Microwave-Assisted Low-Temperature Dehydration Polycondensation of Dicarboxylic Acids and Diols

Total Page:16

File Type:pdf, Size:1020Kb

Microwave-Assisted Low-Temperature Dehydration Polycondensation of Dicarboxylic Acids and Diols Polymer Journal (2011) 43, 1003–1007 & The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/11 $32.00 www.nature.com/pj RAPID COMMUNICATION Microwave-assisted low-temperature dehydration polycondensation of dicarboxylic acids and diols Polymer Journal (2011) 43, 1003–1007; doi:10.1038/pj.2011.107; published online 26 October 2011 INTRODUCTION time (4100 h). Therefore, we next focused on has been no report concerning a Currently, because of increasing concerns identifying more active catalysts and found that non-thermal effect in microwave-assisted about damage to the environment, the devel- scandium and thulium bis(nonafluorobutane- polycondensation reactions,33,34 although opment of new, eco-friendly (industrially sulfonyl)imide ((Sc(NNf2)3) and (Tm(NNf2)3)) there has been a report that non-thermal relevant) chemical reactions and materials is were more efficient catalysts and allowed us microwaves have a role in the chain polymer- crucial. Aliphatic polyesters have attracted to obtain high-molecular-weight polyesters ization of a lactone.32 Therefore, we studied 4 much interest as environmentally benign, (Mn42.0Â10 ) from adipic acid (AdA) and microwave-assisted syntheses of polyesters at biodegradable polymers.1,2 In general, alipha- 3-methyl-1,5-pentanediol (MPD) at 60 1Cina a relatively low temperature (80 1C) using a tic polyesters are commercially produced by shortperiodoftime(24h)andwithasmaller microwave chamber equipped with a tem- polycondensation of a dicarboxylic acid and a amount of catalyst (0.1 mol%) than had pre- perature control, and the results are reported 1.1–1.5 mol excess of a diol at a temperature viously been possible.26 herein. We compared the rates of the micro- 4250 1C and under an extremely reduced Rapid syntheses that depend on microwave wave-assisted polymerizations with those pressure.3–6 These severe reaction conditions irradiation have attracted interest because obtained using conventional heating, which preclude the syntheses of aliphatic polyesters they are environmentally benign. Since first allowed us to characterize the contribution of with low thermostabilities and the use of reported in 1986,27,28 microwave irradiation the non-thermal effects of the microwaves. thermally unstable monomeric reagents. has been used to shorten the reaction time of This is the first report of a catalyzed step Polycondensation reactions are catalyzed organic syntheses, to decrease the levels of polymerization for which the second-order by Lewis acids,7–13 but only a few of these side products and to improve the yields rate constant was increased by a non-thermal acids are suitable catalysts because most are and/or chemoselectivities of the products.29 microwave-induced effect. labile in the presence of protic substances, for The fact that there is an exponentially example, carboxylic acids, alcohols and water, increasing number of publications dealing EXPERIMENTAL PROCEDURE making these reagents unsuitable for dehyd- with microwave-assisted chain polymeriza- Materials ration polycondensation reactions. Recently, tions, for example, anionic polymerization AdA, glutaric acid, sebacic acid and succinic we reported that at or near room temperature of acrylamides,30 ring-opening cationic acid were purchased from Nacalai Tesque, direct polycondensation of diols and dicar- polymerization of 2-oxazolines31 and ring- Inc., (Kyoto, Japan). Methyl succinic acid boxylic acids, catalyzed by scandium trifluor- opening polymerization of e-caprolactones,32 was purchased from Aldrich Co., Ltd. (Mil- 14 omethanesulfonate (triflate) (Sc(OTf)3) or indicates the remarkable interest in this techni- waukee, WI, USA). Sc(OTf)3 was purchased scandium trifluoromethanesulfonimide (tri- que.33,34 In addition to chain polymerizations, from Tokyo Chemical Industry Co., Ltd. 15,16 flylimide) (Sc(NTf2)3), affords aliphatic microwave-assisted step-growth polymeriza- (Tokyo, Japan). MPD and decahydro- polyesters with number-average molecular tions have been successfully attempted in a naphthalene (mixture of cis and trans) were 4 33,34 weights (Mn) 410 (room-temperature poly- domestic microwave oven. For example, purchased from Wako Pure Chemical Indus- condensation17–21). We also demonstrated Scherf et al.35 synthesized donor-acceptor tries, Ltd. (Osaka, Japan). Scandium bis(no- that these polycondensation systems can pi-conjugated polymers using microwave nafluorobutanesulfonyl)imide (Sc(NNf2)3) incorporate thermally unstable monomers that irradiation at 150 1C for 15 min. Nagahata was prepared in our laboratory according to contain a carbon–carbon double bond,16 a and colleagues36 obtained poly(butylene the procedure described in the literature.26 bromo group,16 hydroxyl groups,22 mercapto succinate) that had a weight-average molecu- 23 24,25 4 group and/or a disulfide linkage and lar weight (Mw)of2.90Â10 in the incredibly Measurements that these reactions are under kinetic control short time of 10 min using microwave 1H-NMR spectra were recorded at 27 1C (chemoselective dehydration polycondensation). irradiation. However, because of the high using a Bruker Analytik DPX200 spectro- Although the polycondensation reactions were temperatures that they used (200–260 1C), meter (Bruker BioSpin, Kanagawa, Japan, run as one-step reactions under mild condi- it is difficult to assess the importance of a 200 MHz). The number-average molecular tions (35 1C), they required large amounts of non-thermal effect on their polycondensation weight (Mn) and the polydispersity index the catalyst (ca. 1 mol%) and long reaction reactions. To the best of our knowledge, there (Mw/Mn) of each polyester were estimated Rapid Communication 1004 using a size exclusion chromatography system placed into a multimode microwave reactor ferent conditions to compare the effects of that included a Tosoh DP8020 pump system, (MWO-1000S, EYELA, 2.45 GHz, maximum microwave and oil bath heating. The product, an RI (Tosoh, Tokyo, Japan, Tosoh RI-8020) power 500 W). MPD, AdA and a catalyst poly(3-methylpentamethylene adipate), has a detector and a Tosoh TSKgel SuperMultipor- were mixed at 80 1C until a homogeneous low glass transition point (Tg¼À63 1C). eHZ-M column calibrated with polystyrene state was observed. The pressure was then Because this product was an amorphous standards. The eluent was CHCl3,theflow gradually decreased to 3.0 kPa, and we solid at the temperature of our experiments, rate was 0.35 ml minÀ1 and the temperature defined this point as t¼0, at which we the molecular rotations of the chain should was 40 1C. Differential scanning calorimetry obtained oligoesters with an Xn of ca 10 have allowed the polycondensation reactions using a DSC6220S calorimeter (Seiko Instru- without reducing the pressure. A 200 W to proceed as bulk reactions. A microwave- ments Inc., Chiba, Japan) was performed microwave was used to irradiate the reaction assisted polycondensation of AdA with MPD from À130 to 80 1C, with the temperature mixture at 80 1C in the temperature control was performed at 80 1C (temperature-con- increased or decreased at a rate of 10 1Cper mode using decahydronaphthalene as the trolled microwave irradiation for 6 h at a min. The instrument was calibrated using cooling medium until a homogeneous state maximum power of 200 W) with Sc(OTf)3 indium and tin samples. For all experimental was observed. The internal temperatures of as the catalyst (0.5 mol% relative to the total samples, the heating cycle from À130 to 80 1C polycondensation reaction mixtures exposed number of moles of reactants), which yielded 3 and back to À130 1C was reproducible. Each to microwave irradiation were measured a polyester with a Mn of 9.8Â10 (Table 1, sample weighed between 4 and 6 mg and was using a thermocouple equipped with a run 3). The Mn of that polyester was larger by placed into an aluminum pan that was cov- microwave reactor (MWO-1000S) and were B53% than the one obtained by conven- 3 ered with a lid within the calorimeter. The controlled using a proportional–integral– tional heating (Mn¼6.4Â10 ,run1).Addi- glass transition temperature (Tg)wastakenas derivative control and PC software (EYELA, tionally, polyesters with similar Mn values the inflection point of the corresponding heat Tokyo, Japan). The temperature and irradia- were obtained by microwave heating and by capacity jump of the differential scanning tion power profile (Supplementary Figure conventional heating when using a reaction calorimetry trace. The melting temperature S1) of the representative example showed time for the former was half that of the (Tm) was defined as the minimum point of that the temperature was maintained at latter (3 h, run 2 vs 6 h, run 1). We also the endothermic trough. Matrix-assisted laser 80 1C during the polycondensation. The observed substantial increases in Mn when desorption/ionization time-of-flight mass pressure was gradually decreased to 3.0 kPa, the Sc(OTf)3 concentration was reduced spectra were recorded using a Kratos PCAx- at which point the polycondensation com- (0.1 mol%, Table 1, runs 4–6) for the micro- ima CFRplus V2.4.0 mass spectrometer menced. When the reaction was complete, wave runs in comparison with the conven- (Kratos, Manchester, UK) using 1,8,9-anthra- the yield of the polyester was calculated by tional heating runs and when the more cenetriol as the matrix reagent. NaI was subtracting the known weight of the catalyst effective catalyst, scandium bis(nonafluoro- included to generate sodium cations of the from the total weight of the solid present. butanesulfonyl)imide
Recommended publications
  • Toxicological Basis Data for the Derivation of EU-LCI Values For
    TEXTE 223/2020 Toxicological basis data for the derivation of EU- LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2- dimethoxyethane and 1,2-diethoxyethane Final report German Environment Agency TEXTE 223/2020 Ressortforschungsplan of the Federal Ministry for the Enviroment, Nature Conservation and Nuclear Safety Project No. (FKZ) 3719 62 205 0 Report No. FB000359/ENG Toxicological basis data for the derivation of EU-LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2- dimethoxyethane and 1,2-diethoxyethane Final report by Dr. Barbara Werschkun Wissenschaftsbüro, Berlin On behalf of the German Environment Agency Imprint Publisher Umweltbundesamt Wörlitzer Platz 1 06844 Dessau-Roßlau Tel: +49 340-2103-0 Fax: +49 340-2103-2285 [email protected] Internet: www.umweltbundesamt.de /umweltbundesamt.de /umweltbundesamt Report performed by: Wissenschaftsbüro Dr. Barbara Werschkun Monumentenstr. 31a 10829 Berlin Germany Report completed in: May 2020 Edited by: Section II 1.3 Indoor Hygiene, Health-related Environmental Impacts Dr. Ana Maria Scutaru Publication as pdf: http://www.umweltbundesamt.de/publikationen ISSN 1862-4804 Dessau-Roßlau, December 2020 The responsibility for the content of this publication lies with the author(s). TEXTE Toxicological basis data for the derivation of EU-LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2-dimethoxyethane and 1,2-diethoxyethane – Final report Abstract: Toxicological basis data for the derivation of EU-LCI values for neopentyl glycol, diisobutyl succinate, diisobutyl glutarate, 1,2-dimethoxyethane and 1,2-diethoxyethane The objective of this study was the evaluation of toxicological data for five substances as basis for the derivation of EU-LCI values.
    [Show full text]
  • Glutaric Aciduria Lactic Acidosis Glutaryl-Coa Dehydrogenase Deficiency Short-Chain Monocarboxylic Acids
    Pediat. Res. 13: 977-981 (1979) C6-C l~-dicarboxylicacid ketosis glutaric aciduria lactic acidosis glutaryl-CoA dehydrogenase deficiency short-chain monocarboxylic acids Ketotic Episodes in Glutaryl-CoA Dehydrogenase Deficiency (Glutaric Aciduria) NIELS GREGERSEN AND NIELS JACOB BRANDT Research Laboratory for Metabolic Disorders, University Department of Clinical Chemistry, Aarhus Kommunehospital, Aarhus, and Section of Clinical Genetics, University Department of Paediatrics, Obstetrics, and Gynaecology, Rigshospitalet, Copenhagen, Denmark Summaw the ketoacidosis, a pronounced lactic acidosis and lactic aciduria is seen in most cases. The present report, together with a recent A 7-yr-old boy with glutaryl-CoA dehydrogenase deficiency (glu- report of Goodman et al. (7), indicates that glutaryl-CoA dehy- taric aciduria), presenting periodic episodes of lethargy and keto- drogenase deficiency (glutaric aciduria) may present ketotic epi- sis, was studied during two such episodes. The urinary excretions sodes, similar to those of the other organic acidurias. of glutaric and 3-OH-glutaric acids were 3100-7900 and 460-660 The patient described by Goodman et al. (7) died in a Reye's &mg creatinine, respectively, during these episodes. Urine sam- syndromelike state. Our patient has had two episodes of ketosis ples collected before and after the attacks contained 100-5300 and and lethargy. During these episodes, the urinary metabolic profiles 230-370 &mg creatinine of glutaric acid and 3-OH-glutaric of organic acids were studied in detail, in an attempt to elucidate acids, respectively. During the episodes, glutaconic acid excretion the pathogenic mechanism leading to the severe clinical and rose from 14-89 to 93-630 pg/mg creatinine.
    [Show full text]
  • Altered Metabolome of Lipids and Amino Acids Species: a Source of Early Signature Biomarkers of T2DM
    Journal of Clinical Medicine Review Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM Ahsan Hameed 1 , Patrycja Mojsak 1, Angelika Buczynska 2 , Hafiz Ansar Rasul Suleria 3 , Adam Kretowski 1,2 and Michal Ciborowski 1,* 1 Clinical Research Center, Medical University of Bialystok, Jana Kili´nskiegoStreet 1, 15-089 Bialystok, Poland; [email protected] (A.H.); [email protected] (P.M.); [email protected] (A.K.) 2 Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland; [email protected] 3 School of Agriculture and Food System, The University of Melbourne, Parkville, VIC 3010, Australia; hafi[email protected] * Correspondence: [email protected] Received: 27 June 2020; Accepted: 14 July 2020; Published: 16 July 2020 Abstract: Diabetes mellitus, a disease of modern civilization, is considered the major mainstay of mortalities around the globe. A great number of biochemical changes have been proposed to occur at metabolic levels between perturbed glucose, amino acid, and lipid metabolism to finally diagnoe diabetes mellitus. This window period, which varies from person to person, provides us with a unique opportunity for early detection, delaying, deferral and even prevention of diabetes. The early detection of hyperglycemia and dyslipidemia is based upon the detection and identification of biomarkers originating from perturbed glucose, amino acid, and lipid metabolism. The emerging “OMICS” technologies, such as metabolomics coupled with statistical and bioinformatics tools, proved to be quite useful to study changes in physiological and biochemical processes at the metabolic level prior to an eventual diagnosis of DM.
    [Show full text]
  • Dibasic Acids for Nylon Manufacture
    - e Report No. 75 DIBASIC ACIDS FOR NYLON MANUFACTURE by YEN-CHEN YEN October 1971 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA CONTENTS INTRODUCTION, ....................... 1 SUMMARY .......................... 3 General Aspects ...................... 3 Technical Aspects ..................... 7 INDUSTRY STATUS ...................... 15 Applications and Consumption of Sebacic Acid ........ 15 Applications and Consumption of Azelaic Acid ........ 16 Applications of Dodecanedioic and Suberic Acids ...... 16 Applications of Cyclododecatriene and Cyclooctadiene .... 17 Producers ......................... 17 Prices ........................... 18 DIBASIC ACIDS FOR MANUFACTURE OF POLYAMIDES ........ 21 CYCLOOLIGOMERIZATIONOF BUTADIENE ............. 29 Chemistry ......................... 29 Ziegler Catalyst ..................... 30 Nickel Catalyst ..................... 33 Other Catalysts ..................... 34 Co-Cyclooligomerization ................. 34 Mechanism ........................ 35 By-products and Impurities ................ 37 Review of Processes .................... 38 A Process for Manufacture of Cyclododecatriene ....... 54 Process Description ................... 54 Process Discussion .................... 60 Cost Estimates ...................... 60 A Process for Manufacture of Cyclooctadiene ........ 65 Process Description ................... 65 Process Discussion .................... 70 Cost Estimates ...................... 70 A Process for Manufacture of Cyclodecadiene
    [Show full text]
  • Glutaric Acid Production by Systems Metabolic Engineering of an L-Lysine–Overproducing Corynebacterium Glutamicum
    Glutaric acid production by systems metabolic engineering of an L-lysine–overproducing Corynebacterium glutamicum Taehee Hana, Gi Bae Kima, and Sang Yup Leea,b,c,1 aMetabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea; bBioInformatics Research Center, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141 Daejeon, Republic of Korea; and cBioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Yuseong-gu, 34141, Daejeon, Republic of Korea Contributed by Sang Yup Lee, October 6, 2020 (sent for review August 18, 2020; reviewed by Tae Seok Moon and Blake A. Simmons) There is increasing industrial demand for five-carbon platform processes rely on nonrenewable and toxic starting materials, chemicals, particularly glutaric acid, a widely used building block however. Thus, various approaches have been taken to biologi- chemical for the synthesis of polyesters and polyamides. Here we cally produce glutaric acid from renewable resources (13–19). report the development of an efficient glutaric acid microbial pro- Naturally, glutaric acid is a metabolite of L-lysine catabolism in ducer by systems metabolic engineering of an L-lysine–overproducing Pseudomonas species, in which L-lysine is converted to glutaric Corynebacterium glutamicum BE strain. Based on our previous study, acid by the 5-aminovaleric acid (AVA) pathway (20, 21). We an optimal synthetic metabolic pathway comprising Pseudomonas previously reported the development of the first glutaric acid- putida L-lysine monooxygenase (davB) and 5-aminovaleramide amido- producing Escherichia coli by introducing this pathway compris- hydrolase (davA) genes and C.
    [Show full text]
  • APPENDIX G Acid Dissociation Constants
    harxxxxx_App-G.qxd 3/8/10 1:34 PM Page AP11 APPENDIX G Acid Dissociation Constants §␮ ϭ 0.1 M 0 ؍ (Ionic strength (␮ † ‡ † Name Structure* pKa Ka pKa ϫ Ϫ5 Acetic acid CH3CO2H 4.756 1.75 10 4.56 (ethanoic acid) N ϩ H3 ϫ Ϫ3 Alanine CHCH3 2.344 (CO2H) 4.53 10 2.33 ϫ Ϫ10 9.868 (NH3) 1.36 10 9.71 CO2H ϩ Ϫ5 Aminobenzene NH3 4.601 2.51 ϫ 10 4.64 (aniline) ϪO SNϩ Ϫ4 4-Aminobenzenesulfonic acid 3 H3 3.232 5.86 ϫ 10 3.01 (sulfanilic acid) ϩ NH3 ϫ Ϫ3 2-Aminobenzoic acid 2.08 (CO2H) 8.3 10 2.01 ϫ Ϫ5 (anthranilic acid) 4.96 (NH3) 1.10 10 4.78 CO2H ϩ 2-Aminoethanethiol HSCH2CH2NH3 —— 8.21 (SH) (2-mercaptoethylamine) —— 10.73 (NH3) ϩ ϫ Ϫ10 2-Aminoethanol HOCH2CH2NH3 9.498 3.18 10 9.52 (ethanolamine) O H ϫ Ϫ5 4.70 (NH3) (20°) 2.0 10 4.74 2-Aminophenol Ϫ 9.97 (OH) (20°) 1.05 ϫ 10 10 9.87 ϩ NH3 ϩ ϫ Ϫ10 Ammonia NH4 9.245 5.69 10 9.26 N ϩ H3 N ϩ H2 ϫ Ϫ2 1.823 (CO2H) 1.50 10 2.03 CHCH CH CH NHC ϫ Ϫ9 Arginine 2 2 2 8.991 (NH3) 1.02 10 9.00 NH —— (NH2) —— (12.1) CO2H 2 O Ϫ 2.24 5.8 ϫ 10 3 2.15 Ϫ Arsenic acid HO As OH 6.96 1.10 ϫ 10 7 6.65 Ϫ (hydrogen arsenate) (11.50) 3.2 ϫ 10 12 (11.18) OH ϫ Ϫ10 Arsenious acid As(OH)3 9.29 5.1 10 9.14 (hydrogen arsenite) N ϩ O H3 Asparagine CHCH2CNH2 —— —— 2.16 (CO2H) —— —— 8.73 (NH3) CO2H *Each acid is written in its protonated form.
    [Show full text]
  • Pharmacokinetics of Sebacic Acid in Rats
    European Review for Medical and Pharmacological Sciences 1999; 3: 119-125 Pharmacokinetics of sebacic acid in rats A.M.R. FAVUZZI, G. MINGRONE, A. BERTUZZI*, S. SALINARI**, A. GANDOLFI*, A.V. GRECO Istituto di Medicina Interna e Geriatria, Catholic University - Rome (Italy) *Istituto di Analisi dei Sistemi ed Informatica, CNR - Rome (Italy) **Dipartimento di Informatica e Sistemistica, Facoltà di Ingegneria, “La Sapienza” University - Rome (Italy) Abstract. – The pharmacokinetics of disodi- enteral nutrition (TPN) as an alternate ener- um sebacate (Sb) was studied in Wistar rats of gy source1-3. The advantage of these diacids both sexes. Sebacate was administered either as over conventional lipid substrates (both long intra-peritoneal (i.p.) bolus (six doses ranging from 10 mg to 320 mg) or as oral bolus (two doses: 80 and medium chain triglycerides) is related to and 160 mg). Plasma and urinary concentrations the immediate availability of their com- of Sb and urinary concentrations of Sb and its pounds. The salts of dicarboxylic acids are products of β-oxidation (suberic and adipic acids) highly water soluble and thus can be directly were measured by an improved method using administered through a peripheral venous gas-liquid chromatography/mass-spectrometry. route. Unlike long chain triglycerides (LCT), A single compartment with two linear elimi- or medium chain triglycerides (MCT), which nation routes was selected after no increase in significance was shown by an additional com- are available under emulsion form for clinical partment and after a saturable mechanism was use, they do not require complex and expen- found to be unsuitable. Both renal and non-re- sive production procedures.
    [Show full text]
  • D 2.1 Background Information and Biorefinery Status, Potential and Sustainability
    Project no.: 241535 – FP7 Project acronym: Star-COLIBRI Project title: Strategic Targets for 2020 – Collaboration Initiative on Biorefineries Instrument: Specific Support Action Thematic Priority: Coordination and support actions D 2.1 Background information and biorefinery status, potential and Sustainability – Task 2.1.2 Market and Consumers; Carbohydrates – Due date of deliverable: March 31, 2010 Start date of project: 01.11.2009 Duration: 24 months Organisation name of lead contractor for this deliverable: UoY Version: 1.0 Project co-funded by the European Commission within the Seventh Framework Programme (2007-2011) Dissemination level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Star-COLIBRI - Deliverable 2.1 D 2.1 Background information and biorefinery status, potential and Sustainability – Task 2.1.2 Market and Consumers; Carbohydrates – H.L. Bos, P.F.H. Harmsen & E. Annevelink Wageningen UR – Food & Biobased Research Version 18/03/10 Task 2.1.2 Market and Consumers; Carbohydrates 2 Star-COLIBRI - Deliverable 2.1 Content Management summary ............................................................................................................... 4 1 Introduction ........................................................................................................................ 5 1.1 Task description
    [Show full text]
  • United States Patent Office Patented
    2,826,604 United States Patent Office Patented. Mar. 11, 1958 2 (130-140 C.), the decalyl acetate being recoverable from the reaction mixture by distillation of the neutralized re 2,826,604 action liquid. The recovered product was a straw-colored PREPARATION OF DECAHYDRONAPHTHYL fragrant oil, which was established to be 1-decallyl acetate. ACETATE 5 The position of the acetoxy group was determined by William E. Erner, Wilmington, Del, assignor to Houdry hydrolysis of the ester to the alcohol and subsequent Process Corporation, Wilmington, Del, a corporation conversion to decalone-1 by chromic acid-acetic acid oxi of Delaware dation. - The aceto-oxidation of Decalin can be carried out No Drawing. Application June 2, 1955 10 in the presence of oxidation catalysts of the type em Serial No. 512,853 bodied in the metal salts of the lower fatty acids. Cobalt 2 Claims. (C. 260-488) acetate proved outstanding among the metallic-soap oxi dation catalysts studied. The use of benzoyl peroxide at the start of the process has been found advantageous The present invention relates to the preparation of 1 5 in decreasing the induction period and in giving uni decahydronaphthyl alcohols and the corresponding acetic formly high yields. acid ester and ketone derivatives of Said alcohols. The ratios of Decalin - to acetic anhydride in the oper More particularly the invention is concerned with the ation of the process are not critical, but practical con production of saturated polynuclear carbocyclic com siderations favor the use of at least one-half mol of pounds of the type 20 acetic anhydride per mol of Decalin.
    [Show full text]
  • Chemo-Enzymatic Cascades to Produce Cycloalkenes from Bio-Based Resources
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by edoc ARTICLE https://doi.org/10.1038/s41467-019-13071-y OPEN Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources Shuke Wu 1,3*, Yi Zhou 1, Daniel Gerngross 2, Markus Jeschek 2 & Thomas R. Ward 1* Engineered enzyme cascades offer powerful tools to convert renewable resources into value- added products. Man-made catalysts give access to new-to-nature reactivities that may complement the enzyme’s repertoire. Their mutual incompatibility, however, challenges their 1234567890():,; integration into concurrent chemo-enzymatic cascades. Herein we show that compartmen- talization of complex enzyme cascades within E. coli whole cells enables the simultaneous use of a metathesis catalyst, thus allowing the sustainable one-pot production of cycloalkenes from oleic acid. Cycloheptene is produced from oleic acid via a concurrent enzymatic oxi- dative decarboxylation and ring-closing metathesis. Cyclohexene and cyclopentene are produced from oleic acid via either a six- or eight-step enzyme cascade involving hydration, oxidation, hydrolysis and decarboxylation, followed by ring-closing metathesis. Integration of an upstream hydrolase enables the usage of olive oil as the substrate for the production of cycloalkenes. This work highlights the potential of integrating organometallic catalysis with whole-cell enzyme cascades of high complexity to enable sustainable chemistry. 1 Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4058 Basel, Switzerland. 2 Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland. 3Present address: Institute of Biochemistry, University of Greifswald, Felix- Hausdorff-Str.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,406,708 B1 Kairnerud Et Al
    USOO6406708B1 (12) United States Patent (10) Patent No.: US 6,406,708 B1 Kairnerud et al. (45) Date of Patent: Jun. 18, 2002 (54) THERAPEUTIC COMPOSITIONS WO WO 96/11572 A1 4/1996 WO WO 96/21422 A1 7/1996 (75) Inventors: Lars Kärnerud, Tenhult; Stellan WO WO 98/22083 A1 5/1998 Olmeskog, Aneby, both of (SE) OTHER PUBLICATIONS (73) Assignee: Interhealth AB, Huskvarna (SE) Patent Abstracts of Japan, “JP 61-227517 A, Lion Corp., published Oct. 9, 1986”, vol. 11, No. 69 C-407. (*) Notice: Subject to any disclaimer, the term of this Patent Abstracts of Japan “10-087458 A., Lion Corp., pub patent is extended or adjusted under 35 lished Apr. 7, 1998”. U.S.C. 154(b) by 0 days. Patent Abstracts of Japan, “JP 07-138125A,” Shiseido Co. Ltd., published May 30, 1995, vol. 95, No. 5. (21) Appl. No.: 09/700,215 Hoffmann SL et al., “Safety, Immunogenicity, And Efficacy (22) PCT Filed: May 12, 1999 Of A Malaria Sporozoite Vaccine Administered With Mono phosphoryl Lipid A, Cell Wall Skeleton Of Mycobacteria, (86) PCT No.: PCT/SE99/00819 And Squalane AS Adjuvent” Am J Trop Med Hyg, 51(5), pp. S371 (c)(1), 603–612, Nov. 1994. Abstract. (2), (4) Date: Nov. 13, 2000 Allison AC, “Adjuvants and Immune Enhancement' Int. J. Technol. Assess Health Care, 10(1), pp., 107-120, Winter (87) PCT Pub. No.: WO99/58104 1994. Abstract. Stone HD et al., “Efficacy of Experimental Newcastle Dis PCT Pub. Date: Nov. 18, 1999 ease Water-In-Oil Oil-Emulsion Vaccines Formulated from (30) Foreign Application Priority Data Squalane and Squalane.
    [Show full text]
  • Effect of Oral Sebacic Acid on Postprandial Glycemia, Insulinemia, and Glucose Rate of Appearance in Type 2 Diabetes
    Clinical Care/Education/Nutrition/Psychosocial Research ORIGINAL ARTICLE Effect of Oral Sebacic Acid on Postprandial Glycemia, Insulinemia, and Glucose Rate of Appearance in Type 2 Diabetes 1 1 AMERIGO IACONELLI, MD ANGELA FAVUZZI, MD beneficial in terms of reduction of circu- 2 3 AMALIA GASTALDELLI, PHD CHRISTOPHE BINNERT, PHD lating levels of glucose, insulin, and free 1 3 CHIARA CHIELLINI, PHD KATHERINE MACE´, PHD 1 1 fatty acids in type 2 diabetes. Thus, the DONATELLA GNIULI, MD GELTRUDE MINGRONE, MD, PHD availability of snacks poor in fat and that do not induce hyperglycemia and/or overstimulate insulin secretion would be OBJECTIVE — Dicarboxylic acids are natural products with the potential of being an alter- a good tool in the diet of insulin-resistant, nate dietary source of energy. We aimed to evaluate the effect of sebacic acid (a 10-carbon type 2 diabetic subjects. dicarboxylic acid; C10) ingestion on postprandial glycemia and glucose rate of appearance (Ra) in healthy and type 2 diabetic subjects. Furthermore, the effect of C10 on insulin-mediated Dicarboxylic acids are naturally oc- glucose uptake and on GLUT4 expression was assessed in L6 muscle cells in vitro. curring substances produced by both higher plants and animals via ␻-oxidation RESEARCH DESIGN AND METHODS — Subjects ingested a mixed meal (50% car- of fatty acids (6,7). In plants, long-chain bohydrates, 15% proteins, and 35% lipids) containing 0 g (control) or 10 g C10 in addition to dicarboxylic acids are components of nat- the meal or 23 g C10 as a substitute of fats. ural protective polymers, cutin and RESULTS — In type 2 diabetic subjects, the incremental glucose area under the curve (AUC) suberin, which support biopolyesters in- decreased by 42% (P Ͻ 0.05) and 70% (P Ͻ 0.05) in the 10 g C10 and 23 g C10 groups, volved in waterproofing the leaves and respectively.
    [Show full text]