T H E S I S » a Study Op Phosphorus Peutahalides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Durham E-Theses
Durham E-Theses Some reactions of phosphorus compounds as studied by 31p nmr techniques Nisbet, M. P. How to cite: Nisbet, M. P. (1976) Some reactions of phosphorus compounds as studied by 31p nmr techniques, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/8177/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk To Mum, Dad, and Steven Everything in this universe is made of one element which is a note, a single note. Atoms are really vibrations, you know, which are extensions of the BIG note. Everything is one note, even the ponies. Francis Vincent Zappa 1967 Declaration The work described in this thesis was carried out in the University of Durham between September 19 72 and July 1975. This work has not been submitted, either completely or in part, for a degree in this or any other university and is the original work of the author except where acknowledged by reference. -
Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis
molecules Article Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis Roberto Sole 1 , Vanessa Gatto 2 , Silvia Conca 1 , Noemi Bardella 1, Andrea Morandini 1 and Valentina Beghetto 1,2,* 1 Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; [email protected] (R.S.); [email protected] (S.C.); [email protected] (N.B.); [email protected] (A.M.) 2 Crossing srl, Viale della Repubblica 193/b, 31100 Treviso, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-041-2348928 Abstract: Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: − − Cl or ClO4 ). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption. -
Zinc Fluoride Product Stewardship Summary February 2011
Zinc Fluoride Product Stewardship Summary February 2011 ZnF2 Chemical Name: Zinc Fluoride Chemical Category (if applicable): Metal Halide Synonyms: Zinc difluoride; ZnF2 CAS Number: 7783-49-5 CAS Name: Zinc fluoride EC (EINECS) Number: 232-001-9 Document Number: GPS0041 V1.0 Zinc fluoride (ZnF2) is used in the manufacture of metals, in fluxes, chemical synthesis, and in the manufacture of special glasses.. Exposure can occur at either a ZnF2 manufacturing facility or at other manufacturing, packaging or storage facilities that handle ZnF2. Persons involved in maintenance, sampling and testing activities, or in the loading and unloading of ZnF2 packages are at risk of exposure, but worker exposure can be controlled with the use of proper general mechanical ventilation and personal protective equipment. Workplace exposure limits for fluoride ion have been established for use in worksite safety programs. When ZnF2 is a component of consumer products, users should follow manufacturer’s use and/or label instructions. ZnF2 dusts released to the atmosphere and deposited in soil or surface water in the vicinity of production sites have negligible impact on the environment. Please see the MSDS for additional information. ZnF2 s a nonflammable solid that is stable under normal conditions. Contact of ZnF2 with water or extended skin contact under moist conditions can produce hydrofluoric acid (HF), a very dangerous acid. Breathing ZnF2 dust can irritate the nose, throat, and lungs. Short-term exposure to high concentrations of ZnF2 may cause nausea, vomiting, loss of appetite and weakness. Long-term exposure to ZnF2 may cause deposits of fluorides in bones and teeth, a condition called fluorosis, which may result in pain, disability and discoloration or mottling of teeth. -
United States Patent (19) 11) E Re
United States Patent (19) 11) E Re. 30,279 Toy et al. (45) Reissued May 20, 1980 54 PROCESS FOR PREPARING ALKYLOR 3,813,435 5/1974 Wood et al. ...................... 260/543 P ARYL PHOSPHORUS HALOES AND 3,847,979 1/1974 Richards .......................... 260/543 P MXED SOMERS THEREOF FOREIGN PATENT DOCUMENTS (75) Inventors: Arthur D. F. Toy, Stamford, Conn.; 1184767 3/1970 United Kingdom ................. 260/543 P Eugene H. Uhing, Ridgewood, N.J. OTHER PUBLICATIONS 73) Assignee: Stauffer Chemical Company, Westport, Conn. Ethyl Corp., Development Products Bulletin, Feb. 1969. 21 Appl. No.: 854 Richard et al., “J.A.C.S.", vol. 83 (1961), pp. 1722-1726. (22 Filed: Jan. 4, 1979 Kosolapoff, "Organo Phos. Comps.", pp. 152, 162 (1950). Related U.S. Patent Documents Sommer, "Zeit Anorg. Alleg. Chem.'", 1970,376(1), pp. Reissue of: 37-43. 64 Patent No.: 3,897,491 issued: Jul. 29, 1975 Primary Examiner-Norman Morgenstern Appl. No.: 151955 Attorney, Agent, or Firn-Paul J. Juettner Fied: Jun. 10, 1971 57 ABSTRACT 51) int.C. ................................................ COTF 9/42 Alkyl or aryl phosphonic or phosphonothioic dihalides 52) U.S. C. ........................... 260/543 P 260/45.7 P; and phosphinic or phosphinothioic monohalides are 260/45.7 PS prepared by reacting an alkyl halide or aryl halide re 58) Field of Search ......... 260/543 P, 45.7 P, 45.7 PS spectively with a tri-valent phosphorus compound hav (56) References Cited ing at least two halogens attached thereto, and prefera bly three two halogens such as phosphorus trihalide, in U.S. PATENT DOCUMENTS the presence of P4O10or P4S10 under at least autogenous 2,345,690 4/1944 Solmssen ......................... -
Evaluation of Antibacterial and Cytocompatible Properties Of
Dental Materials Journal 2020; : – Evaluation of antibacterial and cytocompatible properties of multiple-ion releasing zinc-fluoride glass nanoparticles Erika NISHIDA1, Hirofumi MIYAJI1, Kanako SHITOMI1, Tsutomu SUGAYA1 and Tsukasa AKASAKA2 1 Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, N13 W 7, Kita-ku, Sapporo, Hokkaido 060- 8586, Japan 2 Department of Biomedical Materials and Engineering, Faculty of Dental Medicine, Hokkaido University, N13 W 7, Kita-ku, Sapporo, Hokkaido 060- 8586, Japan Corresponding author, Hirofumi MIYAJI; E-mail: [email protected] Zinc-fluoride glass nanoparticles (Zinc-F) release several ions, such as fluoride, zinc and calcium ions, through acid-base reactions. The aim of this study was to evaluate the antibacterial and cytotoxic properties of Zinc-F. Antibacterial tests showed that a Zinc-F eluting solution significantly reduced the turbidity and colony-forming units ofStreptococcus mutans and Actinomyces naeslundii, compared to that of calcium-fluoroaluminosilicate glass nanoparticles without zinc ions. In live/dead staining, Zinc-F eluate significantly decreased green-stained bacterial cells, indicating live cells, compared with the control (no application). Human dentin coated with Zinc-F showed suppressed S. mutans and A. naeslundii biofilm formation. Additionally, Zinc-F eluate showed low cytotoxic effects in osteoblastic and fibroblastic cells. Therefore, our findings suggested that Zinc-F exhibits antibacterial and biocompatible properties through multiple-ion release. Keywords: Actinomyces naeslundii, Biocompatibility, Dentin, Streptococcus mutans, Zinc-fluoride glass nanoparticles calcium and silicon and a phosphoric acid solution. It is INTRODUCTION assumed that Zinc-F aggregates on the dentin surface to Root caries has become a major problem in elderly close dentinal tubules and release zinc, fluoride, calcium people with exposed tooth roots caused by aging or and silicon ions through acid-base reactions, such as periodontal disease. -
United States Patent (19) 11) 4,133,830 Uhing Et Al
United States Patent (19) 11) 4,133,830 Uhing et al. 45) Jan. 9, 1979 54 PROCESS FOR PREPARING ALKYLOR ARYL THOPHOSPHORUS HALDES AND MEXED SOMERS THEREOF 75 Inventors: Eugene H. Uhing, Pleasantville; Francis A. Via, Yorktown Heights, both of N.Y. 73) Assignee: Stauffer Chemical Company, wherein R is a C1 to Coalkyl radical, cycloalkyl of 5-6 Westport, Conn. carbon atoms in the ring and the C1-C4 alkyl substituted derivative thereof, an aralkyl radical of up to two fused (21) Appl. No.: 765,705 rings, the alkyl portion having from 1 to 20 carbon atoms, an aryl radical of up to three fused rings and the 22 Filed: Feb. 4, 1977 C1-C4 alkyl derivatives thereof, and biphenyl and the 51 Int. Cl? .......................... C07H9/34; C07H9/42 C1-C4 alkyl derivatives thereof, X is a halogen of chlo (52) rine or bromine, and Z is either R or X, by the reaction 58) Field of Search ..................................... 260/543 P of a phosphorus halide source, a hydrocarbon source selected from the group consisting of RH, RX and (56) References Cited RSaR, whereina is 1 or 2 and a sulfur source under U.S. PATENT DOCUMENTS autogenous pressure in an autoclave at a temperature 3,429,916 2/1969 Baker et al. ...................... 260/543 P ranging from about 175 C. to about 450° C. by recy 3,726,918 4/1973 Toy et al. ......................... 260/543 P cling to successive runs a by-product of the reaction 3,790,629 2/1974 Uhing et al. ... 260/543 P remaining after separation of the RPCS)XZ product 3,803,226 4/1974 Uhing et al. -
ZINC SILICOFLUORIDE CAS Number
Common Name: ZINC SILICOFLUORIDE CAS Number: 16871-71-9 RTK Substance number: 2043 DOT Number: UN 2855 Date: December 2001 ------------------------------------------------------------------------- ----------------------------------------------------------------------- HAZARD SUMMARY * Zinc Silicofluoride can affect you when breathed in and * If you think you are experiencing any work-related health by passing through your skin. problems, see a doctor trained to recognize occupational * Contact can irritate the skin and eyes. Prolonged contact diseases. Take this Fact Sheet with you. can cause skin rash and ulcers, and damage to the eyes. * Breathing Zinc Silicofluoride can irritate the nose, throat WORKPLACE EXPOSURE LIMITS and lungs causing coughing, wheezing and/or shortness of The following exposure limits are for Fluoride: (measured as breath. Fluorine): * Very high exposure can cause Fluoride poisoning with stomach pain, weakness, convulsions, collapse and death. OSHA: The legal airborne permissible exposure limit * Repeated high exposure can cause deposits of Fluorides in (PEL) is 2.5 mg/m3 averaged over an 8-hour the bones and teeth, a condition called “Fluorosis.” This workshift. may cause pain, disability and mottling of the teeth. * The above health effects do NOT occur at the level of NIOSH: The recommended airborne exposure limit is Fluoride used in water for preventing cavities in teeth. 2.5 mg/m3 averaged over a 10-hour workshift. * CONSULT THE NEW JERSEY DEPARTMENT OF HEALTH AND SENIOR SERVICES HAZARDOUS ACGIH: The recommended airborne exposure limit is SUBSTANCE FACT SHEET ON FLUORINE. 2.5 mg/m3 averaged over an 8-hour workshift. IDENTIFICATION * The above exposure limits are for air levels only. When Zinc Silicofluoride is a white, sand-like powder. -
Chemical Chemical Hazard and Compatibility Information
Chemical Chemical Hazard and Compatibility Information Acetic Acid HAZARDS & STORAGE: Corrosive and combustible liquid. Serious health hazard. Reacts with oxidizing and alkali materials. Keep above freezing point (62 degrees F) to avoid rupture of carboys and glass containers.. INCOMPATIBILITIES: 2-amino-ethanol, Acetaldehyde, Acetic anhydride, Acids, Alcohol, Amines, 2-Amino-ethanol, Ammonia, Ammonium nitrate, 5-Azidotetrazole, Bases, Bromine pentafluoride, Caustics (strong), Chlorosulfonic acid, Chromic Acid, Chromium trioxide, Chlorine trifluoride, Ethylene imine, Ethylene glycol, Ethylene diamine, Hydrogen cyanide, Hydrogen peroxide, Hydrogen sulfide, Hydroxyl compounds, Ketones, Nitric Acid, Oleum, Oxidizers (strong), P(OCN)3, Perchloric acid, Permanganates, Peroxides, Phenols, Phosphorus isocyanate, Phosphorus trichloride, Potassium hydroxide, Potassium permanganate, Potassium-tert-butoxide, Sodium hydroxide, Sodium peroxide, Sulfuric acid, n-Xylene. Acetone HAZARDS & STORAGE: Store in a cool, dry, well ventilated place. INCOMPATIBILITIES: Acids, Bromine trifluoride, Bromine, Bromoform, Carbon, Chloroform, Chromium oxide, Chromium trioxide, Chromyl chloride, Dioxygen difluoride, Fluorine oxide, Hydrogen peroxide, 2-Methyl-1,2-butadiene, NaOBr, Nitric acid, Nitrosyl chloride, Nitrosyl perchlorate, Nitryl perchlorate, NOCl, Oxidizing materials, Permonosulfuric acid, Peroxomonosulfuric acid, Potassium-tert-butoxide, Sulfur dichloride, Sulfuric acid, thio-Diglycol, Thiotrithiazyl perchlorate, Trichloromelamine, 2,4,6-Trichloro-1,3,5-triazine -
Low Oxidation State Group 15 Chemistry: New Synthetic Methods Towards Polymers
Low Oxidation State Group 15 Chemistry: New Synthetic Methods Towards Polymers By Erin L. Norton A Thesis Submitted to the Faculty of Graduate Studies and Research through the Department of Chemistry and Biochemistry in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Windsor Windsor, Ontario, Canada 2008 Library and Bibliotheque et 1*1 Archives Canada Archives Canada Published Heritage Direction du Branch Patrimoine de I'edition 395 Wellington Street 395, rue Wellington Ottawa ON K1A0N4 Ottawa ON K1A0N4 Canada Canada Your file Votre reference ISBN: 978-0-494-42260-1 Our file Notre reference ISBN: 978-0-494-42260-1 NOTICE: AVIS: The author has granted a non L'auteur a accorde une licence non exclusive exclusive license allowing Library permettant a la Bibliotheque et Archives and Archives Canada to reproduce, Canada de reproduire, publier, archiver, publish, archive, preserve, conserve, sauvegarder, conserver, transmettre au public communicate to the public by par telecommunication ou par I'lnternet, prefer, telecommunication or on the Internet, distribuer et vendre des theses partout dans loan, distribute and sell theses le monde, a des fins commerciales ou autres, worldwide, for commercial or non sur support microforme, papier, electronique commercial purposes, in microform, et/ou autres formats. paper, electronic and/or any other formats. The author retains copyright L'auteur conserve la propriete du droit d'auteur ownership and moral rights in et des droits moraux qui protege cette these. this thesis. Neither the thesis Ni la these ni des extraits substantiels de nor substantial extracts from it celle-ci ne doivent etre imprimes ou autrement may be printed or otherwise reproduits sans son autorisation. -
United States Patent Office Patented June 25, 1963
3,095,356 United States Patent Office Patented June 25, 1963 1. 2 3,095,356 of fluoride uptake by the teeth. Soluble fluorides are DENTIFRICE COMPRISING INSOLUBLE SODIUM found to be taken up to a greater extent when these metal METAPHOSPHATE AND A CADMUM, TN, saits are also present with the fluoride. The proportion ZINC, MANGANESE OR IRON COMPOUND TO of the fluorides, such as aluminum, tin, or sodium fluoride INHIBIT CALCUM ON SEQUESTERNG employed in the practice of the present invention is in the Henry V. Moss, Clayton, Mo, assignor to Monsanto range of 0.05 to 1% by weight of the dentifrice composi Chemical Company, St. Louis, Mo., a corporation of tion. However, the total proportion of metal compounds Delaware w of the group of cadmium, tin, zinc, manganese, alumi No Drawing. Filed Feb. 20, 1956, Ser. No. 566,353 num and iron which are present in the dentifrice is within 11 Claims. (CI. 167-93) 10 the broader range of 0.05 to 50 weight percent. This invention relates to polishing compositions suitable According to one of the present theories as to the for use as a dentifrice base and particularly to those com molecular aggregation of phosphate salts, the insoluble positions which contain the insoluble form of sodium sodium metaphosphate containing the usual impurities, metaphosphate as an ingredient thereof. may exist as a chain-type of molecular structure, and also An object of the present invention is the provision of 5 in the form of relatively short-chain polyphosphates. Ac an improved identifice. - cording to this theory, the presently employed metal com The use of the so-called insoluble form of sodium pounds control the sequestering action of polyphosphates, metaphosphate in finely divided form has been proposed thereby controlling the type of molecular structures pre as a dentifrice. -
Material Safety Data Sheet Zinc Fluoride MSDS# 04642
Material Safety Data Sheet Zinc fluoride MSDS# 04642 Section 1 - Chemical Product and Company Identification MSDS Name: Zinc fluoride Catalog AC194920000, AC194920250, AC194922500, AC363910000, AC363910250, AC363912500 Numbers: AC363912500 Synonyms: Zinc difluoride. Acros Organics BVBA Company Identification: Janssen Pharmaceuticalaan 3a 2440 Geel, Belgium Acros Organics Company Identification: (USA) One Reagent Lane Fair Lawn, NJ 07410 For information in the US, call: 800-ACROS-01 For information in Europe, call: +32 14 57 52 11 Emergency Number, Europe: +32 14 57 52 99 Emergency Number US: 201-796-7100 CHEMTREC Phone Number, US: 800-424-9300 CHEMTREC Phone Number, Europe: 703-527-3887 Section 2 - Composition, Information on Ingredients ---------------------------------------- CAS#: 7783-49-5 Chemical Name: Zinc fluoride %: >98 EINECS#: 232-001-9 ---------------------------------------- Hazard Symbols: XI Risk Phrases: 36/37/38 Section 3 - Hazards Identification EMERGENCY OVERVIEW Warning! Causes eye, skin, and respiratory tract irritation. Target Organs: Respiratory system, skeletal structures, eyes, skin. Potential Health Effects Eye: Causes eye irritation. May cause eye burns. Skin: Causes skin irritation. May be harmful if absorbed through the skin. Ingestion: May cause irritation of the digestive tract. May be harmful if swallowed. Inhalation: Causes respiratory tract irritation. May be harmful if inhaled. Chronic inhalation and ingestion may cause chronic fluoride poisoning (fluorosis) characterized by weight loss, Chronic: weakness, anemia, brittle bones, and stiff joints. Section 4 - First Aid Measures Flush eyes with plenty of water for at least 15 minutes, occasionally lifting the upper and lower eyelids. Get Eyes: medical aid. Get medical aid. Flush skin with plenty of water for at least 15 minutes while removing contaminated Skin: clothing and shoes. -
Supporting Information Degradation
Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021 Supporting Information Degradation Pathways of a highly active iron(III) tetra-NHC Epoxidation Catalyst Florian Dyckhoff, Jonas F. Schlagintweit, Marco A. Bernd, Christian H. G. Jakob, Tim P. Schlachta, Benjamin J. Hofmann, Robert M. Reich and Fritz E. Kühn* Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, D-85748 Garching bei München, Germany. [*] Corresponding author: Prof. Dr. Fritz E. Kühn, E-Mail: [email protected] Table of Contents 1. Effects of bases on 2, 2-tBuCN and 2-PhCN – Catalysis and UV/vis Spectroscopy 2 2. 1H-NMR Spectroscopic Studies 5 3. Synthesis and Characterization of compound 2-d8 7 4. ESI-MS Decomposition Studies 27 5. DFT Calculations 31 6. References 34 1 1. Effects of bases on 2, 2-tBuCN and 2-PhCN – Catalysis and UV/vis Spectroscopy All batch and time-dependent reactions were conducted in a cryostat (Julabo FP-50) with a total reaction volume of 2.0 mL. The catalyst (0.05 mol%, 0.067 µmol) was added from a preformed stock solution (4.0 mg/mL in the respective nitrile, i.e. acetonitrile, tert-butylnitrile or benzonitrile) according to the appropriate stoichiometry to a solution of cis-cyclooctene (100 mol%, 134.5 µmol), the respective additive (0.5 mol%, 0.67 µmol) and H2O2 (150 mol%, 202 µmol, 50% solution in H2O) in the appropriate solvent. The reaction was initiated upon addition of H2O2. The reaction was aborted by adding electrolytically precipitated activated MnO2 as a H2O2 decomposition agent.