Fluorescent Probes for the Labelling of Cardiomyocyte and Mitochondrial Proteins. Thomas D. Z. Pearson

Total Page:16

File Type:pdf, Size:1020Kb

Fluorescent Probes for the Labelling of Cardiomyocyte and Mitochondrial Proteins. Thomas D. Z. Pearson Fluorescent Probes for the Labelling of Cardiomyocyte and Mitochondrial Proteins. A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy. By Thomas D. Z. Pearson 2017 School of Science and Technology Nottingham Trent University Clifton Lane Nottingham NG11 8NS United Kingdom i Declaration I hereby certify that the work embodied in this thesis is the result of my own investigations except where reference has been made to published literature. ii Abstract Organophosphates are a known danger to human health with an array of biochemical targets and complex toxic effects. Phenyl saligenin phosphate (PSP) is an organophosphate and related phenoxy substituted organophosphates irreversibly bind to a variety of important enzymes causing the condition known as organophosphate induced delayed neuropathy (OPIDN). These compounds also potentially cause cardiac muscle damage but little is known about how this class of compounds effect cardiomyocytes. The identification of proteins targeted by these toxins is of interest. This study investigates the synthesis and application of novel fluorescently labelled organophosphates to investigate organophosphate interaction with H9c2 cardiomyoblasts. The synthesis of probes with BODIPY, pyrene and rhodamine fluorescent component is explored with success in preparation of pyrene and rhodamine probes. The fluorescent behaviour of three rhodamine labelled phenyl saligenin phosphates probes with alkyl and PEG linkers is examined and the cytotoxicity of the probes assessed by monitoring MTT reduction, and LDH release from exposed H9c2 cardiomyoblasts. All three analogues showed cytotoxicity (4 h exposure; 100 µM). These probes were found to bind to proteins within mitochondria and spots from 2D-gel electrophoresis experiments, visualised at 532 nm, which are undergoing MS analysis. This project also describes progress towards a photoreactive-fluorescent probe to identify the site of action of the potassium channel opener, diazoxide, which activates cardioprotective pathways. The drug is believed to target mitochondrial KATP channels, but the protein structure of these channels has yet to be elucidated. The fluorescence labelling of whole cardiac cells with a dansyl fluorescent - benzophnone-photoreactoive diazoxide probe has been demonstrated and the progress toward a rhodamine fluorescent analogue is presented. iii Acknowledgements I would like to thank all my friends and family for your support, love and kindness throughout this PhD. Particularly my grandparents and parents, brothers, sister and the current Mrs. Pearson… Rachel all of whom I love lots, and value way more than I probably show. I have immense gratitude for my Supervisors, Chris, John, and Alan who always made time for me when I needed help, thank you for your time and attention. I would like to thank Shatha, Nada, David, Clare, Quentin and Warren for the collaboratory work that made completion of thesis possible. Special thanks to James, Fal, Giulia, Alanood, Laurence, Matteo, Dan, Myles, Jonny, Hitten and Josh for all the time and banter we had in the lab! Finally, I would like to thank God, without whom, my very breath would not be possible. iv List of Acronyms, Abbreviations and Symbols Acronym, Abbreviation or Symbol Name ABC ATP-binding cassette Ac Acetyl ACh Acetylcholine AChE Acetylcholinesterase ADP Adenosine diphosphate ANT Adenine nucleotide translocator aq. Aqueous Ar Aryl / heteroaryl ATP Adenosine triphosphate BAPTA 1,2-bis(o-aminophenoxy)ethane-N,N,N,N-tetraacetic acid br Broad BSA Bovine serum albumin CBDP Cresyl saligenin phosphate CDI Carbonyldimidazole d Doublet DCE Dichloroethane DCM Dichloromethane dd Doublet of doublets DiAM Dialkynylimidazole DMAP 4-dimethylaminopyridine DMF N, N-dimethylformamide DMSO Dimethylsulfoxide ε Extinction coefficient eNOS Endothelial nitric oxide synthase eq. Equivalents Et Ethyl FBS Foetal bovine serum h Hour H2O2 Hydrogen peroxide HMQC Heteronuclear multiple quantum coherence HRMS High resolution mass spectrum HSP Heat shock proteins I/R Ischaemia/reperfusion IMS Intermediate syndrome iNOS inducible nitric oxide synthase IPC Ischaemia preconditioning Kca Calcium-activated potassium channel Kir Inwardly rectifying potassium channel subunit m multiplet M1 /M2 Transmembrane unit m. /min. Minutes mABC Mitochondrial ATP-binding cassette MAPK Mitogen-activated protein kinases Me Methyl MitoKATP Mitochondrial ATP-activated potassium channel MnSOD mitochondrial antioxidant enzyme superoxide dismutase mol Mole µM Micromolar Mp Melting point MS Mass spectrometry NADP nicotinamide adenine dinucleotide NBD Nucleotide binding domain NEt3 / TEA Triethylamine v NF-κB transcriptional nuclear factor κB NMR Nuclear magnetic resonance NTE Neuropathy target esterase Nu Nucleophile o Ortho OPIDN Organophosphate induced delayed neuropathy PAGE Polyacrylamide gel electrophoresis PAL Photoaffinity labelling PEG Polyethyl glycol Ph Phenyl PIC Mitochondrial phosphate carrier PKC Protein kinase C PPC Pharmacological preconditioning ppm Parts per million PSP Phenylsaligenin phosphate φ Quantum yield q Quartet Quin quintet Rf Retention factor Rho Rhodamine B ROMK renal outer medullary potassium channel ROS Reactive oxygen species s Singlet Structure and Reactivty SAR SCOTP Saligenin cyclic ortho-tolylphosphate SDH Succinate dehydrogenase SDS Sodium dodecyl sulphate SOD superoxide dismutases SUR Sulfonylurea receptor t Triplet T3P tripropylphosphinic anhydride tBu Tert-butyl TGase Transglutaminase THF Tetrahydrofuran TK Tyrosine kinase TLC Thin layer chromatography TMD Transmembrane domain TOCP Tri-ortho-cresyl phosphate UV Ultra-violet vi Contents Declaration .............................................................................................................................................. ii Abstract .................................................................................................................................................. iii Acknowledgements ................................................................................................................................ iv List of Acronyms, Abbreviations and Symbols ........................................................................................ v 1 Introduction ....................................................................................................................................... 15 1.2 Proteomics ...................................................................................................................................... 15 1.3 Functional Probes ........................................................................................................................... 15 1.4 Organophosphates .......................................................................................................................... 18 1.5 Mechanism of Toxicity .................................................................................................................... 21 1.6 Organophosphates’ Mechanism of Covalent Binding .................................................................... 23 1.7 Hydrolysis Products (Aging) ............................................................................................................ 25 1.8 Interesting targets for organophosphates ...................................................................................... 26 1.9 Focus of Study – Myocardial Cells ................................................................................................... 28 1.10 The Potential Use of an Organophosphate Probe in Protein Identification ................................. 30 1.10.1 Previous work ............................................................................................................................ 30 1.10.2 The synthetic route of an organophosphate probe ................................................................... 32 2 Cardiovascular Disease ...................................................................................................................... 35 2.1 Background ..................................................................................................................................... 35 2.2 Ischaemia-reperfusion injury .......................................................................................................... 36 2.3 Preconditioning ............................................................................................................................... 36 2.4 Diazoxide – Pharmacological Preconditioning ................................................................................ 38 7 2.5 Potassium Channels ........................................................................................................................ 40 2.5.1 Types of potassium channel......................................................................................................... 40 2.5.2 Sarcolemma KATP structure ........................................................................................................... 42 2.5.3 Mitochondrial KATP structure ........................................................................................................ 43 2.6 Mitochondrial Role in Cardiovascular Disease ................................................................................ 44 2.7 Structure and Reactivity of Diazoxide ............................................................................................. 45 2.7.1 Cardioprotective derivatives
Recommended publications
  • Toxicological Basis Data for the Derivation of EU-LCI Values For
    TEXTE 223/2020 Toxicological basis data for the derivation of EU- LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2- dimethoxyethane and 1,2-diethoxyethane Final report German Environment Agency TEXTE 223/2020 Ressortforschungsplan of the Federal Ministry for the Enviroment, Nature Conservation and Nuclear Safety Project No. (FKZ) 3719 62 205 0 Report No. FB000359/ENG Toxicological basis data for the derivation of EU-LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2- dimethoxyethane and 1,2-diethoxyethane Final report by Dr. Barbara Werschkun Wissenschaftsbüro, Berlin On behalf of the German Environment Agency Imprint Publisher Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Report performed by: Wissenschaftsbüro Dr. Barbara Werschkun Monumentenstr. 31a 10829 Berlin Germany Report completed in: May 2020 Edited by: Section II 1.3 Indoor Hygiene, Health-related Environmental Impacts Dr. Ana Maria Scutaru Publication as pdf: http://www.umweltbundesamt.de/publikationen ISSN 1862-4804 Dessau-Roßlau, December 2020 The responsibility for the content of this publication lies with the author(s). TEXTE Toxicological basis data for the derivation of EU-LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2-dimethoxyethane and 1,2-diethoxyethane – Final report Abstract: Toxicological basis data for the derivation of EU-LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2-dimethoxyethane and 1,2-diethoxyethane The objective of this study was the evaluation of toxicological data for five substances as basis for the derivation of EU-LCI values.
    [Show full text]
  • Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis
    molecules Article Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis Roberto Sole 1 , Vanessa Gatto 2 , Silvia Conca 1 , Noemi Bardella 1, Andrea Morandini 1 and Valentina Beghetto 1,2,* 1 Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; [email protected] (R.S.); [email protected] (S.C.); [email protected] (N.B.); [email protected] (A.M.) 2 Crossing srl, Viale della Repubblica 193/b, 31100 Treviso, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-041-2348928 Abstract: Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: − − Cl or ClO4 ). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption.
    [Show full text]
  • Glutaric Aciduria Lactic Acidosis Glutaryl-Coa Dehydrogenase Deficiency Short-Chain Monocarboxylic Acids
    Pediat. Res. 13: 977-981 (1979) C6-C l~-dicarboxylicacid ketosis glutaric aciduria lactic acidosis glutaryl-CoA dehydrogenase deficiency short-chain monocarboxylic acids Ketotic Episodes in Glutaryl-CoA Dehydrogenase Deficiency (Glutaric Aciduria) NIELS GREGERSEN AND NIELS JACOB BRANDT Research Laboratory for Metabolic Disorders, University Department of Clinical Chemistry, Aarhus Kommunehospital, Aarhus, and Section of Clinical Genetics, University Department of Paediatrics, Obstetrics, and Gynaecology, Rigshospitalet, Copenhagen, Denmark Summaw the ketoacidosis, a pronounced lactic acidosis and lactic aciduria is seen in most cases. The present report, together with a recent A 7-yr-old boy with glutaryl-CoA dehydrogenase deficiency (glu- report of Goodman et al. (7), indicates that glutaryl-CoA dehy- taric aciduria), presenting periodic episodes of lethargy and keto- drogenase deficiency (glutaric aciduria) may present ketotic epi- sis, was studied during two such episodes. The urinary excretions sodes, similar to those of the other organic acidurias. of glutaric and 3-OH-glutaric acids were 3100-7900 and 460-660 The patient described by Goodman et al. (7) died in a Reye's &mg creatinine, respectively, during these episodes. Urine sam- syndromelike state. Our patient has had two episodes of ketosis ples collected before and after the attacks contained 100-5300 and and lethargy. During these episodes, the urinary metabolic profiles 230-370 &mg creatinine of glutaric acid and 3-OH-glutaric of organic acids were studied in detail, in an attempt to elucidate acids, respectively. During the episodes, glutaconic acid excretion the pathogenic mechanism leading to the severe clinical and rose from 14-89 to 93-630 pg/mg creatinine.
    [Show full text]
  • Non-Hebbian Long-Term Potentiation of Inhibitory Synapses in the Thalamus
    The Journal of Neuroscience, October 2, 2013 • 33(40):15675–15685 • 15675 Cellular/Molecular Non-Hebbian Long-Term Potentiation of Inhibitory Synapses in the Thalamus Andrea Rahel Sieber,1 Rogier Min,1 and Thomas Nevian1,2 1Department of Physiology and 2Center for Cognition, Learning and Memory, University of Bern, 3012 Bern, Switzerland The thalamus integrates and transmits sensory information to the neocortex. The activity of thalamocortical relay (TC) cells is modulated by specific inhibitory circuits. Although this inhibition plays a crucial role in regulating thalamic activity, little is known about long-term changes in synaptic strength at these inhibitory synapses. Therefore, we studied long-term plasticity of inhibitory inputs to TC cells in the posterior medial nucleus of the thalamus by combining patch-clamp recordings with two-photon fluorescence microscopy in rat brain slices.WefoundthatspecificactivitypatternsinthepostsynapticTCcellinducedinhibitorylong-termpotentiation(iLTP).ThisiLTPwas non-Hebbian because it did not depend on the timing between presynaptic and postsynaptic activity, but it could be induced by postsyn- aptic burst activity alone. iLTP required postsynaptic dendritic Ca 2ϩ influx evoked by low-threshold Ca 2ϩ spikes. In contrast, tonic postsynaptic spiking from a depolarized membrane potential (Ϫ50 mV), which suppressed these low-threshold Ca 2ϩ spikes, induced no plasticity. The postsynaptic dendritic Ca 2ϩ increase triggered the synthesis of nitric oxide that retrogradely activated presynaptic guanylylcyclase,resultinginthepresynapticexpressionofiLTP.ThedependenceofiLTPonthemembranepotentialandthereforeonthe
    [Show full text]
  • Microwave-Assisted Low-Temperature Dehydration Polycondensation of Dicarboxylic Acids and Diols
    Polymer Journal (2011) 43, 1003–1007 & The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/11 $32.00 www.nature.com/pj RAPID COMMUNICATION Microwave-assisted low-temperature dehydration polycondensation of dicarboxylic acids and diols Polymer Journal (2011) 43, 1003–1007; doi:10.1038/pj.2011.107; published online 26 October 2011 INTRODUCTION time (4100 h). Therefore, we next focused on has been no report concerning a Currently, because of increasing concerns identifying more active catalysts and found that non-thermal effect in microwave-assisted about damage to the environment, the devel- scandium and thulium bis(nonafluorobutane- polycondensation reactions,33,34 although opment of new, eco-friendly (industrially sulfonyl)imide ((Sc(NNf2)3) and (Tm(NNf2)3)) there has been a report that non-thermal relevant) chemical reactions and materials is were more efficient catalysts and allowed us microwaves have a role in the chain polymer- crucial. Aliphatic polyesters have attracted to obtain high-molecular-weight polyesters ization of a lactone.32 Therefore, we studied 4 much interest as environmentally benign, (Mn42.0Â10 ) from adipic acid (AdA) and microwave-assisted syntheses of polyesters at biodegradable polymers.1,2 In general, alipha- 3-methyl-1,5-pentanediol (MPD) at 60 1Cina a relatively low temperature (80 1C) using a tic polyesters are commercially produced by shortperiodoftime(24h)andwithasmaller microwave chamber equipped with a tem- polycondensation of a dicarboxylic acid and a amount of catalyst (0.1 mol%) than had pre- perature control, and the results are reported 1.1–1.5 mol excess of a diol at a temperature viously been possible.26 herein.
    [Show full text]
  • Glutaric Acid Production by Systems Metabolic Engineering of an L-Lysine–Overproducing Corynebacterium Glutamicum
    Glutaric acid production by systems metabolic engineering of an L-lysine–overproducing Corynebacterium glutamicum Taehee Hana, Gi Bae Kima, and Sang Yup Leea,b,c,1 aMetabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea; bBioInformatics Research Center, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea; and cBioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141, Daejeon, Republic of Korea Contributed by Sang Yup Lee, October 6, 2020 (sent for review August 18, 2020; reviewed by Tae Seok Moon and Blake A. Simmons) There is increasing industrial demand for five-carbon platform processes rely on nonrenewable and toxic starting materials, chemicals, particularly glutaric acid, a widely used building block however. Thus, various approaches have been taken to biologi- chemical for the synthesis of polyesters and polyamides. Here we cally produce glutaric acid from renewable resources (13–19). report the development of an efficient glutaric acid microbial pro- Naturally, glutaric acid is a metabolite of L-lysine catabolism in ducer by systems metabolic engineering of an L-lysine–overproducing Pseudomonas species, in which L-lysine is converted to glutaric Corynebacterium glutamicum BE strain. Based on our previous study, acid by the 5-aminovaleric acid (AVA) pathway (20, 21). We an optimal synthetic metabolic pathway comprising Pseudomonas previously reported the development of the first glutaric acid- putida L-lysine monooxygenase (davB) and 5-aminovaleramide amido- producing Escherichia coli by introducing this pathway compris- hydrolase (davA) genes and C.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Targeted EDTA Chelation Therapy with Albumin Nanoparticles To
    Clemson University TigerPrints All Dissertations Dissertations 8-2019 Targeted EDTA Chelation Therapy with Albumin Nanoparticles to Reverse Arterial Calcification and Restore Vascular Health in Chronic Kidney Disease Saketh Ram Karamched Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Karamched, Saketh Ram, "Targeted EDTA Chelation Therapy with Albumin Nanoparticles to Reverse Arterial Calcification and Restore Vascular Health in Chronic Kidney Disease" (2019). All Dissertations. 2479. https://tigerprints.clemson.edu/all_dissertations/2479 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. TARGETED EDTA CHELATION THERAPY WITH ALBUMIN NANOPARTICLES TO REVERSE ARTERIAL CALCIFICATION AND RESTORE VASCULAR HEALTH IN CHRONIC KIDNEY DISEASE A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Bioengineering by Saketh Ram Karamched August 2019 Accepted by: Dr. Narendra Vyavahare, Ph.D., Committee Chair Dr. Agneta Simionescu, Ph.D. Dr. Alexey Vertegel, Ph.D. Dr. Christopher G. Carsten, III, M.D. ABSTRACT Cardiovascular diseases (CVDs) are the leading cause of death globally. An estimated 17.9 million people died from CVDs in 2016, with ~840,000 of them in the United States alone. Traditional risk factors, such as smoking, hypertension, and diabetes, are well discussed. In recent years, chronic kidney disease (CKD) has emerged as a risk factor of equal importance. Patients with mild-to-moderate CKD are much more likely to develop and die from CVDs than progress to end-stage renal failure.
    [Show full text]
  • Supporting Information Degradation
    Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021 Supporting Information Degradation Pathways of a highly active iron(III) tetra-NHC Epoxidation Catalyst Florian Dyckhoff, Jonas F. Schlagintweit, Marco A. Bernd, Christian H. G. Jakob, Tim P. Schlachta, Benjamin J. Hofmann, Robert M. Reich and Fritz E. Kühn* Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, D-85748 Garching bei München, Germany. [*] Corresponding author: Prof. Dr. Fritz E. Kühn, E-Mail: [email protected] Table of Contents 1. Effects of bases on 2, 2-tBuCN and 2-PhCN – Catalysis and UV/vis Spectroscopy 2 2. 1H-NMR Spectroscopic Studies 5 3. Synthesis and Characterization of compound 2-d8 7 4. ESI-MS Decomposition Studies 27 5. DFT Calculations 31 6. References 34 1 1. Effects of bases on 2, 2-tBuCN and 2-PhCN – Catalysis and UV/vis Spectroscopy All batch and time-dependent reactions were conducted in a cryostat (Julabo FP-50) with a total reaction volume of 2.0 mL. The catalyst (0.05 mol%, 0.067 µmol) was added from a preformed stock solution (4.0 mg/mL in the respective nitrile, i.e. acetonitrile, tert-butylnitrile or benzonitrile) according to the appropriate stoichiometry to a solution of cis-cyclooctene (100 mol%, 134.5 µmol), the respective additive (0.5 mol%, 0.67 µmol) and H2O2 (150 mol%, 202 µmol, 50% solution in H2O) in the appropriate solvent. The reaction was initiated upon addition of H2O2. The reaction was aborted by adding electrolytically precipitated activated MnO2 as a H2O2 decomposition agent.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2010/0222294 A1 Pele (43) Pub
    US 2010O222294A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2010/0222294 A1 Pele (43) Pub. Date: Sep. 2,9 2010 (54) FORMULATIONS OF ATP AND ANALOGS OF Publication Classification ATP (51) Int. Cl. A 6LX 3L/7076 (2006.01) (75) Inventor: Amir Pelleg, Haverford, PA (US) A6IP35/00 (2006.01) Correspondence Address: 39t. 87, C FSH & RICHARDSON P.C. (2006.01) P.O. BOX 1022 A6IP 9/00 308: MNNEAPOLIS. MN 55440-1022 US A6IP II/06 2006.O1 9 (US) A6IP II/08 (2006.01) (73) Assignee: DUSKA SCIENTIFIC CO., CI2N 5/02 (2006.01) Philadelphia, PA (US) AOIN I/02 (2006.01) (52) U.S. Cl. ................................ 514/47; 435/375; 435/2 (21) Appl. No.: 12/715,170 (57) ABSTRACT (22) Filed: Mar. 1, 2010 This disclosure provides solutions and compositions (e.g., O O pharmaceutical solutions and compositions) containing Related U.S. Application Data adenosine 5'-triphosphate (ATP) or an analog thereof. In (60) Provisional application No. 61/156.263, filed on Feb. addition, it features methods of making and using the solu 27, 2009. tions and compositions. Patent Application Publication Sep. 2, 2010 US 2010/0222294 A1 Figure , NH N O O. O. a'rn HO-P-O-PYo-E-40. O-P-O- o, 's-slNYN Ohi Oi O US 2010/0222294 A1 Sep. 2, 2010 FORMULATIONS OF ATP AND ANALOGS OF N-Tris(hydroxymethyl)methylglycine (Tricine); glycine; ATP Diglycine (Gly-Gly); N,N-Bis(2-hydroxyethyl)glycine (Bi cine); N-(2-Hydroxyethyl)piperazine-N'-(4-butanesulfonic acid) (HEPBS); N-Tris(hydroxymethyl)methyl-3-amino 0001.
    [Show full text]
  • United States Patent Office Patented Oct
    3,471,548 United States Patent Office Patented Oct. 7, 1969 2 CH-NH 3,471,548 GAMMA-AMNO-BETA-(PARA-HALOPHENYL)- B-( )-(H-CH-C OOR." BUTYRIC ACDS AND THEIR ESTERS Heinrich Keberle, Basel, Johann Werner Faigle, Riehen, in which formulae R has the meaning given above, R' and Max Wilhelm, Allschwil, Switzerland, assignors to represents an acyl group, such as a lower alkanoyl group Ciba Corporation, New York, N.Y., a corporation of (e.g. an acetyl, propionyl or butyryl group), a phenyl Delaware lower alkanoyl group (e.g. a phenylacetyl group) or a No Drawing. Filed June 30, 1964, Ser. No. 379,365 benzoyl group, and -COOR' represents an esterified Claims priority, application Switzerland, July 9, 1963, carboxyl group (R' representing for example a lower 8,537/63; May 22, 1964, 6,729/64 10 alkyl or phenyl lower alkyl group, such as a methyl, ethyl, Int. C. C07c 101/00, 101/02 propyl, butyl or benzyl group). U.S. C. 260-471 14 Claims The hydrolysis is carried out in the usual manner, for example in the presence of an aqueous acid or alkali at room temperature or with heating. ABSTRACT OF THE DISCLOSURE 15 Depending on the reaction conditions and starting ma New compounds of the formula terials used the final products are obtained in the free CH-NH form or in the form of their salts which are likewise in cluded in the present invention. Thus, for example, basic, R-( >- E-CH-COOH neutral, acid or mixed salts, possibly also hemi-, mono-, R=halogen, e.g.
    [Show full text]
  • Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 640754, 26 pages http://dx.doi.org/10.1155/2014/640754 Review Article Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems Bechan Sharma,1 Shweta Singh,2 and Nikhat J. Siddiqi3 1 Department of Biochemistry, University of Allahabad, Allahabad 211002, India 2 Department of Genetics, SGPGIMS, Lucknow 226014, India 3 Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia Correspondence should be addressed to Bechan Sharma; [email protected] Received 28 February 2014; Revised 28 May 2014; Accepted 10 July 2014; Published 12 August 2014 Academic Editor: Hartmut Jaeschke Copyright © 2014 Bechan Sharma et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis.
    [Show full text]