Matthew Velkey, 2009 License
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of Murine Macrophages from Bone Marrow
Wang et al. BMC Immunology 2013, 14:6 http://www.biomedcentral.com/1471-2172/14/6 RESEARCH ARTICLE Open Access Characterization of murine macrophages from bone marrow, spleen and peritoneum Changqi Wang1*†, Xiao Yu1,2†, Qi Cao1, Ya Wang1, Guoping Zheng1, Thian Kui Tan1, Hong Zhao1,3, Ye Zhao1, Yiping Wang1 and David CH Harris1 Abstract Background: Macrophages have heterogeneous phenotypes and complex functions within both innate and adaptive immune responses. To date, most experimental studies have been performed on macrophages derived from bone marrow, spleen and peritoneum. However, differences among macrophages from these particular sources remain unclear. In this study, the features of murine macrophages from bone marrow, spleen and peritoneum were compared. Results: We found that peritoneal macrophages (PMs) appear to be more mature than bone marrow derived macrophages (BMs) and splenic macrophages (SPMs) based on their morphology and surface molecular characteristics. BMs showed the strongest capacity for both proliferation and phagocytosis among the three populations of macrophage. Under resting conditions, SPMs maintained high levels of pro-inflammatory cytokines expression (IL-6, IL-12 and TNF-α), whereas BMs produced high levels of suppressive cytokines (IL-10 and TGF-β). However, SPMs activated with LPS not only maintained higher levels of (IL-6, IL-12 and TNF-α) than BMs or PMs, but also maintained higher levels of IL-10 and TGF-β. Conclusions: Our results show that BMs, SPMs and PMs are distinct populations with different biological functions, providing clues to guide their further experimental or therapeutic use. Keywords: Macrophage, Bone marrow, Spleen, Peritoneum Background macrophage populations could be attributed to their het- Macrophages play an essential role in both innate and erogeneity [4]. -
USC 591.4: 591.441: 597/599 MORPHOLOGICAL FEATURES of the SPLENIC RED PULP Ph.D. in Biological Sciences, Associate Professor, Du
INNOVATIVE SOLUTIONS IN MODERN SCIENCE № 4 (4), 2016 USC 591.4: 591.441: 597/599 MORPHOLOGICAL FEATURES OF THE SPLENIC RED PULP Ph.D. in Biological Sciences, associate professor, Dunaievska O. F. Zhytomyr National Agroecological University, Ukraine, Zhytomyr The spleen is an important peripheral organ of the sanguification and immune defense. In vertebrates and humans, it is formed by the support- contractile apparatus, as well as by the white and red pulps. The red pulp consists of the soft splenic cords, reticular stromal systems, and sinuses, including vascular structures. The relative area of red pulp is an important test criterion of the organ. It takes from 48,95% to 84,3% in the vertebrates, and from 71,4% to 83,6% in humans. It depends on the class, type, race, sex, breed, the age of animals, or the person's age and physiological state. The indicator of red pulp’s relative area is used as a biomarker in the environment bioindication. Any change of its values indicates the changes of the environmental conditions. Determination of the morphological standards in the organs and tissues according to the animals’ age, species, and breed aspects is used in the prevention of diseases, effective treatment, and getting the high-quality food. The test criteria of the spleen are important while studying the effect of pharmacological drugs, conditions of animal sustentation and feeding. Determination of splenic morphometric parameters is of the great practical importance, particularly in surgery, laboratory diagnostics, and development of the medical measures. Keywords: spleen, morphology, fish, frogs, birds, mammals, human. Spleen belongs to the peripheral organ of the sanguification and immune protection; it is presented in all vertebrates. -
1 | Page: Immune Cells and Tissues Swailes Cells and Tissues of The
Cells and Tissues of the Immune System N. Swailes, Ph.D. Department of Anatomy and Cell Biology Rm: B046A ML Tel: 5-7726 E-mail: [email protected] Required reading Mescher AL, Junqueira’s Basic Histology Text and Atlas, 12th Edition, Chapter 20: pp226-2480 Ross MH and Pawlina W, Histology: A text and Atlas, 6th Edition, Chapter 21: pp396-429 Learning objectives 1) Identify the major cells of the immune system and briefly outline their function 2) Describe the general structure of lymphoid tissue 3) Differentiate between primary and secondary immune organs 4) Identify the thymus and discuss the role of its cells in ‘educating’ immature T-cells 5) Identify a lymph node and outline how an immune response is triggered here 6) Identify the spleen and describe the role of red and white pulp in filtering the blood and reacting to blood borne antigens 7) Differentiate between MALT in the oral cavity (tonsils) 8) Know where to find and how to identify examples of BALT and GALT Major Take Home Points A. Lymphoid tissues are composed of different types of lymphocytes and supporting cells within a scaffold of Type III collagen/reticular fibers B. The major primary lymphoid organs are encapsulated organs where immature lymphocytes are born (bone marrow) and become immunocompetent (thymus) C. The major secondary lymphoid organs are encapsulated organs where immunocompetent lymphocytes differentiate into effector cells after exposure to antigen in the blood (spleen) or lymph (nodes) D. Mucosa Associated Lymphoid Tissues (MALT) are un-encapsulated areas of lymphoid tissue within the mucosa of organs that can be identified by their lining epithelium (tonsils, GALT: ileum and appendix, BALT) 1 | Page: Immune Cells and Tissues Swailes A1: Organization of the immune system 5a A. -
B-Chapter 2.P65
1 2 3 4 CHAPTER 2 / MICROANATOMY OF MAMMALIAN SPLEEN 11 5 6 7 8 9 10 11 2 The Microanatomy 12 13 of the Mammalian Spleen 14 15 Mechanisms of Splenic Clearance 16 17 18 19 FERN TABLIN, VMD, PhD, JACK K. CHAMBERLAIN, MD, FACP, 20 AND LEON WEISS, MD 21 22 23 2.1. INTRODUCTION 2.2.1. CAPSULE AND TRABECULAE The human spleen 24 weighs approx 150 g, in adults, and is enclosed by a capsule com- The spleen is a uniquely adapted lymphoid organ that is dedi- 25 posed of dense connective tissue, with little smooth muscle (Faller, cated to the clearance of blood cells, microorganisms, and other 26 1985; Weiss, 1983, 1985). This arrangement reflects the minimal particles from the blood. This chapter deals with the microanatomy 27 contractile role of the capsule and trabeculae in altering the blood of the spleen, its highly specialized extracellular matrix compo- volume of the human spleen, under normal circumstances. The 28 nents, distinctive vascular endothelial cell receptors, and the extra- capsule measures 1.1–1.5 mm thick, and is covered by a serosa, 29 ordinary organization of the venous vasculature. We also address except at the hilus, where blood vessels, nerves, and lymphatics 30 the cellular mechanisms of splenic clearance, which are typified by enter the organ. There are two layers of the capsule: This can be 31 the vascular organization of the spleen; mechanisms and regula- determined by the orientation of collagen fibers (Faller, 1985), 32 tion of clearance, and the development of a unique component; which are moderately thick and uniform, but which become finer 33 specialized barrier cells, which may be essential to the spleen’s in the deeper regions, where the transition to pulp fibers occurs. -