Germline Mutation Enrichment in Pathways Controlling Endothelial
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Downloaded from [266]
Patterns of DNA methylation on the human X chromosome and use in analyzing X-chromosome inactivation by Allison Marie Cotton B.Sc., The University of Guelph, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Medical Genetics) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) January 2012 © Allison Marie Cotton, 2012 Abstract The process of X-chromosome inactivation achieves dosage compensation between mammalian males and females. In females one X chromosome is transcriptionally silenced through a variety of epigenetic modifications including DNA methylation. Most X-linked genes are subject to X-chromosome inactivation and only expressed from the active X chromosome. On the inactive X chromosome, the CpG island promoters of genes subject to X-chromosome inactivation are methylated in their promoter regions, while genes which escape from X- chromosome inactivation have unmethylated CpG island promoters on both the active and inactive X chromosomes. The first objective of this thesis was to determine if the DNA methylation of CpG island promoters could be used to accurately predict X chromosome inactivation status. The second objective was to use DNA methylation to predict X-chromosome inactivation status in a variety of tissues. A comparison of blood, muscle, kidney and neural tissues revealed tissue-specific X-chromosome inactivation, in which 12% of genes escaped from X-chromosome inactivation in some, but not all, tissues. X-linked DNA methylation analysis of placental tissues predicted four times higher escape from X-chromosome inactivation than in any other tissue. Despite the hypomethylation of repetitive elements on both the X chromosome and the autosomes, no changes were detected in the frequency or intensity of placental Cot-1 holes. -
(P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds. -
Hippo and Sonic Hedgehog Signalling Pathway Modulation of Human Urothelial Tissue Homeostasis
Hippo and Sonic Hedgehog signalling pathway modulation of human urothelial tissue homeostasis Thomas Crighton PhD University of York Department of Biology November 2020 Abstract The urinary tract is lined by a barrier-forming, mitotically-quiescent urothelium, which retains the ability to regenerate following injury. Regulation of tissue homeostasis by Hippo and Sonic Hedgehog signalling has previously been implicated in various mammalian epithelia, but limited evidence exists as to their role in adult human urothelial physiology. Focussing on the Hippo pathway, the aims of this thesis were to characterise expression of said pathways in urothelium, determine what role the pathways have in regulating urothelial phenotype, and investigate whether the pathways are implicated in muscle-invasive bladder cancer (MIBC). These aims were assessed using a cell culture paradigm of Normal Human Urothelial (NHU) cells that can be manipulated in vitro to represent different differentiated phenotypes, alongside MIBC cell lines and The Cancer Genome Atlas resource. Transcriptomic analysis of NHU cells identified a significant induction of VGLL1, a poorly understood regulator of Hippo signalling, in differentiated cells. Activation of upstream transcription factors PPARγ and GATA3 and/or blockade of active EGFR/RAS/RAF/MEK/ERK signalling were identified as mechanisms which induce VGLL1 expression in NHU cells. Ectopic overexpression of VGLL1 in undifferentiated NHU cells and MIBC cell line T24 resulted in significantly reduced proliferation. Conversely, knockdown of VGLL1 in differentiated NHU cells significantly reduced barrier tightness in an unwounded state, while inhibiting regeneration and increasing cell cycle activation in scratch-wounded cultures. A signalling pathway previously observed to be inhibited by VGLL1 function, YAP/TAZ, was unaffected by VGLL1 manipulation. -
Role of PDZ-Binding Motif from West Nile Virus NS5 Protein on Viral
www.nature.com/scientificreports OPEN Role of PDZ‑binding motif from West Nile virus NS5 protein on viral replication Emilie Giraud1*, Chloé Otero del Val2, Célia Caillet‑Saguy2, Nada Zehrouni2, Cécile Khou5, Joël Caillet4, Yves Jacob3, Nathalie Pardigon5 & Nicolas Wolf2 West Nile virus (WNV) is a Flavivirus, which can cause febrile illness in humans that may progress to encephalitis. Like any other obligate intracellular pathogens, Flaviviruses hijack cellular protein functions as a strategy for sustaining their life cycle. Many cellular proteins display globular domain known as PDZ domain that interacts with PDZ‑Binding Motifs (PBM) identifed in many viral proteins. Thus, cellular PDZ‑containing proteins are common targets during viral infection. The non‑structural protein 5 (NS5) from WNV provides both RNA cap methyltransferase and RNA polymerase activities and is involved in viral replication but its interactions with host proteins remain poorly known. In this study, we demonstrate that the C‑terminal PBM of WNV NS5 recognizes several human PDZ‑ containing proteins using both in vitro and in cellulo high‑throughput methods. Furthermore, we constructed and assayed in cell culture WNV replicons where the PBM within NS5 was mutated. Our results demonstrate that the PBM of WNV NS5 is important in WNV replication. Moreover, we show that knockdown of the PDZ‑containing proteins TJP1, PARD3, ARHGAP21 or SHANK2 results in the decrease of WNV replication in cells. Altogether, our data reveal that interactions between the PBM of NS5 and PDZ‑containing proteins afect West Nile virus replication. Arboviruses include numerous human and animal pathogens that are important global health threats responsible for arboviroses. -
A Temporally Controlled Sequence of X-Chromosome Inactivation and Reactivation Defines Female Mouse in Vitro Germ Cells with Meiotic Potential
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455976; this version posted August 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. A temporally controlled sequence of X-chromosome inactivation and reactivation defines female mouse in vitro germ cells with meiotic potential Jacqueline Severino1†, Moritz Bauer1,9†, Tom Mattimoe1, Niccolò Arecco1, Luca Cozzuto1, Patricia Lorden2, Norio Hamada3, Yoshiaki Nosaka4,5,6, So Nagaoka4,5,6, Holger Heyn2, Katsuhiko Hayashi7, Mitinori Saitou4,5,6 and Bernhard Payer1,8* Abstract The early mammalian germ cell lineage is characterized by extensive epigenetic reprogramming, which is required for the maturation into functional eggs and sperm. In particular, the epigenome needs to be reset before parental marks can be established and then transmitted to the next generation. In the female germ line, reactivation of the inactive X- chromosome is one of the most prominent epigenetic reprogramming events, and despite its scale involving an entire chromosome affecting hundreds of genes, very little is known about its kinetics and biological function. Here we investigate X-chromosome inactivation and reactivation dynamics by employing a tailor-made in vitro system to visualize the X-status during differentiation of primordial germ cell-like cells (PGCLCs) from female mouse embryonic stem cells (ESCs). We find that the degree of X-inactivation in PGCLCs is moderate when compared to somatic cells and characterized by a large number of genes escaping full inactivation. -
Network of Micrornas-Mrnas Interactions in Pancreatic Cancer
Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 534821, 8 pages http://dx.doi.org/10.1155/2014/534821 Research Article Network of microRNAs-mRNAs Interactions in Pancreatic Cancer Elnaz Naderi,1 Mehdi Mostafaei,2 Akram Pourshams,1 and Ashraf Mohamadkhani1 1 Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran 2 Biotechnology Engineering, Islamic Azad University,Tehran North Branch, Tehran, Iran Correspondence should be addressed to Ashraf Mohamadkhani; [email protected] Received 5 February 2014; Revised 13 April 2014; Accepted 13 April 2014; Published 7 May 2014 Academic Editor: FangXiang Wu Copyright © 2014 Elnaz Naderi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Background. MicroRNAs are small RNA molecules that regulate the expression of certain genes through interaction with mRNA targets and are mainly involved in human cancer. This study was conducted to make the network of miRNAs-mRNAs interactions in pancreatic cancer as the fourth leading cause of cancer death. Methods. 56 miRNAs that were exclusively expressed and 1176 genes that were downregulated or silenced in pancreas cancer were extracted from beforehand investigations. MiRNA–mRNA interactions data analysis and related networks were explored using MAGIA tool and Cytoscape 3 software. Functional annotations of candidate genes in pancreatic cancer were identified by DAVID annotation tool. Results. This network is made of 217 nodes for mRNA, 15 nodes for miRNA, and 241 edges that show 241 regulations between 15 miRNAs and 217 target genes. -
Supplementary Table 1 Double Treatment Vs Single Treatment
Supplementary table 1 Double treatment vs single treatment Probe ID Symbol Gene name P value Fold change TC0500007292.hg.1 NIM1K NIM1 serine/threonine protein kinase 1.05E-04 5.02 HTA2-neg-47424007_st NA NA 3.44E-03 4.11 HTA2-pos-3475282_st NA NA 3.30E-03 3.24 TC0X00007013.hg.1 MPC1L mitochondrial pyruvate carrier 1-like 5.22E-03 3.21 TC0200010447.hg.1 CASP8 caspase 8, apoptosis-related cysteine peptidase 3.54E-03 2.46 TC0400008390.hg.1 LRIT3 leucine-rich repeat, immunoglobulin-like and transmembrane domains 3 1.86E-03 2.41 TC1700011905.hg.1 DNAH17 dynein, axonemal, heavy chain 17 1.81E-04 2.40 TC0600012064.hg.1 GCM1 glial cells missing homolog 1 (Drosophila) 2.81E-03 2.39 TC0100015789.hg.1 POGZ Transcript Identified by AceView, Entrez Gene ID(s) 23126 3.64E-04 2.38 TC1300010039.hg.1 NEK5 NIMA-related kinase 5 3.39E-03 2.36 TC0900008222.hg.1 STX17 syntaxin 17 1.08E-03 2.29 TC1700012355.hg.1 KRBA2 KRAB-A domain containing 2 5.98E-03 2.28 HTA2-neg-47424044_st NA NA 5.94E-03 2.24 HTA2-neg-47424360_st NA NA 2.12E-03 2.22 TC0800010802.hg.1 C8orf89 chromosome 8 open reading frame 89 6.51E-04 2.20 TC1500010745.hg.1 POLR2M polymerase (RNA) II (DNA directed) polypeptide M 5.19E-03 2.20 TC1500007409.hg.1 GCNT3 glucosaminyl (N-acetyl) transferase 3, mucin type 6.48E-03 2.17 TC2200007132.hg.1 RFPL3 ret finger protein-like 3 5.91E-05 2.17 HTA2-neg-47424024_st NA NA 2.45E-03 2.16 TC0200010474.hg.1 KIAA2012 KIAA2012 5.20E-03 2.16 TC1100007216.hg.1 PRRG4 proline rich Gla (G-carboxyglutamic acid) 4 (transmembrane) 7.43E-03 2.15 TC0400012977.hg.1 SH3D19 -
Downloaded from Ensembl
UCSF UC San Francisco Electronic Theses and Dissertations Title Detecting genetic similarity between complex human traits by exploring their common molecular mechanism Permalink https://escholarship.org/uc/item/1k40s443 Author Gu, Jialiang Publication Date 2019 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California by Submitted in partial satisfaction of the requirements for degree of in in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, SAN FRANCISCO AND UNIVERSITY OF CALIFORNIA, BERKELEY Approved: ______________________________________________________________________________ Chair ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ ______________________________________________________________________________ Committee Members ii Acknowledgement This project would not have been possible without Prof. Dr. Hao Li, Dr. Jiashun Zheng and Dr. Chris Fuller at the University of California, San Francisco (UCSF) and Caribou Bioscience. The Li lab grew into a multi-facet research group consist of both experimentalists and computational biologists covering three research areas including cellular/molecular mechanism of ageing, genetic determinants of complex human traits and structure, function, evolution of gene regulatory network. Labs like these are the pillar of global success and reputation -
Cell Leukemia Virus Tax Oncoprotein
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.25.457680; this version posted August 25, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Interactome and structural basis for targeting the human T- cell leukemia virus Tax oncoprotein Sibusiso B. Maseko1, Inge Van Molle2, Karim Blibek1, Christoph Gorgulla3-5, Julien Olivet1, Jeremy Blavier1, Charlotte Vandermeulen1, Stéphanie Skupiewski1, Deeya Saha1, Thandokuhle Ntombela6, Julianne Lim7, Frederique Lembo8, Aurelie Beauvois9, Malik Hamaidia9, Jean-Paul Borg8, Pascale Zimmermann8,10, Frank Delvigne11, Luc Willems9,11, Johan Van Weyenbergh12, Dae-Kyum Kim7, 13-15, Franck Dequiedt16, Haribabu Arthanari3-5, Alexander N. Volkov2,17,*, Jean-Claude Twizere1,11,18,* 1Laboratory of Viral Interactomes, Unit of Molecular Biology of Diseases, GIGA Institute, University of Liege, Liège, Belgium. 2VIB-VUB Center for Structural Biology, Flemish Institute of Biotechnology (VIB), Pleinlaan 2, Brussels, Belgium. 3Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA. 4Department of Physics, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA. 5Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA. 6Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa. 7Center for Personalized Medicine, Roswell Park Comprehensive Cancer Cen- ter, Buffalo, New York, USA. 8Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue ‘Cell polarity, Cell signaling and Cancer, Marseille, France. 9Laboratory of Cellular and Molecular Epigenetics, Cancer Unit, GIGA Institute, University of Liege, Liege, Belgium. 10Department of Human Genetics, KU Leuven, Belgium. -
Supplementary Table 1. Hypermethylated Loci in Estrogen-Pre-Exposed Stem/Progenitor-Derived Epithelial Cells
Supplementary Table 1. Hypermethylated loci in estrogen-pre-exposed stem/progenitor-derived epithelial cells. Entrez Gene Probe genomic location* Control# Pre-exposed# Description Gene ID name chr5:134392762-134392807 5307 PITX1 -0.112183718 6.077605311 paired-like homeodomain transcription factor 1 chr12:006600331-006600378 171017 ZNF384 -0.450661784 6.034362758 zinc finger protein 384 57121 GPR92 G protein-coupled receptor 92 chr3:015115848-015115900 64145 ZFYVE20 -1.38491748 5.544950925 zinc finger, FYVE domain containing 20 chr7:156312210-156312270 -2.026450994 5.430611412 chr4:009794114-009794159 9948 WDR1 0.335617144 5.352264173 WD repeat domain 1 chr17:007280631-007280676 284114 TMEM102 -2.427266294 5.060047786 transmembrane protein 102 chr20:055274561-055274606 655 BMP7 0.764898513 5.023260524 bone morphogenetic protein 7 chr10:088461669-088461729 11155 LDB3 0 4.817869864 LIM domain binding 3 chr7:005314259-005314304 80028 FBXL18 0.921361233 4.779265347 F-box and leucine-rich repeat protein 18 chr9:130571259-130571313 59335 PRDM12 1.123111331 4.740306098 PR domain containing 12 chr2:054768043-054768088 6711 SPTBN1 -0.089623066 4.691756995 spectrin, beta, non-erythrocytic 1 chr10:070330822-070330882 79009 DDX50 -2.848748309 4.691491169 DEAD (Asp-Glu-Ala-Asp) box polypeptide 50 chr1:162469807-162469854 54499 TMCO1 1.495802762 4.655023656 transmembrane and coiled-coil domains 1 chr2:080442234-080442279 1496 CTNNA2 1.296310425 4.507269831 catenin (cadherin-associated protein), alpha 2 347730 LRRTM1 leucine rich repeat transmembrane -
Detection of H3k4me3 Identifies Neurohiv Signatures, Genomic
viruses Article Detection of H3K4me3 Identifies NeuroHIV Signatures, Genomic Effects of Methamphetamine and Addiction Pathways in Postmortem HIV+ Brain Specimens that Are Not Amenable to Transcriptome Analysis Liana Basova 1, Alexander Lindsey 1, Anne Marie McGovern 1, Ronald J. Ellis 2 and Maria Cecilia Garibaldi Marcondes 1,* 1 San Diego Biomedical Research Institute, San Diego, CA 92121, USA; [email protected] (L.B.); [email protected] (A.L.); [email protected] (A.M.M.) 2 Departments of Neurosciences and Psychiatry, University of California San Diego, San Diego, CA 92103, USA; [email protected] * Correspondence: [email protected] Abstract: Human postmortem specimens are extremely valuable resources for investigating trans- lational hypotheses. Tissue repositories collect clinically assessed specimens from people with and without HIV, including age, viral load, treatments, substance use patterns and cognitive functions. One challenge is the limited number of specimens suitable for transcriptional studies, mainly due to poor RNA quality resulting from long postmortem intervals. We hypothesized that epigenomic Citation: Basova, L.; Lindsey, A.; signatures would be more stable than RNA for assessing global changes associated with outcomes McGovern, A.M.; Ellis, R.J.; of interest. We found that H3K27Ac or RNA Polymerase (Pol) were not consistently detected by Marcondes, M.C.G. Detection of H3K4me3 Identifies NeuroHIV Chromatin Immunoprecipitation (ChIP), while the enhancer H3K4me3 histone modification was Signatures, Genomic Effects of abundant and stable up to the 72 h postmortem. We tested our ability to use H3K4me3 in human Methamphetamine and Addiction prefrontal cortex from HIV+ individuals meeting criteria for methamphetamine use disorder or not Pathways in Postmortem HIV+ Brain (Meth +/−) which exhibited poor RNA quality and were not suitable for transcriptional profiling. -
A High Density of Human Communication-Associated
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publication Server of Greifswald University Original Article Cytogenet Genome Res 2012;136:97–106 Accepted: November 7, 2011 DOI: 10.1159/000335465 by M. Schmid Published online: January 19, 2012 A High Density of Human Communication- Associated Genes in Chromosome 7q31-q36: Differential Expression in Human and Non-Human Primate Cortices a b c f f d E. Schneider L.R. Jensen R. Farcas I. Kondova R.E. Bontrop B. Navarro e b a E. Fuchs A.W. Kuss T. Haaf a b Institute of Human Genetics, Julius Maximilians University, Würzburg , Interfaculty Institute for Genetics and c Functional Genomics, Ernst Moritz Arndt University, Greifswald , Institute for Cardiovascular Regeneration, d Goethe University, Frankfurt/Main , Institute of Legal Medicine, University Medical Center, Mainz , and e f German Primate Center, Göttingen , Germany; Biomedical Primate Research Center, Rijswijk , The Netherlands Key Words chromosomes X and 7, in particular chromosome 7q31-q36. -Baboon ؒ Chimpanzee ؒ Chromosome 7q31-q36 ؒ Compared to the rest of the genome, we found a high num Communication abilities ؒ Cortex ؒ Gene expression ؒ ber of COAG to be differentially expressed in the cortices of ,Language evolution ؒ Marmoset ؒ T cell receptor beta locus humans and non-human primates (chimpanzee, baboon and/or marmoset). The role of X-linked genes for the devel- opment of human-specific cognitive abilities is well known. Abstract We now propose that chromosome 7q31-q36 also repre- The human brain is distinguished by its remarkable size, high sents a hot spot for the evolution of human-specific commu- energy consumption, and cognitive abilities compared to all nication abilities.