Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis

Total Page:16

File Type:pdf, Size:1020Kb

Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis molecules Article Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis Roberto Sole 1 , Vanessa Gatto 2 , Silvia Conca 1 , Noemi Bardella 1, Andrea Morandini 1 and Valentina Beghetto 1,2,* 1 Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; [email protected] (R.S.); [email protected] (S.C.); [email protected] (N.B.); [email protected] (A.M.) 2 Crossing srl, Viale della Repubblica 193/b, 31100 Treviso, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-041-2348928 Abstract: Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: − − Cl or ClO4 ). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption. The efficiency of CDMT/tert-amine was further compared to more stable triazine quaternary ammonium salts having a perchlorate Citation: Sole, R.; Gatto, V.; Conca, S.; counter anion (DMT-Ams(ClO4)). Overall CDMT/tert-amine systems appear to be a viable and more Bardella, N.; Morandini, A.; Beghetto, V. economical alternative to most dehydro-condensation agents employed today. Sustainable Triazine-Based Dehydro-Condensation Agents Keywords: CDMT; triazines; amide synthesis; sustainable dehydro-condensation agents for Amide Synthesis. Molecules 2021, 26, 191. https://doi.org/ 10.3390/molecules26010191 Academic Editor: Narciso M. Garrido 1. Introduction Received: 8 December 2020 The synthesis of amides is among the most important reactions in organic chemistry and Accepted: 29 December 2020 biochemistry because of the widespread occurrence of amides in pharmaceuticals, peptides, Published: 2 January 2021 biologically active compounds, industrial polymers, detergents, and lubricants [1–6]. Conse- quently, many different physical [7] and chemical protocols have been developed for the Publisher’s Note: MDPI stays neu- synthesis of amides by dehydro-condensation of a carboxylic acid and an amine [8–13]. tral with regard to jurisdictional clai- Catalytic routes for the preparation of amides have also been reported with the intent to ms in published maps and institutio- increase atom efficiency of the process [2,14]. An alternative metal-free synthetic route nal affiliations. for the formation of amides has been recently proposed by Zhang et al. [15] by coupling reaction of formamide with different carboxylic acids. Albeit the strategic importance of this class of compounds, most methods commonly Copyright: © 2021 by the authors. Li- employed for the synthesis of amides still lack both in economic and environmental censee MDPI, Basel, Switzerland. sustainability, have low atom efficiency, generate large quantities of hazardous waste This article is an open access article products, and require complicated purification steps [16–18]. distributed under the terms and con- In this frame, dehydro-condensation reactions are a well-known and consolidated ditions of the Creative Commons At- protocol for the synthesis of amides, although toxic dehydro-condensation agents are often tribution (CC BY) license (https:// used to promote the reaction [17,19]. For example, carbodiimides such as dicyclohexyl- creativecommons.org/licenses/by/ carbodiimide (DCC) or 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide chlorohydrate 4.0/). Molecules 2021, 26, 191. https://doi.org/10.3390/molecules26010191 https://www.mdpi.com/journal/molecules Molecules 2021, 26, 191 2 of 15 Molecules 2021, 26, x FOR PEER REVIEW 2 of 15 (EDC)(EDC) employed employed in in combination combination with withN-hydroxysuccinimide N-hydroxysuccinimide (NHS), (NHS), have have frequently frequently been employedbeen employed for the for scope the scope (Figure (Figure1)[20– 1)23 ].[20–23]. FigureFigure 1.1. ChemicalChemical structuresstructures ofof variousvarious dehydro-condensationdehydro-condensation agents. agents. HydroxybenzotriazoleHydroxybenzotriazole (HOBt) (HOBt) [24 [24–26],–26], 1-hydroxy-7-azabenzotriazole 1-hydroxy-7-azabenzotriazole (HOAt) (HOAt) [27 –[27–29], and29], uroniumand uronium or guanidinium or guanidinium salt derivatives salt derivatives such as, such e.g., hexafluorophosphateas, e.g., hexafluorophosphate azaben- zotriazoleazabenzotriazole tetramethyl tetramethyl uronium uronium (HATU), (HATU), hexafluorophosphate hexafluorophosphate benzotriazole benzotriazole tetramethyl tet- uroniumramethyl (HBTU), uronium hexafluorophosphate (HBTU), hexafluorophos chlorobenzotriazolephate chlorobenzotriazole tetramethyl uronium tetramethyl (HCTU), anduronium 1-cyano-2-ethoxy-2-oxoethylidenaminooxy)-dimethylamino-morpholino-carbenium (HCTU), and 1-cyano-2-ethoxy-2-oxoethylidenaminooxy)-dimethylamino-mor- hexafluorophosphatepholino-carbenium hexafluorophosphate (COMU) (Figure1) have(COMU) also (Figure been efficiently 1) have also used been to promoteefficiently carbodiimide-mediatedused to promote carbodiimide-mediated peptide coupling reactions peptide [18coupling,30], although reactions with [18,30], scarce although environ- mentalwith scarce and economicenvironmental sustainability and economic [9,10,31 sust]. Inainability fact, DCC [9,10,31]. and EDC In lead fact, to DCC the formation and EDC of toxic by-products [17], while uronium derivatives may contain highly harmful hydrazide lead to the formation of toxic by-products [17], while uronium derivatives may contain impurities [19]. highly harmful hydrazide impurities [19]. More stringent rules regulating the use and disposal of organic solvents and increas- More stringent rules regulating the use and disposal of organic solvents and increas- ingly restrictive EU directives on hazardous substances make the quest for greener and ingly restrictive EU directives on hazardous substances make the quest for greener and more efficient products and processes increasingly important [17,18]. more efficient products and processes increasingly important [17,18]. In this prospective, quaternary ammonium salts of 2-halo-4,6-dialkoxy-1,3,5-triazines, In this prospective, quaternary ammonium salts of 2-halo-4,6-dialkoxy-1,3,5-tria- e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), zines, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (see Figure2), represent a valid alternative for the formation of amide bonds both in or- (DMTMM(Cl)), (see Figure 2), represent a valid alternative for the formation of amide ganic and water solvent [20,21,32–39]. In the last years, DMTMM(Cl), commonly known as bonds both in organic and water solvent [20,21,32–39]. In the last years, DMTMM(Cl), DMTMM, has found many applications as dehydro-condensation agent for the synthesis of commonly known as DMTMM, has found many applications as dehydro-condensation amides and esters [36,40], collagen cross-linking [7,21,38], preparation of carboxymethylcel- luloseagent basedfor the films synthesis [39], amine of amides grafting and onesters hyaluronan [36,40], collagen [20,40,41 cross-linking], and peptide [7,21,38], synthesis prep- [42]. Additionally,aration of carboxymethylcellulose the synthesis of a library based of 2-(4,6-dimethoxy-1,3,5-triazinyl)trialkyl films [39], amine grafting on hyaluronan ammo- [20,40,41], and peptide synthesis− [42]. Addition− ally, the synthesis of a library of 2-(4,6- nium salts (DMT-Ams(X), X: Cl or ClO4 ) and their activity as dehydro-condensation - - agentsdimethoxy-1,3,5-triazinyl)trialkyl for the synthesis of amides, ammonium has been reported salts (DMT-Ams(X), by Kunishima X: et al.Cl [ 43or] (FigureClO4 ) and2). Thistheir work activity is a as milestone dehydro-condensation in the understanding agents of for triazine the synthesis based-condensation of amides, has agents been and re- theirported application by Kunishima in various et al. fields[43] (Figure of chemistry. 2). This Further work is interesting a milestone feature in the is understanding that DMTMM andof triazine DMT-Ams(X) based-condensation all degrade forming agents and 2,4-dimethoxy-6-hydroxy-1,3,5-triazine their application in various fields of (DMTOH)chemistry. andFurther the correspondinginteresting feature tertiary is that amine DMTMM hydrochloric and DMT-Ams(X) salt, which areall degrade nontoxic. forming Moreover, 2,4- DMTOHdimethoxy-6-hydroxy-1,3,5-triazine can be recovered and recycled (DMTOH) to produce and 2-chloro-4,6-dimethoxy-1,3,5-triazinethe corresponding tertiary amine hy- (CDMT)drochloric or salt, DMTMM which (Figure are nontoxic.2)[ 37]. Moreover, To date, one DMTOH of the main can limitationsbe recovered to and large-scale recycled use to ofproduce DMTMM 2-chloro-4,6-dimethoxy-1,3,5-triazine and DMT-Ams(X)
Recommended publications
  • Amide Bond Formation and Peptide Coupling
    Tetrahedron 61 (2005) 10827–10852 Tetrahedron report number 740 Amide bond formation and peptide coupling Christian A. G. N. Montalbetti* and Virginie Falque Evotec, 112 Milton Park, Abingdon OX14 4SD, UK Received 2 August 2005 Available online 19 September 2005 Contents 1. Introduction ................................................................. 10828 2. Amide bond formation: methods and strategies ....................................... 10828 2.1. Acyl halides . .......................................................... 10829 2.1.1. Acyl chlorides .................................................... 10829 2.1.1.1. Acyl chloride formation ...................................... 10829 2.1.1.2. Coupling reactions with acyl chlorides ........................... 10831 2.1.1.3. Limitations of acyl chlorides .................................. 10831 2.1.2. Acyl fluorides .................................................... 10831 2.1.3. Acyl bromides .................................................... 10832 2.2. Acyl azides . .......................................................... 10832 2.3. Acylimidazoles using CDI ................................................. 10833 2.4. Anhydrides . .......................................................... 10834 2.4.1. Symmetric anhydrides .............................................. 10834 2.4.2. Mixed anhydrides .................................................. 10834 2.4.2.1. Mixed carboxylic anhydrides .................................. 10834 2.4.2.2. Mixed carbonic anhydrides ...................................
    [Show full text]
  • Supporting Information Degradation
    Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021 Supporting Information Degradation Pathways of a highly active iron(III) tetra-NHC Epoxidation Catalyst Florian Dyckhoff, Jonas F. Schlagintweit, Marco A. Bernd, Christian H. G. Jakob, Tim P. Schlachta, Benjamin J. Hofmann, Robert M. Reich and Fritz E. Kühn* Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, D-85748 Garching bei München, Germany. [*] Corresponding author: Prof. Dr. Fritz E. Kühn, E-Mail: [email protected] Table of Contents 1. Effects of bases on 2, 2-tBuCN and 2-PhCN – Catalysis and UV/vis Spectroscopy 2 2. 1H-NMR Spectroscopic Studies 5 3. Synthesis and Characterization of compound 2-d8 7 4. ESI-MS Decomposition Studies 27 5. DFT Calculations 31 6. References 34 1 1. Effects of bases on 2, 2-tBuCN and 2-PhCN – Catalysis and UV/vis Spectroscopy All batch and time-dependent reactions were conducted in a cryostat (Julabo FP-50) with a total reaction volume of 2.0 mL. The catalyst (0.05 mol%, 0.067 µmol) was added from a preformed stock solution (4.0 mg/mL in the respective nitrile, i.e. acetonitrile, tert-butylnitrile or benzonitrile) according to the appropriate stoichiometry to a solution of cis-cyclooctene (100 mol%, 134.5 µmol), the respective additive (0.5 mol%, 0.67 µmol) and H2O2 (150 mol%, 202 µmol, 50% solution in H2O) in the appropriate solvent. The reaction was initiated upon addition of H2O2. The reaction was aborted by adding electrolytically precipitated activated MnO2 as a H2O2 decomposition agent.
    [Show full text]
  • Chapter 2 Improvement of Heat Resistance of Poly(Methyl Methacrylate) by Addition of Lithium Salts
    JAIST Repository https://dspace.jaist.ac.jp/ リチウム塩の添加がポリメタクリル酸メチルの特性に Title 及ぼす影響 Author(s) 伊藤, 麻絵 Citation Issue Date 2019-03 Type Thesis or Dissertation Text version ETD URL http://hdl.handle.net/10119/15795 Rights Description Supervisor:山口 政之, 先端科学技術研究科, 博士 Japan Advanced Institute of Science and Technology Effect of addition of lithium salts on properties of poly(methyl methacrylate) Asae Ito Japan Advanced Institute of Science and Technology Doctoral Dissertation Effect of addition of lithium salts on properties of poly(methyl methacrylate) Asae Ito Supervisor: Prof. Dr. Masayuki Yamaguchi Graduate School of Advanced Science and Technology Japan Advanced Institute of Science and Technology Materials Science March 2019 Referee-in-chief: Professor Masayuki Yamaguchi Japan Advanced Institute of Science and Technology Referees: Professor Masayuki Yamaguchi Japan Advanced Institute of Science and Technology Professor Tatsuo Kaneko Japan Advanced Institute of Science and Technology Associate Professor Toshiaki Taniike Japan Advanced Institute of Science and Technology Associate Professor Ken-ichi Shinohara Japan Advanced Institute of Science and Technology Professor Akihiro Nishioka Yamagata University Effect of addition of lithium salts on properties of poly(methyl methacrylate) Yamaguchi Laboratory Asae Ito (s1620002) Heat resistance and optical properties of amorphous polymers are important for engineering applications such as automobile parts, electrical devices, and displays. In general, a single plastic material often possesses poor physical properties for engineering application, so that the improvement of properties has been tried in decades. In particular, one of the promising processes to modify a polymer is mixing with low-molecular-weight compounds. Recently, it was found that the addition of a specific lithium salt enhances glass transition temperature (Tg) of poly(methyl methacrylate) (PMMA), which is a typical amorphous polymer.
    [Show full text]
  • ACS Guide to Scholarly Com
    1.3 Communicating Safety Information Samuella Sigmann Visit the full ACS Guide to Scholarly Communication 1.3.1 Introduction In 2011, the U.S. Chemical Safety Board (CSB) issued its first investigation of a chemical accident at an academic research institution. The incident involved the sudden detonation of a nickel hydrazine perchlorate (NHP) derivative that resulted in severe and permanent injury to a fifth-year chemistry graduate student at Texas Tech University (TTU). Student researchers were involved in a multi-institutional research project to characterize new potentially energetic materials. They decided to scale up their synthesis by two orders of magnitude to provide enough sample so that all testing could be performed on one batch but neglected to assess safety ramifications. The final CSB report for the TTU incident found in both this case and prior incidents in the same research area that (1): . No formal hazard evaluation and risk assessment had been completed to char-acterize the potential danger of the research activity and to plan for the worst-case scenario. The student sought peer advice. No policy was in place at the laboratory, department, or university level to prompt a student to seek PI advice or evaluation of experimental activities. The investigation clearly indicates that the students did not have the information they needed to prepare themselves for the increased risk posed by their decision to scale up. The CSB primarily investigates and reports on large scale incidents in the chemical and related industries where hazard evaluation and risk assessment are well established to facilitate improved safety management across the industry.
    [Show full text]
  • Structural Aspects of Organic Superconductors
    THOMAS 1. KISTENMACHER STRUCTURAL ASPECTS OF ORGANIC SUPERCONDUCTORS The structural properties of organic charge-transfer salts based on the electron donors tetramethyl­ tetraselenafulvalene (TMTSF) and bis( ethylenedithiolo )tetrathiafulvalene (BEDT -TTF) and on a va­ riety of complex inorganic anions (X) are examined systematically. For the isomorphous series of (TMTSF)2X salts, the analysis of a variety of structural data reveals that anion size and symmetry are crucial parameters. For the structurally complex (BEDT-TTF)2X salts, a crystallographic fami­ ly tree is developed that aids in the systematization of their structural and electrical properties. A particularly illuminating aspect of the crystallographic family tree is that alternate generations are populated by salts with anions of opposite inversion symmetry. For each series of salts, structurally unique properties are identified for members that exhibit ambient-pressure superconductivity. INTRODUCTION TCNQ depends on a number of variables (e.g., ioni­ In general, it is expected that the intrinsic electrical zation potentials of the donor, electron affinities of conductivity in purely organic solids will be limited the acceptor, the degree of charge transferred from the (nominally to insulators) by the large covalent energy donor to the acceptor, and the strength of conduction gap that stabilizes these materials. However, only a electron-phonon coupling), crystalline structure has brief reflection indicates that variations in intrinsic again proven to be an essential parameter in the conductivity in organic solids can be substantial and achievement of metallic transport. The presence of uni­ that the variations often have their antecedents in crys­ form segregated stacks of TTF donors and TCNQ ac­ talline structure.
    [Show full text]
  • Method for Producing Hexafluorophosphate Salt
    (19) & (11) EP 2 123 601 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 25.11.2009 Bulletin 2009/48 C01B 25/455 (2006.01) (21) Application number: 08704433.5 (86) International application number: PCT/JP2008/051806 (22) Date of filing: 05.02.2008 (87) International publication number: WO 2008/096723 (14.08.2008 Gazette 2008/33) (84) Designated Contracting States: • MIYAMOTO, Kazuhiro AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Izumiotsu-shi HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT Osaka 595-0075 (JP) RO SE SI SK TR • AOKI, Kenji Izumiotsu-shi (30) Priority: 08.02.2007 JP 2007029405 Osaka 595-0075 (JP) (71) Applicant: Stella Chemifa Corporation (74) Representative: Meissner, Bolte & Partner Osaka-shi Anwaltssozietät GbR Osaka 541-0047 (JP) Postfach 86 06 24 81633 München (DE) (72) Inventors: • WAKI, Masahide Izumiotsu-shi Osaka 595-0075 (JP) (54) METHOD FOR PRODUCING HEXAFLUOROPHOSPHATE SALT (57) In the manufacturing method of hexafluorophos- provided which is capable of manufacturing hexafluoro- phate (MPF6: M = Li, Na, K, Rb, Cs, NH4, and Ag) of the phosphate (GPF6: G = Li, Na, K, Rb, Cs, NH4, and Ag) present invention, at least a HxPOyFz aqueous solution, at a low cost in which the raw materials can be easily a hydrofluoric acid aqueous solution, and MF · r (HF) are obtained, the control of the reaction is possible, and the used as raw materials (wherein, r ≥ 0, 0 ≤ x ≤ 3, 0 ≤ y ≤ workability is excellent.
    [Show full text]
  • Application in Solution Peptide Synthesis
    Molecules 2010, 15, 9403-9417; doi:10.3390/molecules15129403 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Article Synthesis of 2-(4,6-Dimethoxy-1,3,5-triazin-2-yloxyimino) Derivatives: Application in Solution Peptide Synthesis Tarfah I. Al-Warhi 1,*, Hassan M.A. AL-Hazimi 2, Ayman El-Faham 2,3 and Fernando Albericio 4,5,6 1 Women Students-Medical Studies and Sciences Sections, Chemistry Department, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia 2 Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia 3 Chemistry Department, Faculty of Science, Alexandria University, 426 Ibrahimia, 21321 Alexandria, Egypt 4 Institute for Research in Biomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona 08028, Spain 5 CIBER-BBN, Networking Centre on Bioengineering, Biomaterials and Nanomedicine, Barcelona Science Park, Baldiri Reixac 10, Barcelona 08028, Spain 6 Department of Organic Chemistry, University of Barcelona, Martí i Franqués 1-11, Barcelona 08028, Spain * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 29 November 2010; in revised form: 14 December 2010 / Accepted: 15 December 2010 / Published: 20 December 2010 Abstract: A new class of 1,3,5-triazinyloxyimino derivatives were prepared, characterized and tested for reactivity in solution peptide synthesis. The new triazinyloxyimino derivatives failed to activate the carboxyl group during formation of peptide bonds, but gave the corresponding N-triazinyl amino acid derivatives as a major product. The oxyma (ethyl 2-cyano-2-(hydroxyimino)acetate) uronium salt was superior to other uronium salts in terms of racemization, while 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT, 9) gave the best results.
    [Show full text]
  • Preparation and Properties of Tetrachlorophosphonium
    This dissertation has been microfilmed exactly as received 66-1851 WALTHER, James Fletcher, 1938- PREPARATION AND PROPERTIES OF T E TRAC HLOROPHOSPHONIUM TETRACHLORODIFLUOROPHOSPHATE. The Ohio State University, Ph.D., 1965 Chemistry, inorganic University Microfilms, Inc., Ann Arbor, Michigan PREPARATION AND PROPERTIES OP TETRACHLOROPHOSPHONIUH TKTRACHLORGDIFLUQROPHOSPHATE DISSERTATION Presented In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy In the Graduate School of The Ohio State University BSP James Fletcher Walther, B.A.* M.Sc* The Ohio State University 1965 Department of Chemistry ACKHCMI2DGMENTS I wish to express ngr sincerest gratitude to my adviser* Or. Sheldon Q. Shore* Tor suggesting this very interesting and perplexing research problem. I am dearly grateful to ay wife* Kay* for her faithful assistance in preparing this dissertation and for her enduring interest and enthusiasm in my work. Also* I want to express my appreciation to the Chemistry Department of The Ohio State University for its financial assist­ ance through various teaching assistantships and summer fellow­ ships. ii VITA August *** 1 9 3 8 ........... Born* St* Louis* Missouri i960 ••••••••• ••• B*A** Central Methodist College* Fayette* Missouri 1960-1963 ....................... Teaching Assistant* Department of Chemistry* The Ohio State University* Columbus* Ohio 1963-196**................... Teaching Assistant* Graduate level* Inorganic Division* Department of Chemistry The Ohio State University* Columbus* (Alio 196*4—1965 ..............
    [Show full text]
  • Preparation of Lithium Hexafluorophosphate Solutions Herstellung Von Lithiumhexafluorphosphatlosungen Preparation De Solutions D'hexafluorophosphate De Lithium
    _ <v Europaisches llll II || IMI 1 1 1 1| UN || I I JGV/l Eur°Pean Patent Office <*S Office europeen des brevets (11) EP 0 735 983 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) int. CI.6: C01 B 25/10, H01M6/14, of the grant of the patent: C01 D 1 5/00, H01 M 6/1 6, 31.03.1999 Buiietin 1999/13 H01M 10/40 (21) Application number: 94926652.2 (86) International application number: (22) Date of filing: 02.09.1994 PCT/US94/09843 (87) International publication number: WO 95/17346 (29.06.1995 Gazette 1995/27) (54) PREPARATION OF LITHIUM HEXAFLUOROPHOSPHATE SOLUTIONS HERSTELLUNG VON LITHIUMHEXAFLUORPHOSPHATLOSUNGEN PREPARATION DE SOLUTIONS D'HEXAFLUOROPHOSPHATE DE LITHIUM (84) Designated Contracting States: • BARNETT, Rebecca, A. DE FR Maiden, NC 28650 (US) (30) Priority: 23.12.1993 US 172690 (74) Representative: McCall, John Douglas et al (43) Date of publication of application: WP. THOMPSON & CO. 09.10.1996 Bulletin 1996/41 Coopers Building Church Street (73) Proprietor: FMC CORPORATION Liverpool L1 3AB (GB) Philadelphia, PA 19103 (US) (56) References cited: (72) Inventors: EP-A- 0 643 433 US-A- 3 654 330 • SALMON, Dennis, J. US-A-4 880 714 Gastonia, NC 28054 (US) • BARNETTE, D. Wayne • PATENT ABSTRACTS OF JAPAN vol. 008, no. Bessemer City, NC 28016 (US) 142 (E-254), 3 July 1984 & JP-A-59 051475 (SANYO DENKI KK), 24 March 1984, CO CO CO <7> IO CO Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Synthesis, Characterization, and Molecular Structure of Bis(Tetraphenylcyclopentdienyl)Rhodium(II)⊗ James E
    Marshall University Marshall Digital Scholar Chemistry Faculty Research Chemistry 1995 Synthesis, Characterization, and Molecular Structure of Bis(tetraphenylcyclopentdienyl)rhodium(II)⊗ James E. Collins Michael Castellani Marshall University, [email protected] Arnold L. Rheingold Edward J. Miller William E. Geiger See next page for additional authors Follow this and additional works at: http://mds.marshall.edu/chemistry_faculty Part of the Chemistry Commons Recommended Citation Collins, J. E.; Castellani, M. P.; Rheingold, A. L.; Miller, E. J.; Geiger, W. E.; Rieger, A. L.; Rieger, P. H., Synthesis, Characterization, and Molecular Structure of Bis (tetraphenylcyclopentdienyl) rhodium (II). Organometallics 1995, 14 (3), 1232-1238. This Article is brought to you for free and open access by the Chemistry at Marshall Digital Scholar. It has been accepted for inclusion in Chemistry Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. Authors James E. Collins, Michael Castellani, Arnold L. Rheingold, Edward J. Miller, William E. Geiger, Anne L. Rieger, and Philip H. Rieger This article is available at Marshall Digital Scholar: http://mds.marshall.edu/chemistry_faculty/20 Synthesis, Characterization, and Molecular Structure of Bis(tetraphenylcyclopentdienyl)rhodium(II)⊗ James E. Collins,†1Michael P. Castellani,*,† Arnold L. Rheingold,*,‡ Edward J. Miller,§,♦ William E. Geiger,*,§ Anne L. Rieger,∇1and Philip H. Rieger*,∇ Departments of Chemistry, Marshall University, Huntington, West Virginia 25755; University of Delaware, Newark, Delaware, 19716; University of Vermont, Burlington, Vermont, 05405; and Brown University, Providence, Rhode Island, 02912. Abstract A 5 day diglyme reflux of Rh(acac)3 and K(C5HPh4), followed by treatment with aqueous HPF6, produces orange-yellow [(C5HPh4)2Rh]PF6 in 40 - 50% yield.
    [Show full text]
  • Chromatographic Techniques in the Research Area of Lithium Ion Batteries: Current State-Of-The-Art
    separations Review Chromatographic Techniques in the Research Area of Lithium Ion Batteries: Current State-of-the-Art Yannick Philipp Stenzel 1, Fabian Horsthemke 1, Martin Winter 1,2 and Sascha Nowak 1,* 1 University of Münster, MEET Battery Research Center, Corrensstraße 46, 48149 Münster, Germany; [email protected] (Y.P.S.); [email protected] (F.H.); [email protected] (M.W.) 2 Helmholtz Institute Münster, IEK-12, Forschungszentrum Jülich, Corrensstraße 46, 48149 Münster, Germany * Correspondence: [email protected]; Tel.: +49-251-83-36735 Received: 27 February 2019; Accepted: 16 April 2019; Published: 13 May 2019 Abstract: Lithium ion batteries (LIBs) are widely used in numerous application areas, including portable consumer electronics, medicine, grid storage, electric vehicles and hybrid electric vehicles. One major challenge during operation and storage is the degradation of the cell constituents, which is called aging. This phenomenon drastically reduces both storage lifetime and cycle lifetime. Due to numerous aging effects, originating from both the individual LIB cell constituents as well as their interactions, a wide variety of instruments and methods are necessary for aging investigations. In particular, chromatographic methods are frequently applied for the analysis of the typically used liquid non-aqueous battery electrolytes based on organic solvents or ionic liquids. Moreover, chromatographic methods have also been recently used to investigate the composition of electrode materials. In this review, we will give an overview of the current state of chromatographic methods in the context of LIB cell research. Keywords: lithium ion batteries; electrolyte; ionic liquids; aging; gas chromatography; ion chromatography; liquid chromatography; capillary electrophoresis; chemical ionization; hyphenated techniques 1.
    [Show full text]
  • Coupling Additives 3
    Issue in Honor of Drs. Cynthia A. and Bruce E. Maryanoff ARKIVOC 2010 (viii) 189-250 Evolution of amide bond formation Madeleine M. Joullié and Kenneth M. Lassen Department of Chemistry , University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, U. S. A. E-mail: [email protected] This paper is dedicated to Drs Bruce E. Maryanoff and Cynthia A. Maryanoff for their outstanding contribution to organic chemistry as industrial chemists Abstract The presence of carboxamide groups is found in a large array of biologically important compounds. Peptides and proteins play an important role in modern biology. A key step in peptide production is the formation of the peptide bond, which involves amide bond formation. Chemical synthesis of large peptides by intermolecular coupling of smaller peptides using conventional peptide bond-forming techniques did not realize its potential advantages until recently. Using an approach based on highly specific and efficient chemical ligation of two peptide segments, the two subunits were ligated to form a new peptide bond. Native chemical ligation extended the concept by creating a native peptide bond and providing new approaches to protein engineering. Keywords: Amide bond formation, coupling reagent, peptide, chemical ligation, native chemical ligation Table of Contents Introduction 1. Amide Bond Formation 1.1. Approaches to amide bond formation 1.2. Racemization 2. Coupling Additives 3. Common Coupling Reagents 3.1. Azides 3.2. Active esters 3.3. Acyl halides 3.4. Anhydrides ISSN 1551-7012 Page 189 ©ARKAT USA, Inc. Issue in Honor of Drs. Cynthia A. and Bruce E. Maryanoff ARKIVOC 2010 (viii) 189-250 3.5.
    [Show full text]