Chemical Redox Agents for Organometallic Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1 Introduction to Early Main Group Organometallic Chemistry and Catalysis
1 1 Introduction to Early Main Group Organometallic Chemistry and Catalysis Sjoerd Harder University Erlangen-Nürnberg, Inorganic and Organometallic Chemistry, Egerlandstrasse 1, 91058 Erlangen, Germany 1.1 Introduction Although organometallic complexes of the early main groups are well known for their very high reactivity and challenging isolation, they are among the first stud- ied during the pioneering beginnings of the field. Their high nucleophilicity and Brønsted basicity have made them to what they are today: strong polar reagents that are indispensible in modern organic synthesis. It is exactly this high reactivity that has made them potent catalysts for organic transformations that are gener- ally catalyzed by transition metal complexes. Despite their lack of partially filled d-orbitals and their inability to switch reversibly between oxidation states, the scope of their application in catalysis is astounding. As the early main group metal catalysis only started to become popular since the beginning of this century, it is still a young field with ample opportunities for further development. This intro- ductory chapter is specifically written for new graduate students in the field. It gives a very compact overview of the history of early main group organometallic chemistry, synthetic methods, bonding and structures, analytical methods, solu- tion dynamics, and some preliminary low-valent chemistry. This forms the basis for understanding their use in catalysis for which the basic steps are described in the second part of this chapter. For further in-depth information, the reader is referred to the individual chapters in this book. 1.2 s-Block Organometallics 1.2.1 Short History The organometallic chemistry of the highly electropositive early main group metals could not have started without the isolation of these elements in the metallic state. -
An Earlier Collection of These Notes in One PDF File
UNIVERSITY OF THE WEST INDIES MONA, JAMAICA Chemistry of the First Row Transition Metal Complexes C21J Inorganic Chemistry http://wwwchem.uwimona.edu.jm/courses/index.html Prof. R. J. Lancashire September 2005 Chemistry of the First Row Transition Metal Complexes. C21J Inorganic Chemistry 24 Lectures 2005/2006 1. Review of Crystal Field Theory. Crystal Field Stabilisation Energies: origin and effects on structures and thermodynamic properties. Introduction to Absorption Spectroscopy and Magnetism. The d1 case. Ligand Field Theory and evidence for the interaction of ligand orbitals with metal orbitals. 2. Spectroscopic properties of first row transition metal complexes. a) Electronic states of partly filled quantum levels. l, ml and s quantum numbers. Selection rules for electronic transitions. b) Splitting of the free ion energy levels in Octahedral and Tetrahedral complexes. Orgel and Tanabe-Sugano diagrams. c) Spectra of aquated metal ions. Factors affecting positions, intensities and shapes of absorption bands. 3. Magnetic Susceptibilities of first row transition metal complexes. a) Effect of orbital contributions arising from ground and excited states. b) Deviation from the spin-only approximation. c) Experimental determination of magnetic moments. Interpretation of data. 4. General properties (physical and chemical) of the 3d transition metals as a consequence of their electronic configuration. Periodic trends in stabilities of common oxidation states. Contrast between first-row elements and their heavier congeners. 5. A survey of the chemistry of some of the elements Ti....Cu, which will include the following topics: a) Occurrence, extraction, biological significance, reactions and uses b) Redox reactions, effects of pH on the simple aqua ions c) Simple oxides, halides and other simple binary compounds. -
Transport of Dangerous Goods
ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions. -
1 Introduction
1 Field-control, phase-transitions, and life’s emergence 2 3 4 Gargi Mitra-Delmotte 1* and A.N. Mitra 2* 5 6 7 139 Cite de l’Ocean, Montgaillard, St.Denis 97400, REUNION. 8 e.mail : [email protected] 9 10 2Emeritius Professor, Department of Physics, Delhi University, INDIA; 244 Tagore Park, 11 Delhi 110009, INDIA; 12 e.mail : [email protected] 13 14 15 16 17 18 19 *Correspondence: 20 Gargi Mitra-Delmotte 1 21 e.mail : [email protected] 22 23 A.N. Mitra 2 24 e.mail : [email protected] 25 26 27 28 29 30 31 32 33 34 35 Number of words: ~11748 (without Abstract, references, tables, and figure legends) 36 7 figures (plus two figures in supplementary information files). 37 38 39 40 41 42 43 44 45 46 47 Abstract 48 49 Critical-like characteristics in open living systems at each organizational level (from bio- 50 molecules to ecosystems) indicate that non-equilibrium phase-transitions into absorbing 51 states lead to self-organized states comprising autonomous components. Also Langton’s 52 hypothesis of the spontaneous emergence of computation in the vicinity of a critical 53 phase-transition, points to the importance of conservative redistribution rules, threshold, 54 meta-stability, and so on. But extrapolating these features to the origins of life, brings up 55 a paradox: how could simple organics-- lacking the ‘soft matter’ response properties of 56 today’s complex bio-molecules--have dissipated energy from primordial reactions 57 (eventually reducing CO 2) in a controlled manner for their ‘ordering’? Nevertheless, a 58 causal link of life’s macroscopic irreversible dynamics to the microscopic reversible laws 59 of statistical mechanics is indicated via the ‘functional-takeover’ of a soft magnetic 60 scaffold by organics (c.f. -
Iron-Catalysed Transformation of Molecular Dinitrogen Into Silylamine Under Ambient Conditions
ARTICLE Received 6 Sep 2012 | Accepted 6 Nov 2012 | Published 4 Dec 2012 DOI: 10.1038/ncomms2264 Iron-catalysed transformation of molecular dinitrogen into silylamine under ambient conditions Masahiro Yuki1, Hiromasa Tanaka2, Kouitsu Sasaki1, Yoshihiro Miyake1, Kazunari Yoshizawa2 & Yoshiaki Nishibayashi1 Although stoichiometric transformations using transition metal–N2 complexes have been well investigated towards the goal of nitrogen fixation under mild reaction conditions, only a few examples of the catalytic transformations of N2 using transition metal–N2 complexes as catalysts have been reported. In almost all the catalytic systems, the use of Mo is essential to realize the catalytic transformation of N2, where Mo–N2 complexes are considered to work as effective catalysts. Here we show the first successful example of the Fe-catalysed transfor- mation of N2 into N(SiMe3)3 under ambient conditions, in which iron complexes such as iron pentacarbonyl [Fe(CO)5] and ferrocenes have been found to work as effective catalysts. A plausible reaction pathway is proposed, where Fe(II)–N2 complex bearing two Me3Si groups as ancillary ligands has an important role as a key reactive intermediate, with the aid of density-functional-theory calculations. 1 Institute of Engineering Innovation, School of Engineering, University of Tokyo, Yayoi, Bunkyo-ku, Tokyo 113-8656, Japan. 2 Institute for Materials Chemistry and Engineering, International Research Center for Molecular Systems, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan. Correspondence and requests for materials should be addressed to K.Y. (email: [email protected]) or to Y.N. (email: [email protected]). -
United States Patent 0 " Ice Patented May 28, 1968
3,385,666 United States Patent 0 " ice Patented May 28, 1968 1 2 of novel compositions that can be used as a source of 3,385,666 both ozone and oxygen. DIOXYGENYL FLUORIDES OF GROUP V An additional object of this invention is the preparation ELEMENTS of the nitronium ion and intermediates for preparing Archie R. Young II, Montclair, Tetsuyuki Hirata, Whar novel nitronium salts. ton, and Scott I. Morrow, Morris Plains, N.J., assign Further objects of this invention will become apparent ors to Thiokol Chemical Corporation, Bristol, Pa., a corporation of Delaware to the reader upon a further reading of this patent appli No Drawing. Filed Jan. 6, 1964, Ser. No. 336,061 cation. 11 Claims. (Cl. 23-203) The above objects among many others are achieved by 10 the direct interaction of certain ?uoride reactants with This invention relates to a novel class of ?uorinated, dioxygen di?uoride at reaction temperatures well below oxygen containing, oxidizing agents and to a process for 0° C. As indicated earlier the ?uoride reactant is selected their preparation. from the group consisting of Group V ?uorides. More particularly, this invention concerns the prepara The preferred practice is to contact the ?uoride reactant tion of certain stable ?uorides of the cationic dioxygenyl 15 with an excess of 02112 at low temperatures ranging from radical. These novel-oxidizing agents have the formula: —l60 to \—78° C. until a substantial amount of prod uct is formed. The product is isolated after evacuating off the excess 021:2, ?uorine and gaseous by-products. wherein (O2) is the dioxygenyl radical having a charge In one ‘favored process embodiment of this invention of +1, M is an element selected from the group consist 20 a ?uoride reactant chosen ‘from the preferred phosphorus, ing of phosphorus, arsenic antimony and bismuth. -
Aromaticity Sem- Ii
AROMATICITY SEM- II In 1931, German chemist and physicist Sir Erich Hückel proposed a theory to help determine if a planar ring molecule would have aromatic properties .This is a very popular and useful rule to identify aromaticity in monocyclic conjugated compound. According to which a planar monocyclic conjugated system having ( 4n +2) delocalised (where, n = 0, 1, 2, .....) electrons are known as aromatic compound . For example: Benzene, Naphthalene, Furan, Pyrrole etc. Criteria for Aromaticity 1) The molecule is cyclic (a ring of atoms) 2) The molecule is planar (all atoms in the molecule lie in the same plane) 3) The molecule is fully conjugated (p orbitals at every atom in the ring) 4) The molecule has 4n+2 π electrons (n=0 or any positive integer Why 4n+2π Electrons? According to Hückel's Molecular Orbital Theory, a compound is particularly stable if all of its bonding molecular orbitals are filled with paired electrons. - This is true of aromatic compounds, meaning they are quite stable. - With aromatic compounds, 2 electrons fill the lowest energy molecular orbital, and 4 electrons fill each subsequent energy level (the number of subsequent energy levels is denoted by n), leaving all bonding orbitals filled and no anti-bonding orbitals occupied. This gives a total of 4n+2π electrons. - As for example: Benzene has 6π electrons. Its first 2π electrons fill the lowest energy orbital, and it has 4π electrons remaining. These 4 fill in the orbitals of the succeeding energy level. The criteria for Antiaromaticity are as follows: 1) The molecule must be cyclic and completely conjugated 2) The molecule must be planar. -
Elementary Iodine-Doped Activated Carbon As an Oxidizing Agent for the Treatment of Arsenic-Enriched Drinking Water
water Article Elementary Iodine-Doped Activated Carbon as an Oxidizing Agent for the Treatment of Arsenic-Enriched Drinking Water Fabio Spaziani 1,2,*, Yuli Natori 1, Yoshiaki Kinase 1, Tomohiko Kawakami 1 and Katsuyoshi Tatenuma 1 1 KAKEN Inc., Mito Institute 1044 Hori, Mito, Ibaraki 310-0903, Japan 2 ENEA Casaccia, Via Anguillarese 301, 00123 Roma, Italy * Correspondence: [email protected] Received: 18 July 2019; Accepted: 23 August 2019; Published: 27 August 2019 Abstract: An activated carbon impregnated with elementary iodine (I2), named IodAC, characterized by oxidation capability, was developed and applied to oxidize arsenite, As(III), to arsenate, As(V), in arsenic-rich waters. Batch and column experiments were conducted to test the oxidation ability of the material. Comparisons with the oxidizing agents usually used in arsenic treatment systems were also conducted. In addition, the material has been tested coupled with an iron-based arsenic sorbent, in order to verify its suitability for the dearsenication of drinking waters. IodAC exhibited a high and lasting oxidation potential, since the column tests executed on water spiked with 50 mg/L of arsenic (100% arsenite) showed that 1 cc of IodAC (30 wt% I2) can oxidize about 25 mg of As(III) (0.33 mmol) before showing a dwindling in the oxidation ability. Moreover, an improvement of the arsenic sorption capability of the tested sorbent was also proved. The results confirmed that IodAC is suitable for implementation in water dearsenication plants, in place of the commonly used oxidizing agents, such as sodium hypochlorite or potassium permanganate, and in association with arsenic sorbents. -
Comparative Study of Oxidants in Removal of Chemical Oxygen Demand from the Wastewater (IJIRST/ Volume 4 / Issue 1/ 011)
IJIRST –International Journal for Innovative Research in Science & Technology| Volume 4 | Issue 1 | June 2017 ISSN (online): 2349-6010 Comparative Study of Oxidants in Removal of Chemical Oxygen Demand from the Wastewater Prof Dr K N Sheth Kavita V Italia Director PG Student Geetanjali Institute of Technical Studies, Udaipur Department of Environmental Engineering Institute of Science & Technology for Advanced Studies & Research, Vallabh Vidyanagar Abstract Chemical Oxygen Demand (COD) test involves chemical oxidation using chromic acid as a strong oxidizer. COD of a wastewater sample is the amount of oxidant- potassium dichromate that reacts with the sample when it is heated for 2 hours under controlled environmental conditions and result is expressed as mg of oxidant consumed per liter of a given sample of wastewater. COD can be helpful in determining the quantity required for dilution needed for conducting Biochemical Oxygen Demand (BOD) five day test. In the present investigation attempts have been made to use other oxidants like hydrogen peroxide H2O2, sodium hypo-chlorite, calcium hypo-chlorite and potassium permanganate for measurement of COD by standard method and compare the results obtained using potassium dichromate as strong oxidant. Experiments were carried out for each oxidizing agent for COD removal at temperatures like 1000C, 750C and 500C. The duration of exposure time in each experimental set up was taken as temperature wise, for 1000C, it was 1-5 minutes , for 750C it was 20-40 minutes and for 500C it was 45-75 minutes. It was found that temperature plays very important role in in deciding the exposure time to be allocated for reduction of COD. -
Carbene and Nitrene Transfer Reactions Joseph B
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-19-2014 Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions Joseph B. Gill University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Organic Chemistry Commons Scholar Commons Citation Gill, Joseph B., "Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5484 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Co(II) Based Metalloradical Catalysis: Carbene and Nitrene Transfer Reactions by Joseph B. Gill A dissertation in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Chemistry College of Arts and Sciences University of South Florida Major Professor: X. Peter Zhang, Ph.D. Jon Antilla, Ph.D Jianfeng Cai, Ph.D. Edward Turos, Ph.D. Date of Approval: November 19, 2014 Keywords: cyclopropanation, diazoacetate, azide, porphyrin, cobalt. Copyright © 2014, Joseph B. Gill Dedication I dedicate this work to my parents: Larry and Karen, siblings: Jason and Jessica, and my partner: Darnell, for their constant support. Without all of you I would never have made it through this journey. Thank you. Acknowledgments I would like to thank my advisor, Professor X. Peter Zhang, for his support and guidance throughout my time working with him. -
Heavier Alkali Metal Complexes of 2-Phenylamidopyridine: an X- Ray Crystallographic and Theoretical Study of a Structurally Diverse Series of Crown Ether Adducts
Edinburgh Research Explorer Heavier alkali metal complexes of 2-phenylamidopyridine: An X- ray crystallographic and theoretical study of a structurally diverse series of crown ether adducts Citation for published version: Morrison, C, Liddle, ST & Clegg, W 2004, 'Heavier alkali metal complexes of 2-phenylamidopyridine: An X- ray crystallographic and theoretical study of a structurally diverse series of crown ether adducts', Dalton Transactions, no. 16, pp. 2514-2525. https://doi.org/10.1039/B406741J Digital Object Identifier (DOI): 10.1039/B406741J Link: Link to publication record in Edinburgh Research Explorer Document Version: Peer reviewed version Published In: Dalton Transactions Publisher Rights Statement: Copyright © 2004 by the Royal Society of Chemistry. All rights reserved. General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 04. Oct. 2021 Post-print of a peer-reviewed article published by the Royal Society of Chemistry. Published article available at: http://dx.doi.org/10.1039/B406741J Cite as: Morrison, C., Liddle, S. T., & Clegg, W. (2004). Heavier alkali metal complexes of 2- phenylamidopyridine: An X-ray crystallographic and theoretical study of a structurally diverse series of crown ether adducts. -
Organic Synthesis: New Vistas in the Brazilian Landscape
Anais da Academia Brasileira de Ciências (2018) 90(1 Suppl. 1): 895-941 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201820170564 www.scielo.br/aabc | www.fb.com/aabcjournal Organic Synthesis: New Vistas in the Brazilian Landscape RONALDO A. PILLI and FRANCISCO F. DE ASSIS Instituto de Química, UNICAMP, Rua José de Castro, s/n, 13083-970 Campinas, SP, Brazil Manuscript received on September 11, 2017; accepted for publication on December 29, 2017 ABSTRACT In this overview, we present our analysis of the future of organic synthesis in Brazil, a highly innovative and strategic area of research which underpins our social and economical progress. Several different topics (automation, catalysis, green chemistry, scalability, methodological studies and total syntheses) were considered to hold promise for the future advance of chemical sciences in Brazil. In order to put it in perspective, contributions from Brazilian laboratories were selected by the citations received and importance for the field and were benchmarked against some of the most important results disclosed by authors worldwide. The picture that emerged reveals a thriving area of research, with new generations of well-trained and productive chemists engaged particularly in the areas of green chemistry and catalysis. In order to fulfill the promise of delivering more efficient and sustainable processes, an integration of the academic and industrial research agendas is to be expected. On the other hand, academic research in automation of chemical processes, a well established topic of investigation in industrial settings, has just recently began in Brazil and more academic laboratories are lining up to contribute.