1 Introduction

Total Page:16

File Type:pdf, Size:1020Kb

1 Introduction 1 Field-control, phase-transitions, and life’s emergence 2 3 4 Gargi Mitra-Delmotte 1* and A.N. Mitra 2* 5 6 7 139 Cite de l’Ocean, Montgaillard, St.Denis 97400, REUNION. 8 e.mail : [email protected] 9 10 2Emeritius Professor, Department of Physics, Delhi University, INDIA; 244 Tagore Park, 11 Delhi 110009, INDIA; 12 e.mail : [email protected] 13 14 15 16 17 18 19 *Correspondence: 20 Gargi Mitra-Delmotte 1 21 e.mail : [email protected] 22 23 A.N. Mitra 2 24 e.mail : [email protected] 25 26 27 28 29 30 31 32 33 34 35 Number of words: ~11748 (without Abstract, references, tables, and figure legends) 36 7 figures (plus two figures in supplementary information files). 37 38 39 40 41 42 43 44 45 46 47 Abstract 48 49 Critical-like characteristics in open living systems at each organizational level (from bio- 50 molecules to ecosystems) indicate that non-equilibrium phase-transitions into absorbing 51 states lead to self-organized states comprising autonomous components. Also Langton’s 52 hypothesis of the spontaneous emergence of computation in the vicinity of a critical 53 phase-transition, points to the importance of conservative redistribution rules, threshold, 54 meta-stability, and so on. But extrapolating these features to the origins of life, brings up 55 a paradox: how could simple organics-- lacking the ‘soft matter’ response properties of 56 today’s complex bio-molecules--have dissipated energy from primordial reactions 57 (eventually reducing CO 2) in a controlled manner for their ‘ordering’? Nevertheless, a 58 causal link of life’s macroscopic irreversible dynamics to the microscopic reversible laws 59 of statistical mechanics is indicated via the ‘functional-takeover’ of a soft magnetic 60 scaffold by organics (c.f. Cairns-Smith’s “crystal-scaffold”). A field-controlled structure 61 offers a mechanism for bootstrapping-- bottom-up assembly with top-down control: its 62 super-paramagnetic colloidal components obey reversible dynamics, but its dissipation of 63 magnetic (H)-field energy for aggregation breaks time-reversal symmetry. Its responsive 64 adjustments to environmental changes would bring about mutual coupling between 65 random organic sets supported by it via a self-organized-criticality-like mechanism. 66 Further, these adjustments of a cooperative network could alter its capacity to assist a 67 spontaneous process, thus enabling the selection of the functional configuration. A non- 68 equilibrium dynamics could now drive the kinetically-oriented system (trimming the 69 phase-space of sterically-coupled organics) towards a series of phase-transitions with 70 appropriate replacements “taking-over” its functions. Where available, experiments are 71 cited in support of these speculations and for designing appropriate tests. 72 73 Key words: field-controlled colloids; proto-metabolic cycle; slow driving; long-range 74 correlation; organic “takeover”; phase-transition; feedback 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 1 Introduction 94 95 The implications of minerals in life’s emergence were first envisaged by Goldschmidt 96 (1952) and Bernal (1949); these included concentration (adsorption) and catalysis, 97 besides chirality of organics via association with crystal-surfaces. This motivated many 98 works (see Arrhenius 2003; Carter 1978; Ferris 1999; Hazen and Sverjensky 2010; 99 Jacoby 2002; Lahav 1999; Lambert 2008; Schoonen et al 2004; Seigel and Seigel 1981, 100 and references therein), and inspired scenarios exploring the resemblance of ancient 101 enzyme-clusters to mineral ones in metabolism-first approaches to life’s origins (Cody et 102 al 2000; McGlynn et al 2009; Russell and coworkers (Sect.6.3); Wachtershauser 1988). 103 Hazen (2006) reviews the role of mineral surfaces for assistance at two stages of 104 increasing complexity, viz. (1) the emergence of biomolecules, and (2) the emergence of 105 macromolecular systems. These in turn cover three aspects: (i) possible enhanced self- 106 assembly of lipids in the presence of minerals (Deamer and Pashley 1989; Luisi 1989; 107 Hanczyc et al 2003; Chen et al 2004); (ii) polymerization of amino acids and nucleic 108 acids, (Sowerby 1996; Uchihashi et al 1999; Lahav et al 1978; Ferris 1993; Liu and Orgel 109 1998; Orgel 1998) where Smith (1998) uses channels of zeolites as a packing constraint 110 to help polymerization; and (iii) the selective adsorption onto mineral surfaces, of organic 111 species (Churchill et al 2004; Carter 1978; Lowenstam and Weiner 1989). The latter 112 include chiral molecules (Lahav 1999; Jacoby 2002; Hazen and Sholl 2003), although 113 Hazen (2006) also mentions other mechanisms for chiral selection grouped under 114 determinate vs chance local processes. As a universal determinate influence, he notes the 115 parity violation in beta-decay; for more local ones, the chiral-selective photolysis by 116 circular-polarized synchrotron radiation from neutron stars (Bailey et al. 1998; Podlech 117 1999) or magnetochiral photochemistry (Rikken and Raupach 2000); and at smaller 118 scales the amplification of slight chiral excesses via Bose-Einstein condensation (Chela- 119 Flores 1994), or chiral self-assembly of polymers (Bolli et al. 1997; Lippmann and Dix 120 1999; Saghatelian et al. 2001) or simply crystals (Eckert et al. 1993; Lahav and 121 Leiserowitz 1999). According to Hazen (2006), Cairns-Smith’s (1968) theory is the most 122 extreme form of mineral-based hypotheses positing that clay crystals were the precursors 123 of today’s replicators. 124 125 As we see it, in this two-level scenario, the hosting inorganic layer or the crystal- 126 organization—call it level-I (depicted as a white pin board in Figure 1a), -- offers top- 127 down control and assistance for the bottom-up assembly of organic materials into 128 complex patterns building up from randomly reacting/interacting entities in the ‘guest ’ 129 layer—call it level-II (depicted with coloured beads, lower Figure 1a). In the latter, 130 chemical reactions lead to building blocks, small polymers, proto-metabolic reactions, 131 etc. while weak physical interactions (e.g. Hunding et al 2006) lead to small assemblies. 132 Now, level-I’s own crude functional organization acts as a selection/’trimming’ 133 mechanism for ‘fishing out’ constructs with superior information-propagation capacity 134 from the multitude of species forming at level-II. This leads to a gradual replacement of 135 the inorganic organization by organic modules (coloured pattern, upper Figure 1a), where 136 the latter’s recruitment by a functional system --aided by complementary interactions-- is 137 crucial for their dynamic stability (see Sect.3); conceptually too, this relates structure of 138 the organic module to its function . Also, level-II products favouring propagation of 139 template-information (level-I) enable feedback between the levels. But, compared to hard 140 crystals, a soft fractal organization seems a more natural origin for bio-complexity 141 (Sect.2). To that end, a colloidal-gel scaffold (Sect.6) seems promising as a dynamically 142 stable confining medium compatible with the key role of diffusion-controlled reactions in 143 cellular biochemistry (Kopelman 1989; Konkoli 2009). A gradual ‘takeover’ by organic 144 modules is also easier to visualize via a dynamic inorganic modular organization, e.g. soft 145 colloids (Russell et al 1990), provided one can associate them with a crystal-like 146 organization, towards a formal theory. 147 148 Now, in contrast to mineral-based bottom-up approaches adhering to the “metabolism- 149 first” camp, the crystal-scaffold theory proposes a pre-existing template-organization, and 150 thus upholds the “genes-first” one. The former tells how local mineral-organic 151 interactions can assist guest-level-II reactions, while the latter considers the global 152 aspects, i.e., bio-like functions linked to a cooperative organization of mineral-hosts. 153 Indeed, these are complementary, and roughly correspond to the 2-tier organization of 154 living systems: the control-network-level-I of complex biomolecules (proteins, nucleic 155 acids, lipids, carbohydrates, etc) maps to the hosting functional mineral-organization, and 156 the metabolic network-level-II to the (guest) organic reactions/interactions. In the federal- 157 like anatomy of a living system, each tier/sub-system functions independently—yet 158 constrained by feedback-coupling. Now, the second correspondence-- between guest 159 reactions/interactions and metabolic-network-level-II-- is easier to visualize, but the first 160 one is not so obvious (see Sect.3). And while macroscopic energy flow in the metabolic 161 reaction cycles can be mapped to that in similar organic attractors in abiogenesis, we still 162 need a mapping -- albeit in terms of inorganic matter-- for the control-network (level-I) 163 capable of microscopic energy transactions . This can be seen at the level of the 164 components that can undergo infinitesimal conformational changes to traverse a 165 continuous energy landscape, or even at the global system level, where diverse closely 166 spaced states in genotype-space are accessible via environmental fluctuations. Sure 167 enough, open living systems can harness fluctuations --at component (for work-cycles) 168 and (evolving) system levels—in sharp contrast to technological devices, sealing off 169 external noise. 170 171 Indeed, a self-organized criticality (SOC; Sect.2) mechanism for the slow evolution of 172 environment-susceptible bio-systems (levels I and II) helps understand the emergence of 173 complexity in them, despite the absence of a predictable framework. But in the origins of 174 life, the role of SOC is limited if only guest-level-II processes are to be considered, for 175 proto-metabolic reactions or weak interactions between organics dispersed in random 176 mixtures alone cannot suffice for SOC to be effective. [As for relative orders 177 of magnitude, bond energies involved in covalent bonds vs those for Van der Waals 178 clusters bear the ratio: several eV vs a fraction of an eV (Kreuzer 2005), compared to 179 thermal energy (k BT) of ~ hundredth of an eV].
Recommended publications
  • 1 Introduction to Early Main Group Organometallic Chemistry and Catalysis
    1 1 Introduction to Early Main Group Organometallic Chemistry and Catalysis Sjoerd Harder University Erlangen-Nürnberg, Inorganic and Organometallic Chemistry, Egerlandstrasse 1, 91058 Erlangen, Germany 1.1 Introduction Although organometallic complexes of the early main groups are well known for their very high reactivity and challenging isolation, they are among the first stud- ied during the pioneering beginnings of the field. Their high nucleophilicity and Brønsted basicity have made them to what they are today: strong polar reagents that are indispensible in modern organic synthesis. It is exactly this high reactivity that has made them potent catalysts for organic transformations that are gener- ally catalyzed by transition metal complexes. Despite their lack of partially filled d-orbitals and their inability to switch reversibly between oxidation states, the scope of their application in catalysis is astounding. As the early main group metal catalysis only started to become popular since the beginning of this century, it is still a young field with ample opportunities for further development. This intro- ductory chapter is specifically written for new graduate students in the field. It gives a very compact overview of the history of early main group organometallic chemistry, synthetic methods, bonding and structures, analytical methods, solu- tion dynamics, and some preliminary low-valent chemistry. This forms the basis for understanding their use in catalysis for which the basic steps are described in the second part of this chapter. For further in-depth information, the reader is referred to the individual chapters in this book. 1.2 s-Block Organometallics 1.2.1 Short History The organometallic chemistry of the highly electropositive early main group metals could not have started without the isolation of these elements in the metallic state.
    [Show full text]
  • Lesson 4 Temperature Change TEACHER GUIDE
    Lesson 4 Temperature change TEACHER GUIDE Lesson summary Students meet scientist Jason Williams, an industrial chemist who designs the materials and processes for making solar cells. He explains that during the summers, Antarctic days are very long, sometimes lasting a couple of weeks or more. That makes solar energy an abundant natural resource near the South Pole. Solar cells convert energy from the sun into electrical energy. Converting energy from one form to another is an important process. In the activity, students will conduct two chemical reactions that convert chemical energy into thermal energy. Key concepts + A change in temperature is a clue that a chemical reaction may have occurred. + When the temperature increases during a chemical reaction, it is called an exothermic reaction. + When the temperature decreases during a chemical reaction, it is called an endothermic reaction. + It takes energy to break chemical bonds in the reactants. + Energy is released when chemical bonds form in the products. Safety Be sure you and the students wear properly fitting goggles. Read and follow all safety warnings on the labels of the sodium bicarbonate, citric acid, calcium chloride, and universal indicator containers. Also follow the warnings on the packaging of the foot warmer. Have students wash their hands after the activity. Proper disposal At the end of the lesson, have students pour their used solutions in a waste container. The resulting solution from the final demo should be placed in this container, too. Then dispose of all of this liquid waste down the drain or according to local regulations. The left-over sodium bicarbonate, citric acid, and calcium chloride powders can be disposed of with the classroom trash.
    [Show full text]
  • Page 1 of 13 Pleasersc Do Not Advances Adjust Margins
    RSC Advances This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/advances Page 1 of 13 PleaseRSC do not Advances adjust margins RSC Advances REVIEW Applications of supramolecular capsules derived from resorcin[4]arenes, calix[n]arenes and metallo-ligands: from Received 00th January 20xx, Accepted 00th January 20xx biology to catalysis a a,b a DOI: 10.1039/x0xx00000x Chiara M. A. Gangemi, Andrea Pappalardo* and Giuseppe Trusso Sfrazzetto* www.rsc.org/ Supramolecular architectures developed after the initial studies of Cram, Lehn and Pedersen have become structurally complexes but fascinating. In this context, supramolecular capsules based on resorcin[4]arenes, calix[n]arenes or metal- ligand structures are dynamic assemblies inspired to biological systems.
    [Show full text]
  • Organometallic Catalysts in Synthetic Organic Chemistry: from Reactions in Aqueous Media to Gold Catalysis*
    Pure Appl. Chem., Vol. 80, No. 5, pp. 831–844, 2008. doi:10.1351/pac200880050831 © 2008 IUPAC Organometallic catalysts in synthetic organic chemistry: From reactions in aqueous media to gold catalysis* Jean-Pierre Genêt‡, Sylvain Darses, and Véronique Michelet Selective Organic Synthesis and Natural Products Laboratory, Ecole Nationale Supérieure de Chimie de Paris, UMR CNRS 7573, 11 rue P. et M. Curie, 75231 Paris Cedex 05, France Abstract: Water has attracted significant attention as an alternative solvent for transition- metal-catalyzed reactions. The use of water as solvent allows simplified procedures for sep- aration of the catalyst from the products and recycling of the catalyst. Water is an inexpen- sive reagent for the formation of oxygen-containing products such as alcohols. The use of water as a medium for promoting organometallic and organic reactions is also of great po- tential. This chapter will focus on old and recent developments in the design and applications of some catalytic reactions using aqueous-phase Pd, Rh, Pt, and Au complexes. Keywords: water; catalysis; palladium; gold; rhodium; potassium organotrifluoroborates; asymmetric 1,4-addition; recycling. INTRODUCTION Over the past few years, significant research has been directed toward the development of new tech- nologies for environmentally benign processes. The use of water as solvent in homogeneous metal-cat- alyzed reactions has gained increasing attention because of the potential environmental and economic benefits of replacing organic solvents with water. Indeed, water is an attractive solvent because it is in- expensive and nontoxic; the most attractive feature is its utility in the development of green and envi- ronmentally safe processes [1].
    [Show full text]
  • Comparison of the Results from Six Calorimeters in the Determination of the Thermokinetics of a Model Reaction Wassila Benaissa, Douglas Carson
    Comparison of the results from six calorimeters in the determination of the thermokinetics of a model reaction Wassila Benaissa, Douglas Carson To cite this version: Wassila Benaissa, Douglas Carson. Comparison of the results from six calorimeters in the determina- tion of the thermokinetics of a model reaction. AIChE Spring Meeting 2011 & 7. Global Congress on Process Safety (GCPS), Mar 2011, Chicago, United States. pp.NC. ineris-00976225 HAL Id: ineris-00976225 https://hal-ineris.archives-ouvertes.fr/ineris-00976225 Submitted on 9 Apr 2014 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Comparison of the Results from Six Calorimeters in the Determination of the Thermokinetics of a Model Reaction Wassila BENAISSA INERIS Parc Technologique Alata BP 2, F-60550 Verneuil-en-Halatte [email protected] Douglas CARSON INERIS Keywords: calorimeter, thermal runway, kinetics Abstract This paper deals with the comparison of experimental results from several types of commercially available calorimeters: a screening calorimeter (DSC), a Calvet calorimeter (C80), a reaction calorimeter (RC1), and various pseudo-adiabatic calorimeters (VSP 2, ARSST, and Phi-Tec 1). One exothermic reaction was selected as a case study: the esterification of acetic anhydride by methanol, a system which has been well studied in the literature.
    [Show full text]
  • Comprehensive Organometallic Chemistry II a Review of the Literature 1982-1994
    Comprehensive Organometallic Chemistry II A Review of the Literature 1982-1994 Editors-in-Chief Edward W. Abel University ofExeter, UK F. Gordon A. Stone Baylor University, Waco, TX, USA Geoffrey Wilkinson Imperial College of Science, Technology and Medicine, London, UK Volume 1 LITHIUM, BERYLLIUM, AND BORON GROUPS Volume Editor Catherine E. Housecroft Institut für Anorganische Chemie der Universität Basel, Switzerland PERGAMON Contents of All Volumes Volume 1 Lithium, Beryllium, and Boron Groups 1 Alkali Metals 2 Beryllium 3 Magnesium, Calcium, Strontium and Barium 4 Compounds with Three- or Four-coordinate Boron, Emphasizing Cyclic Systems 5 Boron Rings Ligated to Metals 6 Polyhedral Carbaboranes 7 Main-group Heteroboranes 8 Metallaboranes 9 Transition Metal Metallacarbaboranes 10 Aluminum 11 Gallium, Indium and Thallium, Excluding Transition Metal Derivatives 12 Transition Metal Complexes of Aluminum, Gallium, Indium and Thallium Author Index Subject Index Volume 2 Silicon Group, Arsenic, Antimony, and Bismuth 1 Organosilanes 2 Carbacyclic Silanes 3 Organopolysilanes 4 Silicones 5 Germanium 6 Tin 7 Lead 8 Arsenic, Antimony and Bismuth Author Index Subject Index Volume 3 Copper and Zinc Groups 1 Gold 2 Copper and Silver 3 Mercury 4 Cadmium and Zinc Author Index Subject Index Volume 4 Scandium, Yttrium, Lanthanides and Actinides, and Titanium Group 1 Zero Oxidation State Complexes of Scandium, Yttrium and the Lanthanide Elements 2 Scandium, Yttrium, and the Lanthanide and Actinide Elements, Excluding their Zero Oxidation State Complexes
    [Show full text]
  • The Use of Accelerating Rate Calorimetry (ARC) for the Study of the Thermal Reactions of Li-Ion Battery Electrolyte Solutions J.S
    Journal of Power Sources 119–121 (2003) 794–798 The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions J.S. Gnanaraja, E. Zinigrada, L. Asrafa, H.E. Gottlieba, M. Sprechera, D. Aurbacha,*, M. Schmidtb aDepartment of Chemistry, Bar-Ilan University, Ramat-Gan 52900, Israel bMerck KGaA, D-64293 Darmstadt, Germany Abstract The thermal stability of 1M LiPF6, LiClO4, LiN(SO2CF2CF3)2 (LiBETI) and LiPF3(CF2CF3)3 (LiFAP) solutions in mixtures of ethylene carbonate, diethyl carbonate and dimethyl carbonate in the temperature range 40–350 8C was studied by ARC and DSC. NMR was used to analyze the reaction products at different reaction stages. The least thermally stable are LiClO4 solutions. LiPF3(CF2CF3)3 solutions showed higher thermal stability than LiPF6 solutions. The highest thermal stability was found for LiN(SO2CF2CF3)2 solutions. Studies by DSC and pressure measurements during ARC experiments with LiPF6 and LiFAP solutions detected an endothermic reaction, which occurs before a number of exothermic reactions as the temperature increases. Fluoride ions are formed and react with the alkyl carbonate molecules both as bases and as nucleophiles. # 2003 Elsevier Science B.V. All rights reserved. Keywords: Accelerating rate calorimetry (ARC); Differential scanning calorimetry (DSC); Thermal stability; Alkyl carbonate solutions 1. Introduction 2. Experimental Accelerating rate calorimetry (ARC) is an important One molar LiPF6, LiClO4, LiN(SO2CF2CF3)2 and method for studying the thermal behavior of materials LiPF3(CF2CF3)3 solutions in mixture of ethylene carbonate [1,2]. LiPF6 solutions in alkyl carbonates are widely used (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC) in commercial Li-ion batteries in spite of their relatively low (2:1:2 v/v/v) were obtained from Merck KGaA (highly pure, thermal stability.
    [Show full text]
  • Chemical Reactions Involve Energy Changes
    Page 1 of 6 KEY CONCEPT Chemical reactions involve energy changes. BEFORE, you learned NOW, you will learn • Bonds are broken and made • About the energy in chemical during chemical reactions bonds between atoms • Mass is conserved in all • Why some chemical reactions chemical reactions release energy • Chemical reactions are • Why some chemical reactions represented by balanced absorb energy chemical equations VOCABULARY EXPLORE Energy Changes bond energy p. 86 How can you identify a transfer of energy? exothermic reaction p. 87 endothermic reaction p. 87 PROCEDURE MATERIALS photosynthesis p. 90 • graduated cylinder 1 Pour 50 ml of hot tap water into the cup • hot tap water and place the thermometer in the cup. • plastic cup 2 Wait 30 seconds, then record the • thermometer temperature of the water. • stopwatch • plastic spoon 3 Measure 5 tsp of Epsom salts. Add the Epsom salts to the beaker and immedi- • Epsom salts ately record the temperature while stirring the contents of the cup. 4 Continue to record the temperature every 30 seconds for 2 minutes. WHAT DO YOU THINK? • What happened to the temperature after you added the Epsom salts? • What do you think caused this change to occur? Chemical reactions release or absorb energy. COMBINATION NOTES Chemical reactions involve breaking bonds in reactants and forming Use combination notes new bonds in products. Breaking bonds requires energy, and forming to organize information on how chemical reactions bonds releases energy. The energy associated with bonds is called bond absorb or release energy. energy. What happens to this energy during a chemical reaction? Chemists have determined the bond energy for bonds between atoms.
    [Show full text]
  • 5.3 Controlling Chemical Reactions Vocabulary: Activation Energy
    5.3 Controlling Chemical Reactions Vocabulary: Activation energy – Concentration – Catalyst – Enzyme – Inhibitor - How do reactions get started? Chemical reactions won’t begin until the reactants have enough energy. The energy is used to break the chemical bonds of the reactants. Then the atoms form the new bonds of the products. Activation Energy is the minimum amount of energy needed to start a chemical reaction. All chemical reactions need a certain amount of activation energy to get started. Usually, once a few molecules react, the rest will quickly follow. The first few reactions provide the activation energy for more molecules to react. Hydrogen and oxygen can react to form water. However, if you just mix the two gases together, nothing happens. For the reaction to start, activation energy must be added. An electric spark or adding heat can provide that energy. A few of the hydrogen and oxygen molecules will react, producing energy for even more molecules to react. Graphing Changes in Energy Every chemical reaction needs activation energy to start. Whether or not a reaction still needs more energy from the environment to keep going depends on whether it is exothermic or endothermic. The peaks on the graphs show the activation energy. Notice that at the end of the exothermic reaction, the products have less energy than the reactants. This type of reaction results in a release of energy. The burning of fuels, such as wood, natural gas, or oil, is an example of an exothermic reaction. Endothermic reactions also need activation energy to get started. In addition, they need energy to continue.
    [Show full text]
  • Organometallic Chemistry BASIC PRINCIPLES, APPLICATIONS, and a FEW CASE STUDIES
    Safety Moment TYLER LAB GROUP MEETING 1 Safety Moment TYLER LAB GROUP MEETING 2 Metal Hydrides: Benchtop vs. Box Hydride = :H- Hydrides are powerful Lewis bases and reducing agent ◦ Exothermically form H2 (this should scare you) ◦ Heating leads to faster reactivity ◦ H evolution leads to rapid increase in pressure2 ◦ Uncontrolled reactions easily cause runaway exotherm, class D fire, explosion, and death/unemployment LiAlH is the #1 chemical cause of fatality in chemical4 industry 3 Metal Hydrides: “I want to commit the murder I was imprisoned for†.” LiAlH4 ◦ Insanely irritating (serious safety hazard) ◦ Extremely moisture sensitive (don’t leave out for >2 minutes) ◦ Ethereal mixtures are pyrophoric! DiBuAl-H ◦ Pyrophoric – it will explode upon exposure to oxygen NaEt3BH ◦ Pyrophoric in solution LiH and NaH ◦ Can be handled on the benchtop (not >2 minutes) ◦ Parrafin oil dispersions much safer KH ◦ Pyrophoric if not in a dispersion ◦ Handle with extreme care! † Sirius Black, Harry Potter and the Prisoner of Azkaban 4 Metal Hydrides: “I want to commit the murder I was imprisoned for†.” CaH2 ◦ Very safe to handle on the benchtop Pt-H, Pd-H, Ni-H ◦ All very pyrophoric NaBH4 ◦ Very safe in general Other hydrides ◦ Treat as pyrophoric ◦ Transition metal hydrides vary in hydridic strength ◦ General rule of thumb: if it does hydrogenations, it is probably pyrophoric ◦ If they’re in organics of any kind, they are probably pyrophoric † Sirius Black, Harry Potter and the Prisoner of Azkaban 5 Organometallic Chemistry BASIC PRINCIPLES, APPLICATIONS,
    [Show full text]
  • 13 Energetics
    13 Energetics All chemical substances contain energy stored in their bonds. When a chemical reaction occurs, there is usually a change in energy between the reactants and products. This is normally in the form of heat energy, but may also be in the form of light, nuclear or electrical energy. Exothermic and endothermic reactions Based on energy changes occurring, reactions can be of two types: • An exothermic reaction produces heat which causes the reaction mixture and its surroundings to get hotter (it releases energy to the surroundings). Exothermic reactions include neutralisation reactions, burning fossil fuels and respiration in cells. • An endothermic reaction absorbs heat which causes the reaction mixture and its surroundings to get colder (it absorbs energy from the surroundings). Endothermic reactions include dissolving certain salts in water, thermal decomposition reactions and photosynthesis in plants. Breaking and forming bonds during reactions During any chemical reaction, existing bonds in the reactants are broken and new bonds are formed in the products: • Energy is absorbed when the existing bonds in the reactants are broken. • Energy is released when new bonds are formed in the products: reactants products existing bonds are broken new bonds are formed energy is absorbed energy is released • In an exothermic reaction: energy absorbed to break bonds < energy released when forming bonds The extra energy is released to the surroundings causing the temperature of the surroundings to increase. • In an endothermic reaction: energy absorbed to break bonds > energy released when forming bonds The extra energy is absorbed from the surroundings causing the temperature of the surroundings to decrease.
    [Show full text]
  • Lab.9. Calorimetry
    Lab.6. Thermodynamics, Calorimetry Key words: Heat, energy, exothermic & endothermic reaction, calorimeter, calorimetry, enthalpy of reaction, specific heat, chemical & physical change, enthalpy of neutralization, law of conservation of energy, final temperature, initial temperature, lattice energy, hydratation energy, enthalpy of solution Literature: J. A. Beran; Laboratory Manual for Principles of General Chemistry, pp. 245-256. J.E. Brady, F. Senese: Chemistry – Matter and its Changes, 4th ed. Wiley 2003, Chapters 7, 20, . M. Hein and S. Arena: Introduction to Chemistry, 13th ed. Wiley 2011; pp. 157 - 161 J. Crowe. T. Bradshaw, P. Monk, Chemistry for the Biosciences. The essential concepts., Oxford University Press, 2006; pp. 416 - 450. J. Brady, N. Jespersen, A. Hysop, Chemistry, International Student Version, 7thed. Wiley, 2015, Chapter 18, 855 – 890. Theoretical background Accompanying all chemical and physical changes is a transfer of heat (energy); heat may be either evolved (exothermic) or absorbed (endothermic). A calorimeter (Fig. 1) is the laboratory apparatus that is used to measure the quantity and direction of heat flow accompanying a chemical or physical change. The calorimeter is well-insulated so that, ideally, no heat enters or leaves the calorimeter from the surroundings. For this reason, any heat liberated by the reaction or process being studied must be picked up by the calorimeter and other substances in the calorimeter. The heat change in chemical reactions is quantitatively expressed as the enthalpy (or heat) of reaction, H, at constant pressure. H values are negative for exothermic reactions and positive for endothermic reactions. Lab.6. Thermodynamics, Calorimetry Fig. 1. A set nested coffee cups is a good constant pressure calorimeter.
    [Show full text]