) Broth.: Kün- 162, 522 (LIL); A. Schinini 24788B (NY). hnemann 5176 (BA, LIL); Porter 1901 (NY, LIL, Cryphaea furcinervis Müll. Hal.: M. Schiavone HBr); Crosby 11702 (NY, LIL); Dusén 23 (NY, LIL). & B. Biasuso 838, 1597 (LIL); G. Suárez & M. Dendrocryphaea gorveana (Mont.) Paris & Schiavone 49 (LIL). Schimp.: Montagne s/n (NY, LIL); Lechler s/n Cryphaea jamesonii Taylor.: M. Schiavone & B. (PC, LIL). Biasuso 2154, 3086 (LIL); M. Schiavone, B. Biasu- Dendrocryphaea tasmanica (Mitt.) Broth.: A. so & S.
    [Show full text]
  • (Warnstorfia Fluitans (Hedw.) Loeske) from a High Arctic Lake: Effect of Nutrient Concentration Tenna Riis,1,2 Birgit Olesen,1 Casper K
    ARCTIC VOL. 63, NO. 1 (MARCH 2010) P. 100–106 Growth Rate of an Aquatic Bryophyte (Warnstorfia fluitans (Hedw.) Loeske) from a High Arctic Lake: Effect of Nutrient Concentration Tenna RIIS,1,2 BIrgIT OLESen,1 CASPer K. Katborg1 and KIRSten S. ChrIStoFFerSen3 (Received 12 September 2008; accepted in revised form 7 April 2009) ABSTRACT. The High Arctic is one of the regions most susceptible to climate change on a global scale. Increased temperature, precipitation, and cloud cover are anticipated in the region, with consequent increases in nutrient runoff to surface waters. Mosses are often the dominant submerged macrophyte in Arctic and High Arctic lakes. If the growth rate of mosses in these lakes is nutrient-limited, then production could increase with climate changes that result in higher nutrient concentrations. We conducted a laboratory study to 1) measure the growth response of Warnstorfia fluitans (Hedw.) Loeske from a High Arctic lake to nitrogen and phosphorus availability; and 2) determine whether growth rate was N- or P-limited by examining its relationship to internal P and N content. The growth rates of W. fluitans were generally low, ranging from 0.003 to 0.012 day-1. The growth rates increased with increasing plant P content, but not with increasing N content, indicating that moss growth was P-limited at low P availability in the experiment. Critical plant P concentration for maximum growth rate was 0.086% dry weight. This is the first time a critical P threshold has been calculated. The results imply that if climate changes result in increased P concentrations in surface waters, a higher production of moss could occur in High Arctic lakes.
    [Show full text]
  • Anthoceros Agrestis
    Plant Systematics and Evolution (2020) 306:49 https://doi.org/10.1007/s00606-020-01676-6 ORIGINAL ARTICLE Extremely low genetic diversity in the European clade of the model bryophyte Anthoceros agrestis Thomas N. Dawes1,2 · Juan Carlos Villarreal A.3,4 · Péter Szövényi5 · Irene Bisang6 · Fay-Wei Li7,8 · Duncan A. Hauser7,8 · Dietmar Quandt9 · D. Christine Cargill10 · Laura L. Forrest1 Received: 2 May 2019 / Accepted: 13 March 2020 / Published online: 4 April 2020 © Springer-Verlag GmbH Austria, part of Springer Nature 2020 Abstract The hornwort Anthoceros agrestis is emerging as a model system for the study of symbiotic interactions and carbon fixation processes. It is an annual species with a remarkably small and compact genome. Single accessions of the plant have been shown to be related to the cosmopolitan perennial hornwort Anthoceros punctatus. We provide the first detailed insight into the evolutionary history of the two species. Due to the rather conserved nature of organellar loci, we sequenced multiple accessions in the Anthoceros agrestis–A. punctatus complex using three nuclear regions: the ribosomal spacer ITS2, and exon and intron regions from the single-copy coding genes rbcS and phytochrome. We used phylogenetic and dating analyses to uncover the relationships between these two taxa. Our analyses resolve a lineage of genetically near-uniform European A. agrestis accessions and two non-European A. agrestis lineages. In addition, the cosmopolitan species Anthoceros punctatus forms two lineages, one of mostly European accessions, and another from India. All studied European A. agrestis accessions have a single origin, radiated relatively recently (less than 1 million years ago), and are currently strictly associated with agroecosystem habitats.
    [Show full text]
  • Bibliography of Publications 1974 – 2019
    W. SZAFER INSTITUTE OF BOTANY POLISH ACADEMY OF SCIENCES Ryszard Ochyra BIBLIOGRAPHY OF PUBLICATIONS 1974 – 2019 KRAKÓW 2019 Ochyraea tatrensis Váňa Part I. Monographs, Books and Scientific Papers Part I. Monographs, Books and Scientific Papers 5 1974 001. Ochyra, R. (1974): Notatki florystyczne z południowo‑wschodniej części Kotliny Sandomierskiej [Floristic notes from southeastern part of Kotlina Sandomierska]. Zeszyty Naukowe Uniwersytetu Jagiellońskiego 360 Prace Botaniczne 2: 161–173 [in Polish with English summary]. 002. Karczmarz, K., J. Mickiewicz & R. Ochyra (1974): Musci Europaei Orientalis Exsiccati. Fasciculus III, Nr 101–150. 12 pp. Privately published, Lublini. 1975 003. Karczmarz, K., J. Mickiewicz & R. Ochyra (1975): Musci Europaei Orientalis Exsiccati. Fasciculus IV, Nr 151–200. 13 pp. Privately published, Lublini. 004. Karczmarz, K., K. Jędrzejko & R. Ochyra (1975): Musci Europaei Orientalis Exs‑ iccati. Fasciculus V, Nr 201–250. 13 pp. Privately published, Lublini. 005. Karczmarz, K., H. Mamczarz & R. Ochyra (1975): Hepaticae Europae Orientalis Exsiccatae. Fasciculus III, Nr 61–90. 8 pp. Privately published, Lublini. 1976 006. Ochyra, R. (1976): Materiały do brioflory południowej Polski [Materials to the bry‑ oflora of southern Poland]. Zeszyty Naukowe Uniwersytetu Jagiellońskiego 432 Prace Botaniczne 4: 107–125 [in Polish with English summary]. 007. Ochyra, R. (1976): Taxonomic position and geographical distribution of Isoptery‑ giopsis muelleriana (Schimp.) Iwats. Fragmenta Floristica et Geobotanica 22: 129–135 + 1 map as insertion [with Polish summary]. 008. Karczmarz, K., A. Łuczycka & R. Ochyra (1976): Materiały do flory ramienic środkowej i południowej Polski. 2 [A contribution to the flora of Charophyta of central and southern Poland. 2]. Acta Hydrobiologica 18: 193–200 [in Polish with English summary].
    [Show full text]
  • Mosses: Weber and Wittmann, Electronic Version 11-Mar-00
    Catalog of the Colorado Flora: a Biodiversity Baseline Mosses: Weber and Wittmann, electronic version 11-Mar-00 Amblystegiaceae Amblystegium Bruch & Schimper, 1853 Amblystegium serpens (Hedwig) Bruch & Schimper var. juratzkanum (Schimper) Rau & Hervey WEBER73B. Amblystegium juratzkanum Schimper. Calliergon (Sullivant) Kindberg, 1894 Calliergon cordifolium (Hedwig) Kindberg WEBER73B; HERMA76. Calliergon giganteum (Schimper) Kindberg Larimer Co.: Pingree Park, 2960 msm, 25 Sept. 1980, [Rolston 80114), !Hermann. Calliergon megalophyllum Mikutowicz COLO specimen so reported is C. richardsonii, fide Crum. Calliergon richardsonii (Mitten) Kindberg WEBER73B. Campyliadelphus (Lindberg) Chopra, 1975 KANDA75 Campyliadelphus chrysophyllus (Bridel) Kanda HEDEN97. Campylium chrysophyllum (Bridel) J. Lange. WEBER63; WEBER73B; HEDEN97. Hypnum chrysophyllum Bridel. HEDEN97. Campyliadelphus stellatus (Hedwig) Kanda KANDA75. Campylium stellatum (Hedwig) C. Jensen. WEBER73B. Hypnum stellatum Hedwig. HEDEN97. Campylophyllum Fleischer, 1914 HEDEN97 Campylophyllum halleri (Hedwig) Fleischer HEDEN97. Nova Guinea 12, Bot. 2:123.1914. Campylium halleri (Hedwig) Lindberg. WEBER73B; HERMA76. Hypnum halleri Hedwig. HEDEN97. Campylophyllum hispidulum (Bridel) Hedenäs HEDEN97. Campylium hispidulum (Bridel) Mitten. WEBER63,73B; HEDEN97. Hypnum hispidulum Bridel. HEDEN97. Cratoneuron (Sullivant) Spruce, 1867 OCHYR89 Cratoneuron filicinum (Hedwig) Spruce WEBER73B. Drepanocladus (C. Müller) Roth, 1899 HEDEN97 Nomen conserv. Drepanocladus aduncus (Hedwig) Warnstorf WEBER73B.
    [Show full text]
  • Acomprehensive Study on the Natural Plant Phenols:Perception to Current Scenario
    Bulletin of Pharmaceutical Research 2013;3(2):90-106 An Official Publication of Association of Pharmacy Professionals ISSN: 2249-6041 (Print); ISSN: 2249-9245 (Online) REVIEW ARTICLE A COMPREHENSIVE STUDY ON THE NATURAL PLANT PHENOLS: PERCEPTION TO CURRENT SCENARIO Pankaj Jain1, Sonika Jain2, Ashutosh Pareek1 and Swapnil Sharma1* 1Department of Pharmacy, Banasthali University, Banasthali-304 022, Tonk, Rajasthan, India 2Department of Chemistry, Banasthali University, Banasthali-304 022, Tonk, Rajasthan, India *E-mail: [email protected] Tel.: +91 9214661099. Received: July 03, 2013 / Revised: August 30, 2013 / Accepted: August 31, 2013 Phenolic compounds are secondary metabolites of plants that are widely distributed throughout the plant kingdom. Secondary metabolites possess structural diversity that provide flavor and color to fruits, vegetables, and grains. They precipitate various pharmacological and toxicological effects on living beings. Extraction of the bioactive plant constituents has always been a challenging task for the researchers. In the present study, an attempt has been made to give an overview on chemistry, distribution, extraction and isolation techniques of various plant phenolics. Key words: Polyphenols, Plant kingdom, Plant phenolics, Distribution, Extraction techniques. INTRODUCTION Basically, all phenols and phenolic amalgams are All plants create numerous organic amalgams widely found in nature and can also be blended that are always not related to the basic artificially. They form a separate group of metabolism like progress, growth and chemical substances that comprises a member of development and the functions of these natural hydroxyl cluster linked to an element of compounds in plants have only been noticed hydrocarbon set. Phenolics are compounds recently in a diagnostic perspective.
    [Show full text]
  • Dendrocryphaea
    DENDROCRYPHAEA Johannes Enroth1 Dendrocryphaea Paris & Schimp. ex Broth., in H.G.A. & K.A.E.Prantl, Nat. Pflanzenfam. 1(3): 743 (1905); from the Greek dendron (a tree), in reference to the relatively robust plants of this genus and their similarity to Cryphaea. Lecto: D. gorveana (Mont.) Paris & Schimp. Dendrocryphaea is an almost exclusively Southern Hemisphere genus. Four of the six species occur in continental South American, one is endemic to the Juan Fernández Islands in the south-eastern Pacific Ocean, and one is Australian. Plants typically grow on rocks or tree roots along creeks and are at least periodically submerged. References Enroth, J. (1995), Taxonomy of Cyptodon, with notes on Dendrocryphaea and selected Australasian species of Cryphaea (Cryphaeaceae, Bryopsida), Fragm. Flor. Geobot. 40: 133– 152. Griffin, D. III, Gradstein, S.R. & Aguirre, J. (1982), Studies on Colombian cryptogams XVII. On a new antipodal element in the neotropical páramos – Dendrocryphaea latifolia sp. nov. (Musci), Acta Bot. Neerl. 31: 175. Dendrocryphaea tasmanica (Mitt.) Broth., in H.G.A.Engler & K.A.E.Prantl, Nat. Pflanzenfam. 1(3): 744 (1905) Cryphaea tasmanica Mitt., Fl. Tasman. 2: 204 (1859). T: Jackey’s Plain Creek, Tas., on rocks, W.Archer s.n.; iso: NY (2 specimens). Illustrations: V.F.Brotherus, op. cit. 737, fig. 551F–H; G.A.M. Scott & I.G.Stone, The Mosses of Southern Australia 351, pl. 66 (1976), as Cryphaea tasmanica; J.Enroth, op. cit. 146, fig. 4g–m. Plants rheophytic, mostly epilithic, relatively robust and rigid, often dusky dark green to blackish, unbranched or sparingly branched. Stem leaves c.
    [Show full text]
  • A Revision of the Genus Anthoceros (Anthocerotaceae, Anthocerotophyta) in China
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Phytotaxa 100 (1): 21–35 (2013) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ PHYTOTAXA Copyright © 2013 Magnolia Press Article ISSN 1179-3163 (online edition) http://dx.doi.org/10.11646/phytotaxa.100.1.3 A revision of the genus Anthoceros (Anthocerotaceae, Anthocerotophyta) in China TAO PENG1,2 & RUI-LIANG ZHU1* 1 Department of Biology, School of Life Science, East China Normal University, 3663 Zhong Shan North Road, Shanghai 200062, China; *Corresponding author: [email protected] 2 School of Life Science, Guizhou Normal University, 116 Bao Shan North Road, Guiyang 550001, China; [email protected] Abstract The genus Anthoceros (Anthocerotaceae, Anthocerotopsida) in China is reviewed. Five species and one variety are recognized. Anthoceros alpinus, A. bharadwajii, and A. subtilis, are reported new to China. Aspiromitus areolatus and Anthoceros esquirolii are proposed as new synonyms of Folioceros fuciformis and Phaeoceros carolinianus, respectively. A key to the species of Anthoceros in China is provided. Key words: Anthoceros alpinus, A. bharadwajii, A. subtilis, hornworts, new synonym Introduction Hornworts (Anthocerotophyta) represent a key group in the understanding of evolution of plant form because they are hypothesized to be sister to the tracheophytes (Qiu et al. 2006). An estimate of 200–250 species of hornworts exist worldwide (Villarreal et al. 2010; Garcia et al. 2012; Villarreal et al. 2012). Anthoceros Linnaeus (1753: 1139) is the largest genus of hornworts, with ca. 83 species (Villarreal et al. 2010). With a global distribution, the centres of diversity in the genus are in the Neotropics and tropical Africa and Asia.
    [Show full text]