Effect of Oral Sebacic Acid on Postprandial Glycemia, Insulinemia, and Glucose Rate of Appearance in Type 2 Diabetes

Total Page:16

File Type:pdf, Size:1020Kb

Effect of Oral Sebacic Acid on Postprandial Glycemia, Insulinemia, and Glucose Rate of Appearance in Type 2 Diabetes Clinical Care/Education/Nutrition/Psychosocial Research ORIGINAL ARTICLE Effect of Oral Sebacic Acid on Postprandial Glycemia, Insulinemia, and Glucose Rate of Appearance in Type 2 Diabetes 1 1 AMERIGO IACONELLI, MD ANGELA FAVUZZI, MD beneficial in terms of reduction of circu- 2 3 AMALIA GASTALDELLI, PHD CHRISTOPHE BINNERT, PHD lating levels of glucose, insulin, and free 1 3 CHIARA CHIELLINI, PHD KATHERINE MACE´, PHD 1 1 fatty acids in type 2 diabetes. Thus, the DONATELLA GNIULI, MD GELTRUDE MINGRONE, MD, PHD availability of snacks poor in fat and that do not induce hyperglycemia and/or overstimulate insulin secretion would be OBJECTIVE — Dicarboxylic acids are natural products with the potential of being an alter- a good tool in the diet of insulin-resistant, nate dietary source of energy. We aimed to evaluate the effect of sebacic acid (a 10-carbon type 2 diabetic subjects. dicarboxylic acid; C10) ingestion on postprandial glycemia and glucose rate of appearance (Ra) in healthy and type 2 diabetic subjects. Furthermore, the effect of C10 on insulin-mediated Dicarboxylic acids are naturally oc- glucose uptake and on GLUT4 expression was assessed in L6 muscle cells in vitro. curring substances produced by both higher plants and animals via ␻-oxidation RESEARCH DESIGN AND METHODS — Subjects ingested a mixed meal (50% car- of fatty acids (6,7). In plants, long-chain bohydrates, 15% proteins, and 35% lipids) containing 0 g (control) or 10 g C10 in addition to dicarboxylic acids are components of nat- the meal or 23 g C10 as a substitute of fats. ural protective polymers, cutin and RESULTS — In type 2 diabetic subjects, the incremental glucose area under the curve (AUC) suberin, which support biopolyesters in- decreased by 42% (P Ͻ 0.05) and 70% (P Ͻ 0.05) in the 10 g C10 and 23 g C10 groups, volved in waterproofing the leaves and respectively. At the largest amounts used, C10 reduced the glucose AUC in healthy volunteers fruits, regulating the flow of nutrients also. When fats were substituted with 23 g C10, AUC of Ra was significantly reduced on the order among various plant cells and organs, and of 18% (P Ͻ 0.05) in both healthy and diabetic subjects. The insulin-dependent glucose uptake minimizing the deleterious impact of Ϯ Ϯ ϭ by L6 cells was increased in the presence of C10 (38.7 10.3 vs. 11.4 5.4%; P 0.026). This pathogens (7). In animals and humans, increase was associated with a 1.7-fold raise of GLUT4. medium chain dicarboxylic acids, which CONCLUSIONS — Sebacic acid significantly reduced hyperglycemia after a meal in type 2 include prevalently sebacic (C10) and do- decanedioic (C12) acids, derive from the diabetic subjects. This beneficial effect was associated with a reduction in glucose Ra, probably due to lowered hepatic glucose output and increased peripheral glucose disposal. ␤-oxidation of longer chain dicarboxylic acids (8). Long-chain dicarboxylic acids, Diabetes Care 33:2327–2332, 2010 in turn, are formed from the correspon- dent fatty acids by ␻-oxidation in the mi- he World Health Report launched in sis of glycogen of ϳ25–45% compared crosomal membranes (9) or are taken in 2002 by the World Health Organi- with that in nondiabetic subjects (2). In- with a diet rich in vegetables (7). T zation advised that more than 1 bil- creased hepatic gluconeogenesis has been We have shown previously that me- lion adults worldwide are overweight and considered to be responsible for elevated dium-chain dicarboxylic acids represent a at least 300 million are clinically obese. hepatic glucose output in type 2 diabetes suitable alternate energy substrate to glu- Type 2 diabetes can be considered a (3). When glycogen is available in ade- cose in clinical conditions with marked threatening obesity-related disease be- quate amounts, there is an autolimitation insulin resistance and/or impaired aero- cause hyperglycemia causes relevant of hepatic glucose production. In diabe- bic glycolysis (10). Interestingly, in type 2 complications such as micro- and mac- tes, a breakdown of this autoregulation diabetes, medium-chain dicarboxylic ac- roangiopathy. Patients with type 2 diabe- may occur if glycogenolysis is limited by ids are rapidly oxidized, do not stimulate tes exhibit increased hepatic glucose glycogen depletion (4). insulin secretion, and reduce muscle fa- output, which is identified as the main Jenkins et al. (5) have shown that tigue (11). Nevertheless, the effect of C10 cause of fasting hyperglycemia and is as- spreading the nutrient load over a longer or C12, not as a substitute but in addition sociated with impaired plasma glucose period of time by increased meal fre- clearance (1) and reduced hepatic synthe- quency, the so-called nibbling diet, is to available carbohydrates, on glucose ho- meostasis has never been studied. ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● On this basis, our aim was to investi- From the 1Department of Internal Medicine, Catholic University of Rome, Rome, Italy; the 2Institute of gate the effect of oral administration of Clinical Physiology, Consiglio Nazionale delle Ricerche Pisa, Pisa, Italy; and the 3Nestle´ Research Centre, C10 on postprandial glycemia, insuline- Lausanne, Switzerland. mia, and glucose rate of appearance (Ra) Corresponding author: Geltrude Mingrone, [email protected]. Received 9 April 2010 and accepted 6 August 2010. Published ahead of print at http://care.diabetesjournals. in type 2 diabetic subjects compared with org on 19 August 2010. DOI: 10.2337/dc10-0663. that in healthy volunteers. To further elu- © 2010 by the American Diabetes Association. Readers may use this article as long as the work is properly cidate the mechanism of action of sebacic cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons. acid in diabetes, insulin-mediated glucose org/licenses/by-nc-nd/3.0/ for details. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby uptake and GLUT4 protein expression marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. were assessed in L6 cells in vitro. care.diabetesjournals.org DIABETES CARE, VOLUME 33, NUMBER 11, NOVEMBER 2010 2327 Oral sebacic acid in type 2 diabetes RESEARCH DESIGN AND Table 1—Mixed meal composition METHODS — From October 2006 to September 2007, 10 obese type 2 diabetic Carbohydrates Proteins Lipids Sebacic acid subjects and 10 healthy volunteers were enrolled. Women in fertile age were asked Control (450 kcal) 50 15 35 0 to avoid pregnancy during the study pro- 10 g C10 (450 kcal ϩ 60 kcal from C10 44 13 31 12 tocol. In addition, before starting each ex- 23 g C10 (450 kcal) 50 15 0 35 perimental session a pregnancy test was Data are kcal%. performed, and pregnant women were excluded from the investigation. All women were studied in the follicular Blood samples for the determination monitored, and enrichment was calcu- phase of their menstrual cycle. None of of 6,6-D-glucose enrichment, plasma C- lated as the ratio of 202 to 200. C10 anal- the subjects previously or currently had peptide, and plasma insulin concentra- ysis was performed as described major endocrinological, renal, cardiac, tions were obtained before the tracer previously (14). respiratory, liver, or gastrointestinal infusion was started and every 10 min disorders. during the last 20 min of the 2 h preced- Calculations All subjects underwent a 75-g oral ing the meal ingestion (equilibration pe- A physiological and isotopic steady state glucose tolerance test to measure the Mat- riod). Starting from the meal ingestion was achieved during the last 20 min of the suda index, as an index of insulin resis- time, plasma samples were obtained every basal period and of the meal period; tance (12). None of the diabetic subjects 20 min for 5 h. Therefore, overall the therefore, the glucose rate of appearance were taking oral hypoglycemic agents or study duration was7hor420min. (Ra), which is equivalent to endogenous were diagnosed with type 2 diabetes 2–5 Each subject voided to empty his/her glucose production, and rate of disap- years before the study and their A1C was bladder before starting the experimental pearance (Rd) were calculated as the 5.5–7.5%. protocol. The subsequent 24-h urine tracer infusion rate divided by the tracer- The protocol was approved by the samples were collected in a container with to-tracee ratio. During the meal, glucose ethics committee of the Catholic Univer- 0.1% sodium azide to prevent bacterial non–steady-state conditions prevail, and, sity, School of Medicine, in Rome, Italy. growth. thus, Ra and Rd were calculated using the All of the subjects signed a written in- Steele equation (15). Glucose flux rates formed consent form before starting the Body composition are expressed per kilogram of body study. After subjects voided and were weighed, weight. Glucose clearance was calculated body composition was assessed by dual- as Rd divided by plasma glucose concen- Chemicals x-ray absorptiometry (Lunar Prodigy; GE tration. AUCs of glucose and insulin con- Sebacic acid was purchased from Sigma- Lunar, Madison, WI) to measure fat-free centrations and of glucose Ra and Aldrich (St. Louis, MO) and purified by mass, fat mass, and percentage of fat mass. clearance were calculated using the trap- Real s.r.l. (Como, Italy). It was pyrogen- ezoidal method. AUC of meal glucose free and contaminant-free with a degree Analytical methods clearance was normalized to AUC of insu- of purification (gas-liquid chromatogra- Plasma insulin and C-peptide were mea- lin to account for different insulin con- phy/mass spectrometry) of 99.5%. 6,6-D- sured in duplicate by double-antibody ra- centrations observed during the three Glucose was purchased from Mass Trace dioimmunoassays (Linco Research, St.
Recommended publications
  • Altered Metabolome of Lipids and Amino Acids Species: a Source of Early Signature Biomarkers of T2DM
    Journal of Clinical Medicine Review Altered Metabolome of Lipids and Amino Acids Species: A Source of Early Signature Biomarkers of T2DM Ahsan Hameed 1 , Patrycja Mojsak 1, Angelika Buczynska 2 , Hafiz Ansar Rasul Suleria 3 , Adam Kretowski 1,2 and Michal Ciborowski 1,* 1 Clinical Research Center, Medical University of Bialystok, Jana Kili´nskiegoStreet 1, 15-089 Bialystok, Poland; [email protected] (A.H.); [email protected] (P.M.); [email protected] (A.K.) 2 Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland; [email protected] 3 School of Agriculture and Food System, The University of Melbourne, Parkville, VIC 3010, Australia; hafi[email protected] * Correspondence: [email protected] Received: 27 June 2020; Accepted: 14 July 2020; Published: 16 July 2020 Abstract: Diabetes mellitus, a disease of modern civilization, is considered the major mainstay of mortalities around the globe. A great number of biochemical changes have been proposed to occur at metabolic levels between perturbed glucose, amino acid, and lipid metabolism to finally diagnoe diabetes mellitus. This window period, which varies from person to person, provides us with a unique opportunity for early detection, delaying, deferral and even prevention of diabetes. The early detection of hyperglycemia and dyslipidemia is based upon the detection and identification of biomarkers originating from perturbed glucose, amino acid, and lipid metabolism. The emerging “OMICS” technologies, such as metabolomics coupled with statistical and bioinformatics tools, proved to be quite useful to study changes in physiological and biochemical processes at the metabolic level prior to an eventual diagnosis of DM.
    [Show full text]
  • Dibasic Acids for Nylon Manufacture
    - e Report No. 75 DIBASIC ACIDS FOR NYLON MANUFACTURE by YEN-CHEN YEN October 1971 A private report by the PROCESS ECONOMICS PROGRAM STANFORD RESEARCH INSTITUTE MENLO PARK, CALIFORNIA CONTENTS INTRODUCTION, ....................... 1 SUMMARY .......................... 3 General Aspects ...................... 3 Technical Aspects ..................... 7 INDUSTRY STATUS ...................... 15 Applications and Consumption of Sebacic Acid ........ 15 Applications and Consumption of Azelaic Acid ........ 16 Applications of Dodecanedioic and Suberic Acids ...... 16 Applications of Cyclododecatriene and Cyclooctadiene .... 17 Producers ......................... 17 Prices ........................... 18 DIBASIC ACIDS FOR MANUFACTURE OF POLYAMIDES ........ 21 CYCLOOLIGOMERIZATIONOF BUTADIENE ............. 29 Chemistry ......................... 29 Ziegler Catalyst ..................... 30 Nickel Catalyst ..................... 33 Other Catalysts ..................... 34 Co-Cyclooligomerization ................. 34 Mechanism ........................ 35 By-products and Impurities ................ 37 Review of Processes .................... 38 A Process for Manufacture of Cyclododecatriene ....... 54 Process Description ................... 54 Process Discussion .................... 60 Cost Estimates ...................... 60 A Process for Manufacture of Cyclooctadiene ........ 65 Process Description ................... 65 Process Discussion .................... 70 Cost Estimates ...................... 70 A Process for Manufacture of Cyclodecadiene
    [Show full text]
  • Microwave-Assisted Low-Temperature Dehydration Polycondensation of Dicarboxylic Acids and Diols
    Polymer Journal (2011) 43, 1003–1007 & The Society of Polymer Science, Japan (SPSJ) All rights reserved 0032-3896/11 $32.00 www.nature.com/pj RAPID COMMUNICATION Microwave-assisted low-temperature dehydration polycondensation of dicarboxylic acids and diols Polymer Journal (2011) 43, 1003–1007; doi:10.1038/pj.2011.107; published online 26 October 2011 INTRODUCTION time (4100 h). Therefore, we next focused on has been no report concerning a Currently, because of increasing concerns identifying more active catalysts and found that non-thermal effect in microwave-assisted about damage to the environment, the devel- scandium and thulium bis(nonafluorobutane- polycondensation reactions,33,34 although opment of new, eco-friendly (industrially sulfonyl)imide ((Sc(NNf2)3) and (Tm(NNf2)3)) there has been a report that non-thermal relevant) chemical reactions and materials is were more efficient catalysts and allowed us microwaves have a role in the chain polymer- crucial. Aliphatic polyesters have attracted to obtain high-molecular-weight polyesters ization of a lactone.32 Therefore, we studied 4 much interest as environmentally benign, (Mn42.0Â10 ) from adipic acid (AdA) and microwave-assisted syntheses of polyesters at biodegradable polymers.1,2 In general, alipha- 3-methyl-1,5-pentanediol (MPD) at 60 1Cina a relatively low temperature (80 1C) using a tic polyesters are commercially produced by shortperiodoftime(24h)andwithasmaller microwave chamber equipped with a tem- polycondensation of a dicarboxylic acid and a amount of catalyst (0.1 mol%) than had pre- perature control, and the results are reported 1.1–1.5 mol excess of a diol at a temperature viously been possible.26 herein.
    [Show full text]
  • Pharmacokinetics of Sebacic Acid in Rats
    European Review for Medical and Pharmacological Sciences 1999; 3: 119-125 Pharmacokinetics of sebacic acid in rats A.M.R. FAVUZZI, G. MINGRONE, A. BERTUZZI*, S. SALINARI**, A. GANDOLFI*, A.V. GRECO Istituto di Medicina Interna e Geriatria, Catholic University - Rome (Italy) *Istituto di Analisi dei Sistemi ed Informatica, CNR - Rome (Italy) **Dipartimento di Informatica e Sistemistica, Facoltà di Ingegneria, “La Sapienza” University - Rome (Italy) Abstract. – The pharmacokinetics of disodi- enteral nutrition (TPN) as an alternate ener- um sebacate (Sb) was studied in Wistar rats of gy source1-3. The advantage of these diacids both sexes. Sebacate was administered either as over conventional lipid substrates (both long intra-peritoneal (i.p.) bolus (six doses ranging from 10 mg to 320 mg) or as oral bolus (two doses: 80 and medium chain triglycerides) is related to and 160 mg). Plasma and urinary concentrations the immediate availability of their com- of Sb and urinary concentrations of Sb and its pounds. The salts of dicarboxylic acids are products of β-oxidation (suberic and adipic acids) highly water soluble and thus can be directly were measured by an improved method using administered through a peripheral venous gas-liquid chromatography/mass-spectrometry. route. Unlike long chain triglycerides (LCT), A single compartment with two linear elimi- or medium chain triglycerides (MCT), which nation routes was selected after no increase in significance was shown by an additional com- are available under emulsion form for clinical partment and after a saturable mechanism was use, they do not require complex and expen- found to be unsuitable. Both renal and non-re- sive production procedures.
    [Show full text]
  • D 2.1 Background Information and Biorefinery Status, Potential and Sustainability
    Project no.: 241535 – FP7 Project acronym: Star-COLIBRI Project title: Strategic Targets for 2020 – Collaboration Initiative on Biorefineries Instrument: Specific Support Action Thematic Priority: Coordination and support actions D 2.1 Background information and biorefinery status, potential and Sustainability – Task 2.1.2 Market and Consumers; Carbohydrates – Due date of deliverable: March 31, 2010 Start date of project: 01.11.2009 Duration: 24 months Organisation name of lead contractor for this deliverable: UoY Version: 1.0 Project co-funded by the European Commission within the Seventh Framework Programme (2007-2011) Dissemination level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) Star-COLIBRI - Deliverable 2.1 D 2.1 Background information and biorefinery status, potential and Sustainability – Task 2.1.2 Market and Consumers; Carbohydrates – H.L. Bos, P.F.H. Harmsen & E. Annevelink Wageningen UR – Food & Biobased Research Version 18/03/10 Task 2.1.2 Market and Consumers; Carbohydrates 2 Star-COLIBRI - Deliverable 2.1 Content Management summary ............................................................................................................... 4 1 Introduction ........................................................................................................................ 5 1.1 Task description
    [Show full text]
  • United States Patent Office Patented
    2,826,604 United States Patent Office Patented. Mar. 11, 1958 2 (130-140 C.), the decalyl acetate being recoverable from the reaction mixture by distillation of the neutralized re 2,826,604 action liquid. The recovered product was a straw-colored PREPARATION OF DECAHYDRONAPHTHYL fragrant oil, which was established to be 1-decallyl acetate. ACETATE 5 The position of the acetoxy group was determined by William E. Erner, Wilmington, Del, assignor to Houdry hydrolysis of the ester to the alcohol and subsequent Process Corporation, Wilmington, Del, a corporation conversion to decalone-1 by chromic acid-acetic acid oxi of Delaware dation. - The aceto-oxidation of Decalin can be carried out No Drawing. Application June 2, 1955 10 in the presence of oxidation catalysts of the type em Serial No. 512,853 bodied in the metal salts of the lower fatty acids. Cobalt 2 Claims. (C. 260-488) acetate proved outstanding among the metallic-soap oxi dation catalysts studied. The use of benzoyl peroxide at the start of the process has been found advantageous The present invention relates to the preparation of 1 5 in decreasing the induction period and in giving uni decahydronaphthyl alcohols and the corresponding acetic formly high yields. acid ester and ketone derivatives of Said alcohols. The ratios of Decalin - to acetic anhydride in the oper More particularly the invention is concerned with the ation of the process are not critical, but practical con production of saturated polynuclear carbocyclic com siderations favor the use of at least one-half mol of pounds of the type 20 acetic anhydride per mol of Decalin.
    [Show full text]
  • Chemo-Enzymatic Cascades to Produce Cycloalkenes from Bio-Based Resources
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by edoc ARTICLE https://doi.org/10.1038/s41467-019-13071-y OPEN Chemo-enzymatic cascades to produce cycloalkenes from bio-based resources Shuke Wu 1,3*, Yi Zhou 1, Daniel Gerngross 2, Markus Jeschek 2 & Thomas R. Ward 1* Engineered enzyme cascades offer powerful tools to convert renewable resources into value- added products. Man-made catalysts give access to new-to-nature reactivities that may complement the enzyme’s repertoire. Their mutual incompatibility, however, challenges their 1234567890():,; integration into concurrent chemo-enzymatic cascades. Herein we show that compartmen- talization of complex enzyme cascades within E. coli whole cells enables the simultaneous use of a metathesis catalyst, thus allowing the sustainable one-pot production of cycloalkenes from oleic acid. Cycloheptene is produced from oleic acid via a concurrent enzymatic oxi- dative decarboxylation and ring-closing metathesis. Cyclohexene and cyclopentene are produced from oleic acid via either a six- or eight-step enzyme cascade involving hydration, oxidation, hydrolysis and decarboxylation, followed by ring-closing metathesis. Integration of an upstream hydrolase enables the usage of olive oil as the substrate for the production of cycloalkenes. This work highlights the potential of integrating organometallic catalysis with whole-cell enzyme cascades of high complexity to enable sustainable chemistry. 1 Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, CH-4058 Basel, Switzerland. 2 Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, CH-4058 Basel, Switzerland. 3Present address: Institute of Biochemistry, University of Greifswald, Felix- Hausdorff-Str.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 6,406,708 B1 Kairnerud Et Al
    USOO6406708B1 (12) United States Patent (10) Patent No.: US 6,406,708 B1 Kairnerud et al. (45) Date of Patent: Jun. 18, 2002 (54) THERAPEUTIC COMPOSITIONS WO WO 96/11572 A1 4/1996 WO WO 96/21422 A1 7/1996 (75) Inventors: Lars Kärnerud, Tenhult; Stellan WO WO 98/22083 A1 5/1998 Olmeskog, Aneby, both of (SE) OTHER PUBLICATIONS (73) Assignee: Interhealth AB, Huskvarna (SE) Patent Abstracts of Japan, “JP 61-227517 A, Lion Corp., published Oct. 9, 1986”, vol. 11, No. 69 C-407. (*) Notice: Subject to any disclaimer, the term of this Patent Abstracts of Japan “10-087458 A., Lion Corp., pub patent is extended or adjusted under 35 lished Apr. 7, 1998”. U.S.C. 154(b) by 0 days. Patent Abstracts of Japan, “JP 07-138125A,” Shiseido Co. Ltd., published May 30, 1995, vol. 95, No. 5. (21) Appl. No.: 09/700,215 Hoffmann SL et al., “Safety, Immunogenicity, And Efficacy (22) PCT Filed: May 12, 1999 Of A Malaria Sporozoite Vaccine Administered With Mono phosphoryl Lipid A, Cell Wall Skeleton Of Mycobacteria, (86) PCT No.: PCT/SE99/00819 And Squalane AS Adjuvent” Am J Trop Med Hyg, 51(5), pp. S371 (c)(1), 603–612, Nov. 1994. Abstract. (2), (4) Date: Nov. 13, 2000 Allison AC, “Adjuvants and Immune Enhancement' Int. J. Technol. Assess Health Care, 10(1), pp., 107-120, Winter (87) PCT Pub. No.: WO99/58104 1994. Abstract. Stone HD et al., “Efficacy of Experimental Newcastle Dis PCT Pub. Date: Nov. 18, 1999 ease Water-In-Oil Oil-Emulsion Vaccines Formulated from (30) Foreign Application Priority Data Squalane and Squalane.
    [Show full text]
  • Dissociation Constants of Organic Acids and Bases
    DISSOCIATION CONSTANTS OF ORGANIC ACIDS AND BASES This table lists the dissociation (ionization) constants of over pKa + pKb = pKwater = 14.00 (at 25°C) 1070 organic acids, bases, and amphoteric compounds. All data apply to dilute aqueous solutions and are presented as values of Compounds are listed by molecular formula in Hill order. pKa, which is defined as the negative of the logarithm of the equi- librium constant K for the reaction a References HA H+ + A- 1. Perrin, D. D., Dissociation Constants of Organic Bases in Aqueous i.e., Solution, Butterworths, London, 1965; Supplement, 1972. 2. Serjeant, E. P., and Dempsey, B., Ionization Constants of Organic Acids + - Ka = [H ][A ]/[HA] in Aqueous Solution, Pergamon, Oxford, 1979. 3. Albert, A., “Ionization Constants of Heterocyclic Substances”, in where [H+], etc. represent the concentrations of the respective Katritzky, A. R., Ed., Physical Methods in Heterocyclic Chemistry, - species in mol/L. It follows that pKa = pH + log[HA] – log[A ], so Academic Press, New York, 1963. 4. Sober, H.A., Ed., CRC Handbook of Biochemistry, CRC Press, Boca that a solution with 50% dissociation has pH equal to the pKa of the acid. Raton, FL, 1968. 5. Perrin, D. D., Dempsey, B., and Serjeant, E. P., pK Prediction for Data for bases are presented as pK values for the conjugate acid, a a Organic Acids and Bases, Chapman and Hall, London, 1981. i.e., for the reaction 6. Albert, A., and Serjeant, E. P., The Determination of Ionization + + Constants, Third Edition, Chapman and Hall, London, 1984. BH H + B 7. Budavari, S., Ed., The Merck Index, Twelth Edition, Merck & Co., Whitehouse Station, NJ, 1996.
    [Show full text]
  • Structure-Properties Relationship of Fatty Acid-Based Thermoplastics As Synthetic Polymer Mimics Lise Maisonneuve, Thomas Lebarbé, Etienne Grau, Henri Cramail
    Structure-properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics Lise Maisonneuve, Thomas Lebarbé, Etienne Grau, Henri Cramail To cite this version: Lise Maisonneuve, Thomas Lebarbé, Etienne Grau, Henri Cramail. Structure-properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics. Polymer Chemistry, Royal Society of Chemistry - RSC, 2013, 4 (22), pp.5472-5517. 10.1039/c3py00791j. hal-00915225 HAL Id: hal-00915225 https://hal.archives-ouvertes.fr/hal-00915225 Submitted on 22 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Structure–properties relationship of fatty acid-based thermoplastics as synthetic polymer mimics Lise Maisonneuve, Thomas Lebarbé, Etienne Grau and Henri Cramail* Abstract Nowadays the use of vegetable oils as polymer precursors is the subject of growing interest in the academic and industrial communities. Many synthetic pathways can be pursued from natural vegetable oils to yield different functionalized derivatives – also called synthons – and polymers, such as polyesters, polyurethanes, polyamides, etc. Herein, we widely overview recent progress in the preparation of vegetable oil-based thermoplastic polymers and, more precisely, thermoplastic polyesters and polyurethanes. Extra focus is also placed on the synthesis sustainability of these polymeric materials via atom efficient techniques, “green” catalyses and processes.
    [Show full text]
  • PINK BOOK 3 Sebacic Acid/Dicarboxylic Acids CIR EXPERT PANEL MEETING AUGUST 30-31, 2010
    PINK BOOK 3 Sebacic Acid/Dicarboxylic Acids CIR EXPERT PANEL MEETING AUGUST 30-31, 2010 Memorandum To: CIR Expert Panel Members and Liaisons From: Monice M. Fiume MMF Senior Scientific Analyst/Writer Bart A. Heldreth, Ph.D. BAH Chemist Date: July 30, 2010 Subject: Draft Report on Dicarboxylic Acids (previously called Diisopropyl Sebacate) The draft report on dicarboxylic acids was last reviewed in December 2009, under the title Diisopropyl Sebacate. At that time, the report was tabled for reorganization. Also at that time, it was determined that oxalic acid would not be part of the safety assessment. The entire report has been reorganized and rewritten. It will be obvious that the Chemistry section is now prepared in a way that allows you to view the dicarboxylic acids in order of increasing chain length. Also included are charts demonstrating the relationship between molecular weight and the log octanol – water partitioning coefficient. Additionally, the report, from the General Biology section on, is now divided into two sections, as was suggested by the Panel in December. The first section addresses dicarboxylic acids and their salts, while the second part addresses esters of dicarboxylic acids. These two subsets of ingredients have different functions in cosmetics, and this will allow the Panel to view the data on each subset separately. In addition to the reorganization, the report has change greatly in the extent of data included. A complete new search of the literature has been performed, and a substantial amount of new data has been added. A great deal of the information included in this report has come from summary documents, such as HPV robust summaries, that cite unpublished sources.
    [Show full text]
  • 2-Octanol Overview
    OLERIS ® 2-Octanol - CAS: 123-96-6 Where does the 2-Octanol come from? The 2-Octanol is produced through a cracking process of Castor oil. During this operation, the major component of Castor oil, the Ricinoleic Acid (C18 natural fatty acid) is cut into two molecules: the Sebacic Acid (C10 diacid) and the 2-Octanol (C8 Fatty Alcohol). The Ricinus communis (Castor plant) is mainly cultivated in India and China. Castor oil is historically known to have medicinal virtues and was used in many applications. Nowadays, this oil is used in various industries: Cosmetic, Lube Oil, Paints & Coatings, Adhesives, Surfactants, etc… The Castor plant is highly resistant and can be grown on poor land. This feature prevents farmers from damaging local food crops by cultivating Castor plant and to slows down deforestation linked to its culture. 22 What are the key features of the 2-Octanol? SOLVANCY PROPERTIES 2-Octanol offers good solvating properties for numerous resins. Hansen Solubility Parameter : 20.02 MPa 0.5 Its performances combined with its safe use (Flash Point 76 °C) and its natural origin make it a strong candidate of green solvent. SUPERFICIAL TENSION 2-Octanol has a low superficial tension giving it good wetting and defoaming properties. CHEMICAL REACTIVITY 2-Octanol is a chemical intermediate used to synthetize various molecules such as: Esters (Acrylates, Adipates, Maléates, Sébacates, Palmitates, Myristates), Polyesters, Ketones (2-Octanone), Ethoxylated Fatty Alcohols, Sulfated Alcohols, etc… ORGANOLEPTIC PROPERTIES 2-Octanol is a 100% biobased natural intermediate used in flavours & fragrances. 33 What are the applications of the 2-Octanol ? 2-Octanol can be used as such in direct applications or as a raw material to produce various molecules like esters, polyols, ketones, ethoxylates, etc….
    [Show full text]