Lymphoid Tissue [PDF]

Total Page:16

File Type:pdf, Size:1020Kb

Lymphoid Tissue [PDF] 10.03.2015 Lymphoid Tissue Dr. Archana Rani Associate Professor Department of Anatomy KGMU UP, Lucknow What is lymphoid tissue? • Specialized form of connective tissue • Supporting framework: reticular cells & reticular fibres • Large number of lymphocytes • Other cells: Plasma cells & macrophages Consists of……. • Lymphatic vessels • Specific lymphoid organs (lymph node, spleen, thymus) • Lymphatic tissue found within the tissues of other organs (in bone marrow, GI tract, urinary tract, respiratory tract) Functions • Defense of body • Phagocytosis of foreign cells • Involved in production of lymphocytes and plasma cells Lymphatic Vessels – Originate as lymph capillaries – Capillaries unite to form larger lymph vessels • Resemble veins in structure • Connect to lymph nodes at various intervals Lymphatic Capillaries Lymphatic capillary & Vessel Lymphatic Vessels Channels of Lymphatics – Lymphatics ultimately deliver lymph into 2 main channels • Right lymphatic duct –Drains right side of head & neck, right arm, right thorax –Empties into the right subclavian vein • Thoracic duct –Drains the rest of the body –Empties into the left subclavian vein Channels of Lymphatics Major Lymphatic Vessel of the Trunk Lymphatic Tissue – 3 types • Diffuse lymphatic tissue – No capsule present – Found in connective tissue of almost all organs • Lymphatic nodules – No capsule present – Oval-shaped masses – Found singly or in clusters • Lymphatic organs – Capsule present – Lymph nodes, spleen, thymus Diffuse lymphatic tissue • Called as mucosa associated lymphatic tissue (MALT). • Accumulation of lymphatic tissue in the mucous membrane of gastrointestinal, respiratory, urinary and reproductive tracts. • Located where they come in direct contact with antigens. Lymphatic Nodule • Circumscribed concentration of lymphatic tissue (lymphocytes and related cells). • Not surrounded by capsule. Lymphatic Nodule Lymphatic Organs Lymph Node – Consists of connective tissue framework & numerous lymphocytes. – Bean shaped structures placed in pathway of lymphatic vessels. – Enclosed by a fibrous capsule. – Cortex = outer portion • Germinal centers produce lymphocytes – Medulla = inner portion • Medullary cords Lymph Node • Lymph enters nodes through afferent lymph vessels, flows through sinuses, exits through efferent lymph vessel. Lymph Node 1.Capsule 2. lymphoid nodule with germinal center 3. subcapsular sinus 4. intermediate sinus 5. medullary cords 6. medullary sinuses 7. trabecula Cortex of Lymph Node Medulla of Lymph Node Medullary sinuses Medullary cords Medullary sinus of a lymph node containing reticular cells with long processes and elongated nuclei, macrophages, and many lymphocytes. (1) Macrophage; (2) reticular cell; (3) trabecula. H&E stain. High magnification. (Courtesy of PA Abrahamsohn.) Cells of Lymph Node • Lymphocytes • Plasma cells • Reticular cells • Macrophages and other phagocytic antigen processing cells • Lymphatic and vascular endothelial cells Functions of Lymph Node • Filtration of particles and microorganisms to keep them out of general circulation. • Interaction of circulating antigens in lymph with lymphocytes to initiate immune response. • Activation, proliferation of B lymphocytes and antibody production. • Activation, proliferation of T lymphocytes. Spleen • Largest lymphoid organ • Encapsulated • Structure is similar to a node • Capsule present • But no afferent vessels or sinuses Spleen • Substance is arranged in form of: White pulp (basophilic) Red pulp (reddish) • Supporting Elements: Capsule Trabeculae Trabecular network Lymphocytes, macrophages, blood cells Red pulp: splenic cords Spleen White pulp: Lymphoid Nodule (Malpighian corpuscle) 1. Germinal center 2. Central artery Red Pulp of Spleen (Splenic cords: Cords of Billroth) Functions of Spleen • Filtration of blood. • Immune response against antigens circulating in blood. • Site for production of B & T lymphocytes. • Formation of blood cells during fetal life. • Storage of blood. • Site of destruction of aged erythrocytes. Thymus – Location – behind the sternum in the mediastinum – Development: • Infant – conspicuous • Puberty – maximum size • Maturity – decreases in size – Function • Differentiation and maturation of T cells Thymus • Consists of 2 lobes (rt. & lt.) covered by connective tissue capsule. • Septa passing inwards from the capsule subdivide the lobe into a large number of lobules. • Lobule: outer cortex, inner medulla • Supporting stroma: epithelioreticular cells Thymic Lobule • Cortex: densely packed small lymphocytes. • Medulla: Lymphocytes are less densely packed. Presence of Hassall’s corpuscles. Functions of thymus • Provides the environment for stem cells where they can divide and mature into T lymphocytes. • Thymopoietin induces T cell production & maturation. • Thymosin supports T cell activities. Tonsils – Multiple groups of large lymphatic nodules – Location – mucous membrane of the oral and pharyngeal cavities. – Palatine tonsils • Posterior-lateral wall of the oropharynx – Pharyngeal tonsil • Posterior wall of nasopharynx – Lingual tonsils • Base of tongue Palatine Tonsil • Aggregation of lymphatic nodules within diffuse lymphoid tissue. • Covered by stratified squamous epithelium. • Tonsillar crypts (opening of numerous mucous glands) Functions of tonsil • Production of lymphocytes. • Immunological response against antigens & organisms coming in contact with epithelium. References 1. diFiore’s Atlas of Histology with functional Correlations, 12th Edition. 2. Textbook of Human Histology. Inderbir Singh, 1st Edition. 3. Textbook of Histology. GP Pal, 3rd Edition. MCQ • The supporting framework of lymphatic tissue is formed by all except: 1. Reticular cells 2. Plasma cells 3. Macrophages 4. Fibrocyte MCQ • Afferent lymphatics in lymph node pour their lymph into: 1. Trabeculae 2. Subcapsular sinus 3. Medullary sinus 4. Lymph nodule MCQ • Cords of Billroth is a feature of: 1. White pulp of spleen 2. Red pulp of spleen 3. Thymus 4. Tonsil MCQ • The tonsil is covered by: 1. Simple squamous epithelium 2. Stratified squamous epithelium 3. Stratified cuboidal epithelium 4. Stratified columnar epithelium MCQ • Hassall’s corpuscles is a feature of: 1. Lymph node 2. Spleen 3. Thymus 4. Tonsil .
Recommended publications
  • Characterization of Murine Macrophages from Bone Marrow
    Wang et al. BMC Immunology 2013, 14:6 http://www.biomedcentral.com/1471-2172/14/6 RESEARCH ARTICLE Open Access Characterization of murine macrophages from bone marrow, spleen and peritoneum Changqi Wang1*†, Xiao Yu1,2†, Qi Cao1, Ya Wang1, Guoping Zheng1, Thian Kui Tan1, Hong Zhao1,3, Ye Zhao1, Yiping Wang1 and David CH Harris1 Abstract Background: Macrophages have heterogeneous phenotypes and complex functions within both innate and adaptive immune responses. To date, most experimental studies have been performed on macrophages derived from bone marrow, spleen and peritoneum. However, differences among macrophages from these particular sources remain unclear. In this study, the features of murine macrophages from bone marrow, spleen and peritoneum were compared. Results: We found that peritoneal macrophages (PMs) appear to be more mature than bone marrow derived macrophages (BMs) and splenic macrophages (SPMs) based on their morphology and surface molecular characteristics. BMs showed the strongest capacity for both proliferation and phagocytosis among the three populations of macrophage. Under resting conditions, SPMs maintained high levels of pro-inflammatory cytokines expression (IL-6, IL-12 and TNF-α), whereas BMs produced high levels of suppressive cytokines (IL-10 and TGF-β). However, SPMs activated with LPS not only maintained higher levels of (IL-6, IL-12 and TNF-α) than BMs or PMs, but also maintained higher levels of IL-10 and TGF-β. Conclusions: Our results show that BMs, SPMs and PMs are distinct populations with different biological functions, providing clues to guide their further experimental or therapeutic use. Keywords: Macrophage, Bone marrow, Spleen, Peritoneum Background macrophage populations could be attributed to their het- Macrophages play an essential role in both innate and erogeneity [4].
    [Show full text]
  • Tonsillar Crypts and Bacterial Invasion of Tonsils, a Pilot Study R Mal, a Oluwasanmi, J Mitchard
    The Internet Journal of Otorhinolaryngology ISPUB.COM Volume 9 Number 2 Tonsillar crypts and bacterial invasion of tonsils, a pilot study R Mal, A Oluwasanmi, J Mitchard Citation R Mal, A Oluwasanmi, J Mitchard. Tonsillar crypts and bacterial invasion of tonsils, a pilot study. The Internet Journal of Otorhinolaryngology. 2008 Volume 9 Number 2. Abstract Conclusion: We found no clear correlation between tonsillitis and a defect in the tonsillar crypt epithelium. Tonsillitis might be due to immunological differences of subjects rather than a lack of integrity of the crypt epithelium.Further study with larger sample size and normal control is suggested.Objective: To investigate histologically if a lack of protection of the deep lymphoid tissue in tonsillar crypts by an intact epithelial covering is an aetiological factor for tonsillitis.Method: A prospective histological study of the tonsillar crypt epithelium by immunostaining for cytokeratin in 34 consecutive patients undergoing tonsillectomy either for tonsillitis or tonsillar hypertrophy without infection (17 patients in each group).Results: Discontinuity in the epithelium was found in 70.6% of the groups of patients with tonsillitis and in 35.3% of the groups of patients with tonsillar hypertrophy. This is of borderline significance. INTRODUCTION infection apparently occurrs through the micropore of the The association of lymphoid tissue with protective crypt epithelium. A.Jacobi in his presidential address in epithelium is widespread, eg skin, upper aerodigestive tract, 1906: “The tonsil as a portal of microbic and toxic invasion” gut, bronchi, urinary tract. The function of the palatine stated: “ A surface lesion must always be supposed to exist tonsils, an example of an organised mucosa-associated when a living germ or toxin is to find access.----- Stoher has lymphoid tissue, is to sample the environmental antigen and shown small gaps between the normal epithelia of the participate with the initiation and maintenance of the local surface of the tonsil”.
    [Show full text]
  • 1 | Page: Immune Cells and Tissues Swailes Cells and Tissues of The
    Cells and Tissues of the Immune System N. Swailes, Ph.D. Department of Anatomy and Cell Biology Rm: B046A ML Tel: 5-7726 E-mail: [email protected] Required reading Mescher AL, Junqueira’s Basic Histology Text and Atlas, 12th Edition, Chapter 20: pp226-2480 Ross MH and Pawlina W, Histology: A text and Atlas, 6th Edition, Chapter 21: pp396-429 Learning objectives 1) Identify the major cells of the immune system and briefly outline their function 2) Describe the general structure of lymphoid tissue 3) Differentiate between primary and secondary immune organs 4) Identify the thymus and discuss the role of its cells in ‘educating’ immature T-cells 5) Identify a lymph node and outline how an immune response is triggered here 6) Identify the spleen and describe the role of red and white pulp in filtering the blood and reacting to blood borne antigens 7) Differentiate between MALT in the oral cavity (tonsils) 8) Know where to find and how to identify examples of BALT and GALT Major Take Home Points A. Lymphoid tissues are composed of different types of lymphocytes and supporting cells within a scaffold of Type III collagen/reticular fibers B. The major primary lymphoid organs are encapsulated organs where immature lymphocytes are born (bone marrow) and become immunocompetent (thymus) C. The major secondary lymphoid organs are encapsulated organs where immunocompetent lymphocytes differentiate into effector cells after exposure to antigen in the blood (spleen) or lymph (nodes) D. Mucosa Associated Lymphoid Tissues (MALT) are un-encapsulated areas of lymphoid tissue within the mucosa of organs that can be identified by their lining epithelium (tonsils, GALT: ileum and appendix, BALT) 1 | Page: Immune Cells and Tissues Swailes A1: Organization of the immune system 5a A.
    [Show full text]
  • Molecular Mapping to Species Level of the Tonsillar Crypt Microbiota Associated with Health and Recurrent Tonsillitis
    Molecular Mapping to Species Level of the Tonsillar Crypt Microbiota Associated with Health and Recurrent Tonsillitis Anders Jensen1, Helena Fago¨ -Olsen2, Christian Hjort Sørensen2, Mogens Kilian1* 1 Department of Biomedicine, Faculty of Health Sciences, Aarhus University, Aarhus, Denmark, 2 Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Copenhagen University Hospital Gentofte, Copenhagen, Denmark Abstract The human palatine tonsils, which belong to the central antigen handling sites of the mucosal immune system, are frequently affected by acute and recurrent infections. This study compared the microbiota of the tonsillar crypts in children and adults affected by recurrent tonsillitis with that of healthy adults and children with tonsillar hyperplasia. An in-depth 16S rRNA gene based pyrosequencing approach combined with a novel strategy that included phylogenetic analysis and detection of species-specific sequence signatures enabled identification of the major part of the microbiota to species level. A complex microbiota consisting of between 42 and 110 taxa was demonstrated in both children and adults. This included a core microbiome of 12 abundant genera found in all samples regardless of age and health status. Yet, Haemophilus influenzae, Neisseria species, and Streptococcus pneumoniae were almost exclusively detected in children. In contrast, Streptococcus pseudopneumoniae was present in all samples. Obligate anaerobes like Porphyromonas, Prevotella, and Fusobacterium were abundantly present in children, but the species diversity of Porphyromonas and Prevotella was larger in adults and included species that are considered putative pathogens in periodontal diseases, i.e. Porphyromonas gingivalis, Porphyromonas endodontalis, and Tannerella forsythia. Unifrac analysis showed that recurrent tonsillitis is associated with a shift in the microbiota of the tonsillar crypts.
    [Show full text]
  • Anatomy, Embryology & Histology
    Problem 7 – Unit 6 – (Anatomy, embryology & histology): thymus, tonsils and lymph nodes - Lymphoid organs: Primary lymphoid organs (where lymphocytes are produced and mature): Bone marrow (B-lymphocytes). Thymus gland (immature T-lymphocytes migrate to it for proliferation and maturation): which is present in children (in the superior mediastinum behind the sternum → consisting of right and left lobes). The thymus shrinks in adults and is converted to fatty tissue. Secondary lymphoid organs (where naïve lymphocytes get exposed to antigens): Spleen. Lymph nodes. Mucosal-associated lymphoid tissue (MALT). Tonsils. - What is Waldeyer’s ring? of protective lymphoid tissue in the upper ends of )دائرة غير مكتملة( It is an interrupted circle the respiratory and alimentary tracts consisting of: Pharyngeal tonsils: which are located in the nasopharynx and also known as adenoids. Tubal tonsils: around the openings of the auditory tube. Palatine tonsils: located on either side of oropharynx → they lie in the tonsillar sinus which is formed between the palatoglossal and the palatopharyngeal arches. Lingual tonsil: located under the mucosa of the posterior third of the tongue. ===================================================================================== THYMUS - How does it look? Note: there is an active growth of the gland during childhood but it starts involution (shrinkage) at puberty due to the production of steroid hormones (ACTH, adrenal and sex hormones). During adulthood, there will be atrophy and it is replaced by fat. - Where does it develop from (figure): It develops from the 3rd pharyngeal pouch (where the inferior parathyroid glands also develop). In some books, the 4th pharyngeal pouch is also mentioned as an origin of development for the thymus gland in addition to the 3rd pharyngeal pouch.
    [Show full text]
  • Pharyngeal Pouches • Development of External Ear • Development of Tongue • Development of Thyroid Gland L.Moss-Salentijn • Pharyngeal Pouches
    Outline • Pharyngeal grooves Pharyngeal pouches • Development of external ear • Development of tongue • Development of thyroid gland L.Moss-Salentijn • Pharyngeal pouches Pharyngeal pouch evolution Pouches lined with foregut endoderm. Grooves lined with ectoderm. Fate of pharyngeal grooves 2-4 Fate of 1st pharyngeal groove and pouch Covered by rapid outgrowth of 2nd arch “operculum.” 1 First groove external auditory meatus First pouch pharyngotympanic External ear receives tube contributions from arches 1 and 2 External ear development by merging of 6 auricular hillocks External ear and tongue development require merging: the elimination of a groove between facial processes by differential growth. 2 Endodermal swellings on arches 1-4 contribute to the tongue Merging 1. Paired lingual swellings and single median tuberculum impar of lingual 2. Single median copula swellings 3-4. Combined median hypobranchial eminence Thyroid gland development. Thyroglossal duct Descent of developing thyroid. Thyroglossal tract is no longer intact, allowing gland to move. Adult thyroid gland Thyroid gland Arrowheads: parafollicular cells. Follicular cells (a). Thyroglobulin in thyroid follicles. Arrowheads: capillaries. 3 Pharyngeal pouch at 4 weeks Epithelio-mesenchymal Derivatives of dorsal and ventral interactions. parts of pharyngeal pouches Specific transcription factors. Second pharyngeal pouch,ventral: Palatine tonsil development of palatine tonsil • Third month: subepithelial infiltration of lymphoid tissue: Crypt in transverse tonsillar stroma section.
    [Show full text]
  • The Spleen ABOLARIN A.T BUTH, OGBOMOSO Outline
    The Spleen ABOLARIN A.T BUTH, OGBOMOSO Outline Structure and physiology Functions Diseases associated with the spleen The major functions of the spleen are (i) filtration and ‘quality control’ of red cells within the circulation (ii) capture and destruction of blood-borne pathogens (iii) generation of adaptive immune responses. In order to achieve these aims the Spleen has evolved a unique anatomical structure that is based on the filtering of blood through two main systems. These consist of a white pulp, which is concerned mainly with immunological function, and a red pulp, which regulates the selection of red cells for re-entry into the circulation. Structure of the spleen The normal spleen weighsabout 150–250 g, but there is considerable variation between normal individuals and at various ages in the same individual. At puberty it weighs about 200–300 g but after the age of 65 years this decreases to 100–150 g or less. In the adult its length is 8–13cm, width 4.5–7.0 cm, surface area 45– 80 cm2 and volume less than 275 cm3. A spleen greater than 14 cm long is usually palpable. Blood flow It is enclosed by a connective tissue framework that extends inwards to form a fibrous network. Blood enters at the pelvis and the majority of vessels open into these open networks(the red pulp) before re-entering the closed venous system. There is no afferent lymphatic to the spleen and the efferent lymphatic system leaves along the route of the splenic vein. The spleen contains a large amount of lymphatic tissue that is mostly concentrated in concentric rings around the arterioles (white pulp).
    [Show full text]
  • Other Useful Books
    Other Useful Books Dictionaries: Leeson TS, Leeson CR: Histology, 4th ed. Philadel­ phia: Saunders, 1981. Dorland's Illustrated Medical Dictionary, 26th ed. Lentz, TL: Cell Fine Structure. Philadelphia: Saun­ Philadelphia: Saunders, 1981. ders, 1971. Melloni's Illustrated Medical Dictionary. Balti­ Rhodin JAG: Histology, A Text and Atlas. New more: Williams and Wilkins, 1979. York: Oxford University Press, 1974. Stedman's Illustrated Medical Dictionary, 24th ed. Williams PL, Warwick R: Gray's Anatomy, 36th Baltimore: Williams and Wilkins, 1982. English edition. Philadelphia: Saunders, 1980. Weiss L, Greep ROO: Histology, 4th ed. New York: McGraw-Hill, 1977. Textbooks: Histology and Cytology Wheater PR, Burkitt HG, Daniels VG: Functional Arey LB: Human Histology, 4th ed. Philadelphia: Histology. Edinburgh: Churchill Livingstone, 1979. Saunders, 1974. Bloom W, Fawcett DW: A Textbook of Histology, Textbooks: Pathology 10th ed. Philadelphia: Saunders, 1974. Anderson WAD, Kissane JM: Pathology, 7th ed. Borysenko M, Borysenko J, Beringer T, Gustafson St. Louis: Mosby, 1977. A: Functional Histology. A Core Text. Boston: Lit­ tle, Brown, 1979. Anderson WAD, Scotti TM: Synopsis of Pathology, 10th ed. St. Louis: Mosby, 1980. Copenhaver WM, Kelly DE, Wood RL: Bailey's Golden A: Pathology. Understanding Human Dis­ Textbook of Histology, 17th ed. Baltimore: Wil­ ease. Baltimore: Williams and Wilkins, 1982. liams and Wilkins, 1978. King D, Geller LM, Krieger P, Silva F, Lefkowitch Cowdry EV: A Textbook of Histology, 4th ed. Phila­ JH: A Survey of Pathology. New York: Oxford delphia: Lea and Febiger, 1950. University Press, 1976. Dyson RD: Cell Biology. A Molecular Approach, Robbins SL, Cotran RS: Pathologic Basis of Dis­ 2nd ed. Boston: Allyn and Bacon, 1978.
    [Show full text]
  • Sengamala Thayaar Educational Trust Women's College
    Sengamala Thayaar Educational Trust Women’s College (Affiliated to Bharathidasan University) (Accredited with ‘A’ Grade {3.45/4.00} by NAAC) (An ISO 9001: 2015 Certified Institution) Sundarakkottai, Mannargudi – 614 016 Thiruvarur (Dt.), Tamil Nadu, India CORE COURSE VIII – IMMUNOLOGY CODE: P16MB32 Dr.R.MANGALANAYAKI ASSISTANT PROFESSOR PG & RESEARCH DEPARTMENT OF MICROBIOLOGY II M.Sc., MICROBIOLOGY Semester - III CORE COURSE VIII– IMMUNOLOGY Instruction Hours/Week: 6 Credit : 5 OBJECTIVES The aim of the course is to teach the types of immunity, immune system, antigen, antigen - antibody reaction, T and B cell activation, lymphokines and cytokines, hyper sensitivity reaction, immune deficiency disorders, immunohematology and transplantation of immunity Unit I Immune system History of Immunology, Types of immunity- innate and acquired. Humoral and cell mediated immunity. Central and peripheral lymphoid organs- Thymus, bone marrow, spleen, lymph nodes and other peripheral lymphoid tissues GALT. Haematopoiesis, Cells of the immune system- lymphocytes, mononuclear phagocytes- dendritic cells, granulocytes. NK cells and mast cells, cytokines. Unit II T and B cell, Antigen –antibody reactions T and B-cell receptors, Antigen recognition- processing and presentation to Tcells. Interaction of T and B cells. Antigen and antibody – properties, types and functions. Antigen –antibody reactions - Precipitation, agglutination, complement fixation, RIA, ELISA, Western blotting and immunofluorescence. Unit III T and B cell activation B cell receptor complex, B cell maturation, antibody diversity, understanding self – non self discrimination, TH cell subpopulation, organization of T cell receptor, cell mediated effectors responses. Complement system: Basics of complement protein - different pathways of complement activation - classical and alternative. Unit IV MHC, Cytokines and Lymphokines Structure of MHC molecules- Human Leucocyte Antigen- Functions of MHC.
    [Show full text]
  • Lymphatic Organs the Lymphatic Organs Are Classified in To: 1
    Lymphatic organs The lymphatic organs are classified in to: 1. Primary (central) lymphoid organs: responsible for development and maturation of lymphocytes. It consists of bone marrow and thymus gland. 2. Secondary (peripheral) lymphoid organs: Site where mature lymphocytes react with antigen. It consists of lymph node, spleen, lymphatic tonsil and diffuse lymphatic nodules. Thymus gland A primary lymphatic organ responsible for maturation of T lymphocytes to become immuno-competent (functional). Size of the thymus varies with age: - In infants, it is found in the inferior neck and extends into the mediastinum where it partially overlies the heart. It increases in size and is most active during childhood. - It stops growing during adolescence and then gradually atrophies. Structure: 1. Stroma: - Capsule: Thin CT capsule surrounding the gland - Septa: extend from the inner surface of the capsule into the gland tissue dividing it into lobules. - Epithelial-reticular cells (not reticular connective tissue): ñ don´t form reticular fibers. ñ joined together with desmosome forming the stromal background of the thymus. ñ Important for blood thymic barrier (will be mentioned later). Parenchyma: Thymic lobes contain an outer cortex and inner medulla Cortex: It is the outer dark part of the thymus lobule and contains • Lymphocytes: Most thymic cells are immature T-lymphocytes. They are rapidly dividing and densely packed. • Few macrophages. Medulla: It appears lighter than the cortex: • Few number of mature T lymphocytes • Thymic (Hassall’s) corpuscles: Consisting of concentric whorls of keratinized epithelial cells, which are thought to be degenerate epithelial cells. Recently it is evidenced that Hassall’s corpuscles are involved in the development of a class of T lymphocytes called regulatory T cells, which are important for preventing autoimmune responses.
    [Show full text]
  • Lymphoid Tissue
    Lymphoid Tissue Dr Punita manik Professor Department of Anatomy K G’s Medical University U P Lucknow Classification • Diffuse Lymphoid tissue: diffuse arrangement of lymphocytes and plasma cells deep to epithelium in Lamina propria of digestive, respiratory and urogenital tracts forming an immunological barrier against invasion of microorganisms. • Dense Lymphoid tissue: presence of lymphocytes in the form of nodules Classification Dense Lymphoid Tissue: Nodules are found either in association with mucous membranes of viscera or as discrete encapsulated organs. 2 Types 1. MALT(Mucosa associated Lymphoid Tissue; Nonencapsulated) 2. Discrete Lymphoid organs (Encapsulated) • MALT: Solitary Nodules Aggregated Nodules(Peyer’s patches) Lymphoid nodules in vermiform appendix Waldeyer’s ring at the entrance of pharynx • Discrete Lymphoid Organs: Thymus Lymph Node Spleen Tonsil Lymph Node • Connective tissue framework Capsule Trabecula Reticular Stroma (fibres) Components of Lymph Node • Parenchyma 1.Cortex 2.Paracortex (Inner Cortex) 3.Medulla Lymph node Lymph Node Reticulum • Reticular stroma- reticular fibres and phagocytic reticular cells • Gives structural support to the lymphoid cells Lymph Node Reticulum Cortex Subcapsular Sinus Lymphatc Nodules Primary Nodule Secondary Nodule Germinal Centre • Paracotex: Inner cortical Zone Thymus dependent zone Lymph Node • Medulla: • Medullary Cords -Darkly stained, branching anastomosing – B Lymphocytes, plasma cells& macrophages • Medullary Sinuses- Lightly stained Lymph Node Lymph Node Lymph Node Thymus • Central Lymphoid organ • Dual Origin- Lymphoctes- Mesoderm • Reticular epithelial cells- Endoderm • Formed only by T lymphocytes • No B lymphocytes • Divided into lobules of lymphoid tissue( No lymphatic nodule) • Has hassall’s corpuscles • Produces thymic hormones • Fully dev at birth, involutes at puberty. Thymus • COMPONENTS 1. Supporting Framework Capsule Interlobular septa Cellular cytoplasmic reticulum 2.
    [Show full text]
  • Chapter 21 the Lymphatic System
    Chapter 21 Lecture Outline See separate PowerPoint slides for all figures and tables pre- inserted into PowerPoint without notes. Copyright © McGraw-Hill Education. Permission required for reproduction or display. 1 Introduction • The body harbors at least 10 times as many bacterial cells as human cells – Some beneficial – Some potentially disease-causing • Immune system—not an organ system, but a cell population that inhabits all organs and defends the body from agents of disease – Especially concentrated in the true organ system: lymphatic system • Network of organs and vein-like vessels that recover fluid • Inspect it for disease agents • Activate immune responses • Return fluid to the bloodstream 21-2 The Lymphatic System • Expected Learning Outcomes – List the functions of the lymphatic system. – Explain how lymph forms and returns to the bloodstream. – Name the major cells of the lymphatic system and state their functions. – Name and describe the types of lymphatic tissue. – Describe the structure and function of the red bone marrow, thymus, lymph nodes, tonsils, and spleen. 21-3 The Lymphatic System • Fluid recovery – Fluid continually filters from the blood capillaries into the tissue spaces • Blood capillaries reabsorb 85% • 15% (2 to 4 L/day) of the water and about half of the plasma proteins enter the lymphatic system and then are returned to the blood 21-4 The Lymphatic System • Immunity – Excess filtered fluid picks up foreign cells and chemicals from the tissues • Passes through lymph nodes where immune cells stand guard against foreign matter • Activates a protective immune response • Lipid absorption – Lacteals in small intestine absorb dietary lipids that are not absorbed by the blood capillaries 21-5 The Lymphatic System Copyright © The McGraw-Hill Companies, Inc.
    [Show full text]