Rhodocenium Monocarboxylic Acid Hexafluoridophosphate and Its Derivatives: Synthesis, Spectroscopy, Structure, and Electrochemistry Markus Jochriem,[A] Larissa A

Total Page:16

File Type:pdf, Size:1020Kb

Rhodocenium Monocarboxylic Acid Hexafluoridophosphate and Its Derivatives: Synthesis, Spectroscopy, Structure, and Electrochemistry Markus Jochriem,[A] Larissa A EurJIC Full Paper European Journal of Inorganic Chemistry doi.org/10.1002/ejic.202000071 Metallocenes Rhodocenium Monocarboxylic Acid Hexafluoridophosphate and Its Derivatives: Synthesis, Spectroscopy, Structure, and Electrochemistry Markus Jochriem,[a] Larissa A. Casper,[b] Stefan Vanicek,[a,c] Dirk Petersen,[c] Holger Kopacka,[a] Klaus Wurst,[a] Thomas Müller,[d] Rainer F. Winter,*[b] and Benno Bildstein*[a] Abstract: As an extension of our continuing work in metalloce- are reported. Like the parent rhodocenium ion, all new deriva- nium chemistry, we report here on new functionalized rhodoce- tives undergo two chemically consecutive reductions at poten- nium salts. In contrast to isoelectronic cobaltocenium com- tials that depend on the respective ring substituent. The second pounds, rhodium as a 4d metal allows synthetic routes via pre- reduction competes with a rapid reaction of the corresponding functionalized cyclopentadienyl half-sandwich precursors, rhodocenes to their 18 VE dimers. Rate constants for this proc- thereby facilitating access to monofunctionalized rhodocenium ess range from 2 × 103 s–1 to 2.5 × 105 s–1 as estimated from salts containing substituents comprising methyl, trimethylsilyl, digital simulations of experimental voltammograms. Rhodoce- carboxylate and carboxylate ester as well as amide derivatives. nium carboxylic acid (8) constitutes a special case in that proton Synthetic aspects, scope and limitations, as well as spectro- instead of metal reduction is observed at Pt or Au electrodes. scopic (1H/13C-NMR, IR, HR-MS), and structural (XRD) properties Introduction we were able to introduce valuable new synthetic protocols in cobaltocenium chemistry[1] that are currently used to access After almost 70 years of research in metallocene chemistry, still chemically interesting cobaltocenium compounds.[2] Our moti- relatively little is known about cobaltocenium, rhodocenium vation for studying cobaltocenium compounds in general stems and iridocenium salts that are isoelectronic and as stable and from their unique combination of advantageous properties like redox responsive as their ubiquitous ferrocene congeners. The air-stability, reversible redox chemistry, high polarity with con- main reason for the underdeveloped chemistry of these metal- comitant high solubility in polar solvents, and a strongly elec- locenium salts is their intrinsic cationic nature, making it quite tron-withdrawing character, thereby opening up new applica- difficult to access functionalized derivatives by standard chemi- tions in redox catalysis, bioinorganic chemistry, ligand design cal reactions developed for arenes. However, in recent years and coordination chemistry.[2] In comparison to cobaltocenium chemistry, rhodocenium chemistry is even less developed.[3] In fact, only three monosub- [a] Institute of General, Inorganic and Theoretical Chemistry, stituted rhodocenium compounds are presently known. First, University of Innsbruck, Sheats and co-workers[4] reported in 1983 the synthesis of rho- Center for Chemistry and Biomedicine, Innrain 80-82, 6020 Innsbruck, Austria docenium monocarboxylic acid hexafluoridophosphate in 20 % E-mail: [email protected] isolated yield by a non-chemoselective statistical approach, tak- https://www.uibk.ac.at/aatc/ ing advantage of the differences in solubility of unsubstituted [b] Department of Chemistry, University of Konstanz, rhodocenium, rhodocenium mono- and rhodocenium dicarbox- Universitätsstrasse 10, 784557 Konstanz, Germany E-mail: [email protected] ylic acid salts. No further chemistry of rhodocenium mono- https://www.chemie.uni-konstanz.de/winter/ carboxylic acid hexafluoridophosphate was described. Second, [c] Department of Chemistry, University of Oslo, Andre and co-workers[5] published in 1990 the preparative Sem Sælands vei 26, 0315, Oslo Norway HPLC separation of ferrocenylrhodocenium from other metallo- [d] Institute of Organic Chemistry, University of Innsbruck, Center for Chemistry and Biomedicine, cenylrhodocenium salts. The latter were again obtained by a [6] Innrain 80-82 6020 Innsbruck, Austria statistical protocol. Third, Yan and co-workers reported in Supporting information and ORCID(s) from the author(s) for this article are 2015 a hydroxyethyltriazolylrhodocenium salt obtained from available on the WWW under https://doi.org/10.1002/ejic.202000071. (η4-ethynylcyclopentadiene)(η5-cyclopentadienyl)rhodium(I) by © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. · azide-alkyne cycloaddition followed by oxidation with ferroce- This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any nium hexafluoridophosphate. This rhodocenium-functionalized medium, provided the original work is properly cited. alcohol was converted to norbornene and methacrylate mono- Eur. J. Inorg. Chem. 2020, 1300–1310 1300 © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Konstanzer Online-Publikations-System (KOPS) URL: http://nbn-resolving.de/urn:nbn:de:bsz:352-2-dj3lcqan4inp3 EurJIC Full Paper European Journal of Inorganic Chemistry doi.org/10.1002/ejic.202000071 mers and subsequently polymerized to the corresponding side- be applied for rhodocenium compounds, due to differences in chain functionalized redox-responsive polymers. either reactivity or solubility of cobaltocenium/rhodocenium In this contribution, we aim at developing rhodocenium salts. Specifically, while the main target of this study, rhodoce- chemistry a bit further, in part based on our experience in nium monocarboxylic acid hexafluoridophosphate, could be cobaltocenium chemistry,[1,2] and disclose here a first chemo- generated by a nucleophilic addition/hydride removal/side- selective synthesis of rhodocenium monocarboxylic acid hexa- chain oxidation sequence that was recently developed in our fluoridophosphate which is a key synthon for other monosub- group for the successful synthesis of its cobaltocenium ana- stituted rhodocenium salts accessible by standard carboxylic logue,[1a] its purification from side products and isolation acid reactivity. The structural, spectroscopic and electrochemi- proved not feasible despite many efforts. Similarly, direct amin- cal properties of these new rhodocenium derivatives are com- ation of rhodocenium salts by a vicarious nucleophilic substitu- pared with those of their cobaltocenium congeners. tion gave only inseparable product mixtures, in contrast to cor- responding cobaltocenium salts.[1c] Therefore alternative syn- thetic strategies are needed for new monofunctionalized Results and Discussion rhodocenium compounds. In this context, an advantageous fea- ture of rhodium chemistry is the much higher stability of half- Synthesis sandwich rhodium(III) halide complexes[7] in comparison to [8] In general, rhodocenium chemistry is somewhat different from their labile cobalt(III) analogues. As we will see in the follow- cobaltocenium chemistry, as is often observed when comparing ing, these rhodium(III) species are valuable synthons for our the reactivities and stabilities of analogous compounds of 3d vs. purposes (Scheme 1). 4d/5d metals in a homologous group of elements. Successful Freshly prepared thallium methylcyclopentadienide (Cp′Tl) synthetic routes to cobaltocenium compounds cannot simply was reacted in dry tetrahydrofuran under an atmosphere of ar- Scheme 1. Synthesis of compounds. Eur. J. Inorg. Chem. 2020, 1300–1310 www.eurjic.org 1301 © 2020 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim EurJIC Full Paper European Journal of Inorganic Chemistry doi.org/10.1002/ejic.202000071 gon with chlorido(cyclooctadiene)rhodium(I) dimer (1) to afford carboxylato ligand, similar to its analogous cobalt congener.[2d] (cyclooctadiene)(methylcyclopentadienyl)Rh(I) (2) as an air-sta- Derivatives of monocarboxylic acid hexafluoridophosphate (8) ble yellow oil. Without further purification, oxidation of 2 with were synthesized by standard organic transformations. Quanti- diiodine gave di(methylcyclopentadienyl)-dirhodium(III) tetra- tative conversion of 8 to rhodoceniumcarboxylic acid chloride iodide (3) in a satisfactory overall yield of 67 %. Reaction of 3 hexafluoridophosphate (10) was performed in refluxing thionyl with two equivalents of sodium cyclopentadienide (NaCp) fol- chloride, followed by esterification with methanol to methoxy- lowed by precipitation of the product with aqueous hexafluoro- carbonylrhodocenium hexafluoridophosphate (11) or amide phosphoric acid afforded methylrhodocenium hexafluorido- formation with aqueous ammonia to rhodoceniumcarboxylic phosphate (4) in 77 % isolated yield as an air-stable white acid amide hexafluoridophosphate (12), respectively. A major powder. In a similar manner, trimethylsilylrhodocenium hexa- target compound of this work was aminorhodocenium hexa- fluoridophosphate (7) was obtained from 1 by treatment with fluoridophosphate (15), due to the high synthetic potential of lithium trimethylsilylcyclopentadenide via the silylated Rh(I)/ the amino functionality. In analogy to cobaltocenium chemis- Rh(III) complexes 5/6 in 66 % overall yield. Starting from lithium try,[1b,4] the azide derivative 13 was prepared from 10 with trimethylstannylcyclopentadienide, an analogous reaction se- sodium azide. Conversion of compound 13 to 15 in refluxing quence was performed aiming at trimethylstannylrhodocenium concentrated sulfuric acid by classic Curtius rearrangement hexafluoridophosphate,
Recommended publications
  • Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis
    molecules Article Sustainable Triazine-Based Dehydro-Condensation Agents for Amide Synthesis Roberto Sole 1 , Vanessa Gatto 2 , Silvia Conca 1 , Noemi Bardella 1, Andrea Morandini 1 and Valentina Beghetto 1,2,* 1 Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, Via Torino 155, 30172 Venezia, Italy; [email protected] (R.S.); [email protected] (S.C.); [email protected] (N.B.); [email protected] (A.M.) 2 Crossing srl, Viale della Repubblica 193/b, 31100 Treviso, Italy; [email protected] * Correspondence: [email protected]; Tel.: +39-041-2348928 Abstract: Conventional methods employed today for the synthesis of amides often lack of economic and environmental sustainability. Triazine-derived quaternary ammonium salts, e.g., 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM(Cl)), emerged as promising dehydro-condensation agents for amide synthesis, although suffering of limited stability and high costs. In the present work, a simple protocol for the synthesis of amides mediated by 2-chloro-4,6-dimethoxy-1,3,5-triazine (CDMT) and a tert-amine has been described and data are compared to DMTMM(Cl) and other CDMT-derived quaternary ammonium salts (DMT-Ams(X), X: − − Cl or ClO4 ). Different tert-amines (Ams) were tested for the synthesis of various DMT-Ams(Cl), but only DMTMM(Cl) could be isolated and employed for dehydro-condensation reactions, while all CDMT/tert-amine systems tested were efficient as dehydro-condensation agents. Interestingly, in best reaction conditions, CDMT and 1,4-dimethylpiperazine gave N-phenethyl benzamide in 93% yield in 15 min, with up to half the amount of tert-amine consumption.
    [Show full text]
  • Iron-Catalysed Transformation of Molecular Dinitrogen Into Silylamine Under Ambient Conditions
    ARTICLE Received 6 Sep 2012 | Accepted 6 Nov 2012 | Published 4 Dec 2012 DOI: 10.1038/ncomms2264 Iron-catalysed transformation of molecular dinitrogen into silylamine under ambient conditions Masahiro Yuki1, Hiromasa Tanaka2, Kouitsu Sasaki1, Yoshihiro Miyake1, Kazunari Yoshizawa2 & Yoshiaki Nishibayashi1 Although stoichiometric transformations using transition metal–N2 complexes have been well investigated towards the goal of nitrogen fixation under mild reaction conditions, only a few examples of the catalytic transformations of N2 using transition metal–N2 complexes as catalysts have been reported. In almost all the catalytic systems, the use of Mo is essential to realize the catalytic transformation of N2, where Mo–N2 complexes are considered to work as effective catalysts. Here we show the first successful example of the Fe-catalysed transfor- mation of N2 into N(SiMe3)3 under ambient conditions, in which iron complexes such as iron pentacarbonyl [Fe(CO)5] and ferrocenes have been found to work as effective catalysts. A plausible reaction pathway is proposed, where Fe(II)–N2 complex bearing two Me3Si groups as ancillary ligands has an important role as a key reactive intermediate, with the aid of density-functional-theory calculations. 1 Institute of Engineering Innovation, School of Engineering, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan. 2 Institute for Materials Chemistry and Engineering, International Research Center for Molecular Systems, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan. Correspondence and requests for materials should be addressed to K.Y. (email: [email protected]) or to Y.N. (email: [email protected]).
    [Show full text]
  • EI-ICHI NEGISHI Herbert C
    MAGICAL POWER OF TRANSITION METALS: PAST, PRESENT, AND FUTURE Nobel Lecture, December 8, 2010 by EI-ICHI NEGISHI Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, U.S.A. Not long ago, the primary goal of the synthesis of complex natural products and related compounds of biological and medicinal interest was to be able to synthesize them, preferably before anyone else. While this still remains a very important goal, a number of today’s top-notch synthetic chemists must feel and even think that, given ample resources and time, they are capable of synthesizing virtually all natural products and many analogues thereof. Accepting this notion, what would then be the major goals of organic synthesis in the twenty-first century? One thing appears to be unmistakably certain. Namely, we will always need, perhaps increasingly so with time, the uniquely creative field of synthetic organic and organometallic chemistry to prepare both new and existing organic compounds for the benefit and well-being of mankind. It then seems reasonably clear that, in addition to the question of what compounds to synthesize, that of how best to synthesize them will become increasingly important. As some may have said, the primary goal would then shift from aiming to be the first to synthesize a given compound to seeking its ultimately satisfactory or “last synthesis”. If one carefully goes over various aspects of organic synthetic methodology, one would soon note how primitive and limited it had been until rather recently, or perhaps even today. For the sake of argument, we may propose here that the ultimate goal of organic synthesis is “to be able to synthesize any desired and fundamentally synthesizable organic compounds (a) in high yields, (b) efficiently (in as few steps as possible, for example), (c) selectively, preferably all in t98–99% selectivity, (d) economically, and (e) safely, abbreviated hereafter as the y(es)2 manner.” with or without catalyst R1M + R2X R1R2 + MX R1, R2: carbon groups.
    [Show full text]
  • Catalytic Systems Based on Cp2zrx2 (X = Cl, H), Organoaluminum
    catalysts Article Catalytic Systems Based on Cp2ZrX2 (X = Cl, H), Organoaluminum Compounds and Perfluorophenylboranes: Role of Zr,Zr- and Zr,Al-Hydride Intermediates in Alkene Dimerization and Oligomerization Lyudmila V. Parfenova 1,* , Pavel V. Kovyazin 1, Almira Kh. Bikmeeva 1 and Eldar R. Palatov 2 1 Institute of Petrochemistry and Catalysis of Russian Academy of Sciences, Prospekt Oktyabrya, 141, 450075 Ufa, Russia; [email protected] (P.V.K.); [email protected] (A.K.B.) 2 Bashkir State University, st. Zaki Validi, 32, 450076 Ufa, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-347-284-3527 i i Abstract: The activity and chemoselectivity of the Cp2ZrCl2-XAlBu 2 (X = H, Bu ) and [Cp2ZrH2]2- ClAlEt2 catalytic systems activated by (Ph3C)[B(C6F5)4] or B(C6F5)3 were studied in reactions with 1-hexene. The activation of the systems by B(C6F5)3 resulted in the selective formation of head- to-tail alkene dimers in up to 93% yields. NMR studies of the reactions of Zr complexes with organoaluminum compounds (OACs) and boron activators showed the formation of Zr,Zr- and Zr,Al-hydride intermediates, for which diffusion coefficients, hydrodynamic radii, and volumes were estimated using the diffusion ordered spectroscopy DOSY. Bis-zirconium hydride clusters of type x[Cp ZrH ·Cp ZrHCl·ClAlR ]·yRnAl(C F ) − were found to be the key intermediates of alkene 2 2 2 2 6 5 3 n dimerization, whereas cationic Zr,Al-hydrides led to the formation of oligomers. Citation: Parfenova, L.V.; Kovyazin, P.V.; Bikmeeva, A.K.; Palatov, E.R.
    [Show full text]
  • Organometrallic Chemistry
    CHE 425: ORGANOMETALLIC CHEMISTRY SOURCE: OPEN ACCESS FROM INTERNET; Striver and Atkins Inorganic Chemistry Lecturer: Prof. O. G. Adeyemi ORGANOMETALLIC CHEMISTRY Definitions: Organometallic compounds are compounds that possess one or more metal-carbon bond. The bond must be “ionic or covalent, localized or delocalized between one or more carbon atoms of an organic group or molecule and a transition, lanthanide, actinide, or main group metal atom.” Organometallic chemistry is often described as a bridge between organic and inorganic chemistry. Organometallic compounds are very important in the chemical industry, as a number of them are used as industrial catalysts and as a route to synthesizing drugs that would not have been possible using purely organic synthetic routes. Coordinative unsaturation is a term used to describe a complex that has one or more open coordination sites where another ligand can be accommodated. Coordinative unsaturation is a very important concept in organotrasition metal chemistry. Hapticity of a ligand is the number of atoms that are directly bonded to the metal centre. Hapticity is denoted with a Greek letter η (eta) and the number of bonds a ligand has with a metal centre is indicated as a superscript, thus η1, η2, η3, ηn for hapticity 1, 2, 3, and n respectively. Bridging ligands are normally preceded by μ, with a subscript to indicate the number of metal centres it bridges, e.g. μ2–CO for a CO that bridges two metal centres. Ambidentate ligands are polydentate ligands that can coordinate to the metal centre through one or more atoms. – – – For example CN can coordinate via C or N; SCN via S or N; NO2 via N or N.
    [Show full text]
  • A Novel Series of Titanocene Dichloride Derivatives: Synthesis, Characterization and Assessment of Their
    A novel series of titanocene dichloride derivatives: synthesis, characterization and assessment of their cytotoxic properties by Gregory David Potter A thesis submitted to the Department of Chemistry in conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada May, 2008 Copyright © Gregory David Potter, 2008 Abstract Although cis-PtCl2(NH3)2 (cisplatin) has been widely used as a chemotherapeutic agent, its use can be accompanied by toxic side effects and the development of drug resistance. Consequently, much research has been focused on the discovery of novel transition metal compounds which elicit elevated cytotoxicities coupled with reduced toxic side effects and non-cross resistance. Recently, research in this lab has focused on preparing derivatives of titanocene dichloride (TDC), a highly active chemotherapeutic agent, with pendant alkylammonium groups on one or both rings. Earlier results have demonstrated that derivatives containing either cyclic or chiral alkylammonium groups had increased cytotoxic activities. This research therefore investigated a new series of TDC complexes focusing specifically on derivatives bearing cyclic and chiral alkylammonium groups. A library of ten cyclic derivatives and six chiral derivatives were synthesized and fully characterized. These derivatives have undergone in vitro testing as anti-tumour agents using human lung, ovarian, and cervical carcinoma cell lines (A549, H209, H69, H69/CP, A2780, A2780/CP and HeLa). These standard cell lines represent solid tumour types for which new drugs are urgently needed. The potencies of all of the Ti (IV) derivatives varied greatly (range from 10.8 μM - >1000 μM), although some trends were observed. In general, the dicationic analogues exhibited greater potency than the corresponding monocationic derivatives.
    [Show full text]
  • 18- Electron Rule. 18 Electron Rule Cont’D Recall That for MAIN GROUP Elements the Octet Rule Is Used to Predict the Formulae of Covalent Compounds
    18- Electron Rule. 18 Electron Rule cont’d Recall that for MAIN GROUP elements the octet rule is used to predict the formulae of covalent compounds. Example 1. This rule assumes that the central atom in a compound will make bonds such Oxidation state of Co? [Co(NH ) ]+3 that the total number of electrons around the central atom is 8. THIS IS THE 3 6 Electron configuration of Co? MAXIMUM CAPACITY OF THE s and p orbitals. Electrons from Ligands? Electrons from Co? This rule is only valid for Total electrons? Period 2 nonmetallic elements. Example 2. Oxidation state of Fe? The 18-electron Rule is based on a similar concept. Electron configuration of Fe? [Fe(CO) ] The central TM can accommodate electrons in the s, p, and d orbitals. 5 Electrons from Ligands? Electrons from Fe? s (2) , p (6) , and d (10) = maximum of 18 Total electrons? This means that a TM can add electrons from Lewis Bases (or ligands) in What can the EAN rule tell us about [Fe(CO)5]? addition to its valence electrons to a total of 18. It can’t occur…… 20-electron complex. This is also known Effective Atomic Number (EAN) Rule Note that it only applies to metals with low oxidation states. 1 2 Sandwich Compounds Obeying EAN EAN Summary 1. Works well only for d-block metals. It does not apply to f-block Let’s draw some structures and see some new ligands. metals. 2. Works best for compounds with TMs of low ox. state. Each of these ligands is π-bonded above and below the metal center.
    [Show full text]
  • Cyclopentadienyl Compounds of the First Row Transition Metals And
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2017 Cyclopentadienyl Compounds of the First Row Transition Metals and Early Actinides: Novel Main-Group Bond Forming Catalysis and New Metallacycles Justin Kane Pagano University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Chemistry Commons Recommended Citation Pagano, Justin Kane, "Cyclopentadienyl Compounds of the First Row Transition Metals and Early Actinides: Novel Main-Group Bond Forming Catalysis and New Metallacycles" (2017). Graduate College Dissertations and Theses. 700. https://scholarworks.uvm.edu/graddis/700 This Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. CYCLOPENTADIENYL COMPOUNDS OF THE FIRST ROW TRANSITION METALS AND EARLY ACTINIDES: NOVEL MAIN-GROUP BOND FORMING CATALYSIS AND NEW METALLACYCLES A Dissertation Presented by Justin Kane Pagano to The Faculty of the Graduate College of The University of Vermont In Partial Fulfilment of the Requirements For the Degree of Doctor of Philosophy Specializing in Chemistry May, 2017 Defense Date: November 29, 2016 Dissertation Examination Committee: Rory Waterman, Ph. D., Advisor John M. Hughes, Ph. D., Chairperson Matthias Brewer, Ph. D. Jaqueline L. Kiplinger, Ph. D. Matthew D. Liptak, Ph. D. Cynthia J. Forehand, Ph. D., Dean of the Graduate College ABSTRACT Cyclopentadienyl first row transition-metal compounds have been well studied 5 since the 1950’s, with the nearly ubiquitous CpFe(CO)2Me (FpMe) (Cp = η -C5H5) being one of the first organometallics to be fully characterized.
    [Show full text]
  • Supporting Information Degradation
    Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2021 Supporting Information Degradation Pathways of a highly active iron(III) tetra-NHC Epoxidation Catalyst Florian Dyckhoff, Jonas F. Schlagintweit, Marco A. Bernd, Christian H. G. Jakob, Tim P. Schlachta, Benjamin J. Hofmann, Robert M. Reich and Fritz E. Kühn* Molecular Catalysis, Catalysis Research Center and Department of Chemistry, Technische Universität München, Lichtenbergstrasse 4, D-85748 Garching bei München, Germany. [*] Corresponding author: Prof. Dr. Fritz E. Kühn, E-Mail: [email protected] Table of Contents 1. Effects of bases on 2, 2-tBuCN and 2-PhCN – Catalysis and UV/vis Spectroscopy 2 2. 1H-NMR Spectroscopic Studies 5 3. Synthesis and Characterization of compound 2-d8 7 4. ESI-MS Decomposition Studies 27 5. DFT Calculations 31 6. References 34 1 1. Effects of bases on 2, 2-tBuCN and 2-PhCN – Catalysis and UV/vis Spectroscopy All batch and time-dependent reactions were conducted in a cryostat (Julabo FP-50) with a total reaction volume of 2.0 mL. The catalyst (0.05 mol%, 0.067 µmol) was added from a preformed stock solution (4.0 mg/mL in the respective nitrile, i.e. acetonitrile, tert-butylnitrile or benzonitrile) according to the appropriate stoichiometry to a solution of cis-cyclooctene (100 mol%, 134.5 µmol), the respective additive (0.5 mol%, 0.67 µmol) and H2O2 (150 mol%, 202 µmol, 50% solution in H2O) in the appropriate solvent. The reaction was initiated upon addition of H2O2. The reaction was aborted by adding electrolytically precipitated activated MnO2 as a H2O2 decomposition agent.
    [Show full text]
  • Synthesis and Reactivity of Cyclopentadienyl Based Organometallic Compounds and Their Electrochemical and Biological Properties
    Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Sasmita Mishra Department of Chemistry National Institute of Technology Rourkela Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties Dissertation submitted to the National Institute of Technology Rourkela In partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry by Sasmita Mishra (Roll Number: 511CY604) Under the supervision of Prof. Saurav Chatterjee February, 2017 Department of Chemistry National Institute of Technology Rourkela Department of Chemistry National Institute of Technology Rourkela Certificate of Examination Roll Number: 511CY604 Name: Sasmita Mishra Title of Dissertation: ''Synthesis and reactivity of cyclopentadienyl based organometallic compounds and their electrochemical and biological properties We the below signed, after checking the dissertation mentioned above and the official record book(s) of the student, hereby state our approval of the dissertation submitted in partial fulfillment of the requirements of the degree of Doctor of Philosophy in Chemistry at National Institute of Technology Rourkela. We are satisfied with the volume, quality, correctness, and originality of the work. --------------------------- Prof. Saurav Chatterjee Principal Supervisor --------------------------- --------------------------- Prof. A. Sahoo. Prof. G. Hota Member (DSC) Member (DSC) ---------------------------
    [Show full text]
  • Accepted Version
    Citation for published version: Hamilton, JA, Pugh, T, Johnson, AL, Kingsley, AJ & Richards, SP 2016, 'Cobalt(I) olefin complexes: precursors for metal-organic chemical vapor deposition of high purity cobalt metal thin films', Inorganic Chemistry, vol. 55, no. 14, pp. 7141-7151. https://doi.org/10.1021/acs.inorgchem.6b01146, https://doi.org/10.1021/acs.inorgchem.6b01146 DOI: 10.1021/acs.inorgchem.6b01146 http://dx.doi.org/10.1021/acs.inorgchem.6b01146 Publication date: 2016 Document Version Peer reviewed version Link to publication This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see DOI: 10.1021/acs.inorgchem.6b01146. University of Bath Alternative formats If you require this document in an alternative format, please contact: [email protected] General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 06. Oct. 2021 Table of Content Abstract and Graphic We report the synthesis and characterization of a family of eleven cobalt (I) metal precursors based around cyclopentadienyl and diene ligands. Low pressure metal-organic chemical vapor deposition (AP-MOCVD) was employed using the precursor cyclopentadienyl-cobalt(I)(isoprene) 1, to synthesis thin films of metallic cobalt on silicon substrates under an atmosphere (760 Torr) of hydrogen (H2) .
    [Show full text]
  • US 2004/0237384 A1 Orr (43) Pub
    US 2004O237384A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2004/0237384 A1 Orr (43) Pub. Date: Dec. 2, 2004 (54) FUEL COMPOSITIONS EXHIBITING (52) U.S. Cl. ................. 44/314; 44/320; 44/358; 44/359; IMPROVED FUEL STABILITY 44/360; 44/444 (76) Inventor: William C. Orr, Denver, CO (US) Correspondence Address: (57)57 ABSTRACT HOGAN & HARTSON LLP ONE TABOR CENTER, SUITE 1500 A fuel composition of the present invention exhibits mini 1200 SEVENTEENTH ST mized hydrolysis and increased fuel Stability, even after DENVER, CO 80202 (US) extended storage at 65 F. for 6–9 months. The composition, which is preferably not strongly alkaline (3.0 to 10.5), is (21) Appl. No.: 10/722,063 more preferably weakly alkaline to mildly acidic (4.5 to 8.5) (22) Filed: Nov. 24, 2003 and most preferably slightly acidic (6.3 to 6.8), includes a e ars lower dialkyl carbonate, a combustion improving amount of Related U.S. Application Data at least one high heating combustible compound containing at least one element Selected from the group consisting of (63) Continuation-in-part of application No. 08/986,891, aluminum, boron, bromine, bismuth, beryllium, calcium, filed on Dec. 8, 1997, now Pat. No. 6,652,608. cesium, chromium, cobalt, copper, francium, gallium, ger manium, iodine, iron, indium, lithium, magnesium, manga Publication Classification nese, molybdenum, nickel, niobium, nitrogen, phosphorus, potassium, palladium, rubidium, Sodium, tin, Zinc, (51) Int. Cl." ........ C10L 1/12; C1OL 1/30; C1OL 1/28; praseodymium, rhenium, Silicon, Vanadium, or mixture, and C1OL 1/18 a hydrocarbon base fuel.
    [Show full text]