Spleen Human Major Cell Population of Red Pulp of Evolved Markers Of

Total Page:16

File Type:pdf, Size:1020Kb

Spleen Human Major Cell Population of Red Pulp of Evolved Markers Of SIRPα/CD172a and FHOD1 Are Unique Markers of Littoral Cells, a Recently Evolved Major Cell Population of Red Pulp of Human Spleen This information is current as of September 28, 2021. Javier Gordon Ogembo, Danny A. Milner, Jr., Keith G. Mansfield, Scott J. Rodig, George F. Murphy, Jeffery L. Kutok, Geraldine S. Pinkus and Joyce D. Fingeroth J Immunol 2012; 188:4496-4505; Prepublished online 4 April 2012; Downloaded from doi: 10.4049/jimmunol.1103086 http://www.jimmunol.org/content/188/9/4496 http://www.jimmunol.org/ References This article cites 95 articles, 24 of which you can access for free at: http://www.jimmunol.org/content/188/9/4496.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology SIRPa/CD172a and FHOD1 Are Unique Markers of Littoral Cells, a Recently Evolved Major Cell Population of Red Pulp of Human Spleen Javier Gordon Ogembo,*,†,1 Danny A. Milner, Jr.,†,‡,1 Keith G. Mansfield,†,x Scott J. Rodig,†,‡ George F. Murphy,†,‡ Jeffery L. Kutok,‡ Geraldine S. Pinkus,†,‡ and Joyce D. Fingeroth*,† Asplenic individuals are compromised not only in their ability to destroy infectious agents, but are at increased risk for death from autoimmune disease, certain tumors, and ischemic heart disease. Enhanced mortality is attributed to lack of phagocytes sequestered in spleen that efficiently engulf and destroy appropriate targets, although related cells are found elsewhere. To determine whether a unique population regulates RBC-pathogen clearance and filtration of altered self, we reviewed the anatomic literature and an- alyzed in situ by immunohistochemistry and immunofluorescence the expression patterns of a little-characterized cell that dom- Downloaded from inates the splenic red pulp of humans and closely related primates: the venous sinus-lining or littoral cell (LC). High expression of the formin homology domain protein 1 outlines the LC population. Although LCs are endothelial-like in distribution, they express several macrophage-directed proteins, the RBC Duffy Ag receptor for chemokines and T cell coreceptor CD8a/a, yet they lack lineage-associated markers CD34 and CD45. Strikingly, SIRPa (CD172a) expression in human spleen concentrates on LCs, consistent with recent demonstration of a key role in RBC turnover and elimination versus release of infected or altered self. + + + 2 2 Our results indicate human LCs (SIRPa , formin homology domain protein 1 , CD8a/a , CD34 , CD45 ) comprise a highly http://www.jimmunol.org/ plastic barrier cell population that emerged late in primate evolution coordinate with CD8 expression. Unique to Hominidae, LCs may be the ultimate determinant of which cells recirculate after passage through human spleen. The Journal of Immunology, 2012, 188: 4496–4505. ndividuals who are asplenic or functionally asplenic (hypo- a filter that mediates the ultimate retention and destruction of splenic) are unable to eliminate many bacterial and parasite senescent and modified cells (5, 6). pathogens (1). They also display an increased risk for auto- Opsonization with Ab and/or complement enhances clearance of I by guest on September 28, 2021 immune disease (1), some cancers (2), and ischemic cardiac dis- foreign Ags, cell debris, and altered self by phagocytes (1, 7). In ease (2, 3). Perhaps this is not surprising because the spleen is the humans, inflammatory particles that are opsonized and immobi- largest secondary immune system organ in mammals. However, lized by complement fragments are regularly transported through although the overall organization of splenic white pulp is similar the circulation tethered by complement receptor type 1 (CD35) on to that of lymph nodes, the spleen is not connected to the lym- the RBC membrane for efficient phagocytosis at distant locations phatic system (4). Rather, soluble and particulate Ags, pathogens, (4, 8, 9). This process, a sophisticated mechanism known as im- RBCs, and altered, apoptotic, necrotic, and tumor cells are all mune adherence clearance, evolved with mammals to remove delivered to and leave the spleen via the circulation. In contrast inflammation-inducing particles from blood (10). However, utili- with white pulp, the red pulp of mammalian spleen serves as zation of RBCs for immune adherence clearance is a recent de- velopment in the evolution of the immune system restricted to humans and closely related primates, because nonprimates, in- *Division of Infectious Diseases, Beth Israel Deaconess Medical Center, Boston, MA 02215; †Harvard Medical School, Boston, MA 02115; ‡Department of Pathology, cluding rodents, primarily rely on platelet-based transport mech- Brigham and Women’s Hospital, Boston, MA 02115; and xDivision of Primate Med- anisms (11, 12). Much evidence indicates liver and spleen are icine, New England Primate Research Center, Southborough, MA 01772 where CD35-bound immune complexes (ICs) are delivered (9), 1 J.G.O. and D.A.M. contributed equally to this work. although precisely how ICs are removed at each location is not Received for publication October 26, 2011. Accepted for publication February 29, well understood. 2012. RBCs themselves (residual IC loaded, infected, and aging) are This work was supported by National Institutes of Health Grants R01AI063571 (to sequestered, variably internalized, and removed as they course J.D.F.) and K23AI072033 (to D.A.M.), an American Heart Association Grant-in-Aid (to J.D.F.), and a fellowship from the Cancer Research Institute (to J.G.O.). through the red pulp of the spleen (13). Precisely where and how J.D.F., J.G.O., and D.A.M. designed and analyzed all experiments, reviewed the RBCs and other altered cell types delivered by the circulation are literature, and wrote the manuscript. J.G.O. and D.A.M. performed most experiments. destroyed or filtered is unknown. The stroma of human red pulp is K.G.M., S.J.R., G.S.P., G.F.M., and J.L.K. provided expertise and additional samples composed of the cords of Billroth and the sinusoids (14). In for analysis. contrast with human, the mouse has an asinusal spleen, and thus it Address correspondence and reprint requests to Dr. Joyce D. Fingeroth, Division of Infectious Diseases, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, is architecturally and functionally distinct (4, 15–21). Human red CLS-445, Boston, MA 02215. E-mail address: jfi[email protected] pulp has a high content of diverse phagocytes; however, to return Abbreviations used in this article: DARC, Duffy Ag receptor for chemokines; to the venous circulation, most splenic constituents must pass FHOD1, formin homology domain protein 1; IC, immune complex; IHC, immuno- between or through the sinus-lining cell or littoral cell (LC). Al- histochemistry; LC, littoral cell; LCA, LC angioma. though the morphologic appearance of the LC suggests it may be Copyright Ó 2012 by The American Association of Immunologists, Inc. 0022-1767/12/$16.00 a key mediator of particle clearance and cellular filtration (13), www.jimmunol.org/cgi/doi/10.4049/jimmunol.1103086 The Journal of Immunology 4497 direct demonstration of function is lacking. In fact, little is known CD47 into the venous circulation may ultimately be determined by about these cells. the LC, a hypothesis examined in this study. Littoral literally means “shoreline” or “tidal,” which accurately describes the polarized cells that line the venous sinusoids of Materials and Methods human spleen with cytoplasmic fronds protruding into the sinus. Tissue LCs comprise ∼30% of the red pulp, and thus are a major con- Normal discarded and unidentified human spleen consented for research stituent of human spleen (22). Morphologically, LCs are elongate was obtained from the Pathology Departments of Beth Israel Deaconess and contain prominent cytoplasmic filaments (stress fibers) (23). Medical Center, Brigham and Women’s Hospital, and New England Organ Their abundant cytoplasm is filled with many pinocytic vesicles, Bank. The tissues were obtained in accordance with the policies of the lysosomes, and dense deposits that surround the nucleus. Phago- Institutional Review Board at each of the respective sites. Splenic tissues were processed immediately to optimize conservation of cell morphology cytosed RBCs, leukocytes, hemosiderin, and other debris can be and composition. LCA slides were provided by the Brigham and Women’s visualized within these cells (24–26), even more so in the setting Hospital Pathology Department (to S.J.R., generously provided by Dr. of certain diseases (27, 28). RBCs can also be seen coursing be- Christopher D.M. Fletcher). Archived formalin-fixed, paraffin-embedded, tween adjacent LCs (10, 13). nonhuman primate spleens were obtained from a repository at the New Based on their
Recommended publications
  • Te2, Part Iii
    TERMINOLOGIA EMBRYOLOGICA Second Edition International Embryological Terminology FIPAT The Federative International Programme for Anatomical Terminology A programme of the International Federation of Associations of Anatomists (IFAA) TE2, PART III Contents Caput V: Organogenesis Chapter 5: Organogenesis (continued) Systema respiratorium Respiratory system Systema urinarium Urinary system Systemata genitalia Genital systems Coeloma Coelom Glandulae endocrinae Endocrine glands Systema cardiovasculare Cardiovascular system Systema lymphoideum Lymphoid system Bibliographic Reference Citation: FIPAT. Terminologia Embryologica. 2nd ed. FIPAT.library.dal.ca. Federative International Programme for Anatomical Terminology, February 2017 Published pending approval by the General Assembly at the next Congress of IFAA (2019) Creative Commons License: The publication of Terminologia Embryologica is under a Creative Commons Attribution-NoDerivatives 4.0 International (CC BY-ND 4.0) license The individual terms in this terminology are within the public domain. Statements about terms being part of this international standard terminology should use the above bibliographic reference to cite this terminology. The unaltered PDF files of this terminology may be freely copied and distributed by users. IFAA member societies are authorized to publish translations of this terminology. Authors of other works that might be considered derivative should write to the Chair of FIPAT for permission to publish a derivative work. Caput V: ORGANOGENESIS Chapter 5: ORGANOGENESIS
    [Show full text]
  • Thalassemia and the Spleen
    Thalassemia and the Spleen 4 Living with Thalassemia are developing an infection (fever, chills, sore throats, unexplained coughs, listlessness, muscle pain, etc.) and Issues in Thalassemia report them to your doctor right away. Thalassemia Care • Sometimes a splenectomy can lead to an exceptionally and the Spleen high platelet count, which can in turn lead to blood clotting. by Marie B. Martin, RN, and Craig Butler Your doctor should monitor your platelet count on a regular basis and may ask you to take baby aspirin daily. This sounds kind of frightening. Is a splenectomy really a What is the spleen? wise choice? The spleen is a small organ (normally That’s a decision that must be made in each individual case. about the size of a fist) that lies in the A doctor with significant experience with thalassemia is upper left part of the abdomen, near going to be in the best position to offer advice about this; the stomach and below the ribcage. however, most people who are splenectomized are able to What does it do? manage the challenges it presents with relatively little The spleen has a number of functions, the most important of difficulty. which are filtering blood and creating lymphocytes. It also acts as a “reservoir” of blood, keeping a certain amount on Of course, it’s best to avoid any circumstances that can lead hand for use in emergencies. to the need for a splenectomy in the first place. For a person with thalassemia, this means following a transfusion In its filtering capacity, the spleen is able to remove large regimen that keeps hemoglobin levels above 9 or 10gm/dL.
    [Show full text]
  • Regulate CD4 T Cell Responses Dependent Red Pulp Macrophages − CSF-1
    CSF-1−Dependent Red Pulp Macrophages Regulate CD4 T Cell Responses Daisuke Kurotaki, Shigeyuki Kon, Kyeonghwa Bae, Koyu Ito, Yutaka Matsui, Yosuke Nakayama, Masashi Kanayama, This information is current as Chiemi Kimura, Yoshinori Narita, Takashi Nishimura, of September 29, 2021. Kazuya Iwabuchi, Matthias Mack, Nico van Rooijen, Shimon Sakaguchi, Toshimitsu Uede and Junko Morimoto J Immunol published online 14 January 2011 http://www.jimmunol.org/content/early/2011/01/14/jimmun Downloaded from ol.1001345 Supplementary http://www.jimmunol.org/content/suppl/2011/01/14/jimmunol.100134 Material 5.DC1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 29, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2011 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published January 14, 2011, doi:10.4049/jimmunol.1001345 The Journal of Immunology CSF-1–Dependent Red Pulp Macrophages Regulate CD4 T Cell Responses Daisuke Kurotaki,*,† Shigeyuki Kon,† Kyeonghwa Bae,† Koyu Ito,† Yutaka Matsui,* Yosuke Nakayama,† Masashi Kanayama,† Chiemi Kimura,† Yoshinori Narita,‡ Takashi Nishimura,‡ Kazuya Iwabuchi,x Matthias Mack,{ Nico van Rooijen,‖ Shimon Sakaguchi,# Toshimitsu Uede,*,† and Junko Morimoto† The balance between immune activation and suppression must be regulated to maintain immune homeostasis.
    [Show full text]
  • Characterization of Murine Macrophages from Bone Marrow
    Wang et al. BMC Immunology 2013, 14:6 http://www.biomedcentral.com/1471-2172/14/6 RESEARCH ARTICLE Open Access Characterization of murine macrophages from bone marrow, spleen and peritoneum Changqi Wang1*†, Xiao Yu1,2†, Qi Cao1, Ya Wang1, Guoping Zheng1, Thian Kui Tan1, Hong Zhao1,3, Ye Zhao1, Yiping Wang1 and David CH Harris1 Abstract Background: Macrophages have heterogeneous phenotypes and complex functions within both innate and adaptive immune responses. To date, most experimental studies have been performed on macrophages derived from bone marrow, spleen and peritoneum. However, differences among macrophages from these particular sources remain unclear. In this study, the features of murine macrophages from bone marrow, spleen and peritoneum were compared. Results: We found that peritoneal macrophages (PMs) appear to be more mature than bone marrow derived macrophages (BMs) and splenic macrophages (SPMs) based on their morphology and surface molecular characteristics. BMs showed the strongest capacity for both proliferation and phagocytosis among the three populations of macrophage. Under resting conditions, SPMs maintained high levels of pro-inflammatory cytokines expression (IL-6, IL-12 and TNF-α), whereas BMs produced high levels of suppressive cytokines (IL-10 and TGF-β). However, SPMs activated with LPS not only maintained higher levels of (IL-6, IL-12 and TNF-α) than BMs or PMs, but also maintained higher levels of IL-10 and TGF-β. Conclusions: Our results show that BMs, SPMs and PMs are distinct populations with different biological functions, providing clues to guide their further experimental or therapeutic use. Keywords: Macrophage, Bone marrow, Spleen, Peritoneum Background macrophage populations could be attributed to their het- Macrophages play an essential role in both innate and erogeneity [4].
    [Show full text]
  • Osteopathic Approach to the Spleen
    Osteopathic approach to the spleen Luc Peeters and Grégoire Lason 1. Introduction the first 3 years to 4 - 6 times the birth size. The position therefore progressively becomes more lateral in place of The spleen is an organ that is all too often neglected in the original epigastric position. The spleen is found pos- the clinic, most likely because conditions of the spleen do tero-latero-superior from the stomach, its arterial supply is not tend to present a defined clinical picture. Furthermore, via the splenic artery and the left gastroepiploic artery it has long been thought that the spleen, like the tonsils, is (Figure 2). The venous drainage is via the splenic vein an organ that is superfluous in the adult. into the portal vein (Figure 2). The spleen is actually the largest lymphoid organ in the body and is implicated within the blood circulation. In the foetus it is an organ involved in haematogenesis while in the adult it produces lymphocytes. The spleen is for the blood what the lymph nodes are for the lymphatic system. The spleen also purifies and filters the blood by removing dead cells and foreign materials out of the circulation The function of red blood cell reserve is also essential for the maintenance of human activity. Osteopaths often identify splenic congestion under the influence of poor diaphragm function. Some of the symptoms that can be associated with dysfunction of the spleen are: Figure 2 – Position and vascularisation of the spleen Anaemia in children Disorders of blood development Gingivitis, painful and bleeding gums Swollen, painful tongue, dysphagia and glossitis Fatigue, hyperirritability and restlessness due to the anaemia Vertigo and tinnitus Frequent colds and infections due to decreased resis- tance Thrombocytosis Tension headaches The spleen is also considered an important organ by the osteopath as it plays a role in the immunity, the reaction of the circulation and oxygen transport during effort as well as in regulation of the blood pressure.
    [Show full text]
  • Study Guide Medical Terminology by Thea Liza Batan About the Author
    Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails ­proficiency­in­communicating­with­healthcare­professionals­such­as­physicians,­nurses,­ or dentists.
    [Show full text]
  • Cells, Tissues and Organs of the Immune System
    Immune Cells and Organs Bonnie Hylander, Ph.D. Aug 29, 2014 Dept of Immunology [email protected] Immune system Purpose/function? • First line of defense= epithelial integrity= skin, mucosal surfaces • Defense against pathogens – Inside cells= kill the infected cell (Viruses) – Systemic= kill- Bacteria, Fungi, Parasites • Two phases of response – Handle the acute infection, keep it from spreading – Prevent future infections We didn’t know…. • What triggers innate immunity- • What mediates communication between innate and adaptive immunity- Bruce A. Beutler Jules A. Hoffmann Ralph M. Steinman Jules A. Hoffmann Bruce A. Beutler Ralph M. Steinman 1996 (fruit flies) 1998 (mice) 1973 Discovered receptor proteins that can Discovered dendritic recognize bacteria and other microorganisms cells “the conductors of as they enter the body, and activate the first the immune system”. line of defense in the immune system, known DC’s activate T-cells as innate immunity. The Immune System “Although the lymphoid system consists of various separate tissues and organs, it functions as a single entity. This is mainly because its principal cellular constituents, lymphocytes, are intrinsically mobile and continuously recirculate in large number between the blood and the lymph by way of the secondary lymphoid tissues… where antigens and antigen-presenting cells are selectively localized.” -Masayuki, Nat Rev Immuno. May 2004 Not all who wander are lost….. Tolkien Lord of the Rings …..some are searching Overview of the Immune System Immune System • Cells – Innate response- several cell types – Adaptive (specific) response- lymphocytes • Organs – Primary where lymphocytes develop/mature – Secondary where mature lymphocytes and antigen presenting cells interact to initiate a specific immune response • Circulatory system- blood • Lymphatic system- lymph Cells= Leukocytes= white blood cells Plasma- with anticoagulant Granulocytes Serum- after coagulation 1.
    [Show full text]
  • Terminology Resource File
    Terminology Resource File Version 2 July 2012 1 Terminology Resource File This resource file has been compiled and designed by the Northern Assistant Transfusion Practitioner group which was formed in 2008 and who later identified the need for such a file. This resource file is aimed at Assistant Transfusion Practitioners to help them understand the medical terminology and its relevance which they may encounter in the patient’s medical and nursing notes. The resource file will not include all medical complaints or illnesses but will incorporate those which will need to be considered and appreciated if a blood component was to be administered. The authors have taken great care to ensure that the information contained in this document is accurate and up to date. Authors: Jackie Cawthray Carron Fogg Julia Llewellyn Gillian McAnaney Lorna Panter Marsha Whittam Edited by: Denise Watson Document administrator: Janice Robertson ACKNOWLEDGMENTS We would like to acknowledge the following people for providing their valuable feedback on this first edition: Tony Davies Transfusion Liaison Practitioner Rose Gill Transfusion Practitioner Marie Green Transfusion Practitioner Tina Ivel Transfusion Practitioner Terry Perry Transfusion Specialist Janet Ryan Transfusion Practitioner Dr. Hazel Tinegate Consultant Haematologist Reviewed July 2012 Next review due July 2013 Version 2 July 2012 2 Contents Page no. Abbreviation list 6 Abdominal Aortic Aneurysm (AAA) 7 Acidosis 7 Activated Partial Thromboplastin Time (APTT) 7 Acquired Immune Deficiency Syndrome
    [Show full text]
  • Extramedullary Hematopoiesis Generates Ly-6Chigh Monocytes That Infiltrate Atherosclerotic Lesions
    Extramedullary Hematopoiesis Generates Ly-6Chigh Monocytes that Infiltrate Atherosclerotic Lesions The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Robbins, Clinton S., Aleksey Chudnovskiy, Philipp J. Rauch, Jose- Luiz Figueiredo, Yoshiko Iwamoto, Rostic Gorbatov, Martin Etzrodt, et al. 2012. “Extramedullary Hematopoiesis Generates Ly-6C High Monocytes That Infiltrate Atherosclerotic Lesions.” Circulation 125 (2): 364–74. https://doi.org/10.1161/circulationaha.111.061986. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41384259 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA NIH Public Access Author Manuscript Circulation. Author manuscript; available in PMC 2013 January 17. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Circulation. 2012 January 17; 125(2): 364±374. doi:10.1161/CIRCULATIONAHA.111.061986. Extramedullary Hematopoiesis Generates Ly-6Chigh Monocytes that Infiltrate Atherosclerotic Lesions Clinton S. Robbins, PhD1,*, Aleksey Chudnovskiy, MS1,*, Philipp J. Rauch, BS1,*, Jose-Luiz Figueiredo, MD1, Yoshiko Iwamoto, BS1, Rostic Gorbatov, BS1, Martin Etzrodt, BS1, Georg F. Weber, MD1, Takuya Ueno, MD, PhD1, Nico van Rooijen, PhD2, Mary Jo Mulligan-Kehoe, PhD3, Peter
    [Show full text]
  • 201028 the Lymphatic System 2 – Structure and Function of The
    Copyright EMAP Publishing 2020 This article is not for distribution except for journal club use Clinical Practice Keywords Immunity/Anatomy/Stem cell production/Lymphatic system Systems of life This article has been Lymphatic system double-blind peer reviewed In this article... l How blood and immune cells are produced and developed by the lymphatic system l Clinical significance of the primary and secondary lymphoid organs l How the lymphatic system mounts an immune response and filters pathogens The lymphatic system 2: structure and function of the lymphoid organs Key points Authors Yamni Nigam is professor in biomedical science; John Knight is associate The lymphoid professor in biomedical science; both at the College of Human and Health Sciences, organs include the Swansea University. red bone marrow, thymus, spleen Abstract This article is the second in a six-part series about the lymphatic system. It and clusters of discusses the role of the lymphoid organs, which is to develop and provide immunity lymph nodes for the body. The primary lymphoid organs are the red bone marrow, in which blood and immune cells are produced, and the thymus, where T-lymphocytes mature. The Blood and immune lymph nodes and spleen are the major secondary lymphoid organs; they filter out cells are produced pathogens and maintain the population of mature lymphocytes. inside the red bone marrow, during a Citation Nigam Y, Knight J (2020) The lymphatic system 2: structure and function of process called the lymphoid organs. Nursing Times [online]; 116: 11, 44-48. haematopoiesis The thymus secretes his article discusses the major become either erythrocytes, leucocytes or hormones that are lymphoid organs and their role platelets.
    [Show full text]
  • 1 | Page: Immune Cells and Tissues Swailes Cells and Tissues of The
    Cells and Tissues of the Immune System N. Swailes, Ph.D. Department of Anatomy and Cell Biology Rm: B046A ML Tel: 5-7726 E-mail: [email protected] Required reading Mescher AL, Junqueira’s Basic Histology Text and Atlas, 12th Edition, Chapter 20: pp226-2480 Ross MH and Pawlina W, Histology: A text and Atlas, 6th Edition, Chapter 21: pp396-429 Learning objectives 1) Identify the major cells of the immune system and briefly outline their function 2) Describe the general structure of lymphoid tissue 3) Differentiate between primary and secondary immune organs 4) Identify the thymus and discuss the role of its cells in ‘educating’ immature T-cells 5) Identify a lymph node and outline how an immune response is triggered here 6) Identify the spleen and describe the role of red and white pulp in filtering the blood and reacting to blood borne antigens 7) Differentiate between MALT in the oral cavity (tonsils) 8) Know where to find and how to identify examples of BALT and GALT Major Take Home Points A. Lymphoid tissues are composed of different types of lymphocytes and supporting cells within a scaffold of Type III collagen/reticular fibers B. The major primary lymphoid organs are encapsulated organs where immature lymphocytes are born (bone marrow) and become immunocompetent (thymus) C. The major secondary lymphoid organs are encapsulated organs where immunocompetent lymphocytes differentiate into effector cells after exposure to antigen in the blood (spleen) or lymph (nodes) D. Mucosa Associated Lymphoid Tissues (MALT) are un-encapsulated areas of lymphoid tissue within the mucosa of organs that can be identified by their lining epithelium (tonsils, GALT: ileum and appendix, BALT) 1 | Page: Immune Cells and Tissues Swailes A1: Organization of the immune system 5a A.
    [Show full text]
  • Isolation of Cells from Spleen, Thymus, and Lymph Nodes 1 Purpose
    ISOLATION OF CELLS FROM SPLEEN, THYMUS, AND LYMPH NODES 1 PURPOSE The purpose of this Standard Operating Procedure (SOP) is to outline procedures for isolating and cryopreserving cells from spleen, thymus, and lymph nodes. 2 SCOPE This SOP will be applied to fresh tissue processed for cell isolation. 3 RESPONSIBILITIES 3.1 Managers and supervisors are responsible for making sure that technicians are properly trained and equipment and facility are maintained in good working order. 3.2 Laboratory personnel are responsible for reading and understanding this SOP and related documents and to perform these tasks in accordance with the SOPs. They are responsible for following clinical laboratory and tissue banking best practices. 4 EQUIPMENT and MATERIALS The materials, equipment and forms listed in the following list are recommendations only and alternative products as suitable may be substituted for the site specific task or procedure. 70% Ethanol (EtOH) 100x Antibiotic/Antimycotic solution (Sigma, Cat. No. A9909), aliquot 10 ml and store at -20°C Dulbecco’s Phosphate Buffered Saline (D-PBS), Mg2+ Ca2+ free (Invitrogen, Cat. No. 10010-023), store refrigerated Collagenase type II (Invitrogen, Cat. No. 17101015) Dissecting instruments (scissors, forceps, scalpels, #10 or 11 blades) Cell culture dish (100 mm) Cell strainer, 100 um (BD, Cat. No. 352360) Syringes (3 or 5 ml), centrifuge tubes (15 or 50 ml conical), graduated pipettes (i.e., 2, 5, 10, 25, 50 ml), transfer pipettes Centrifuge (swinging bucket rotor), capable of maintaining 18-26°C, 250-800 g-force spins with brake (on/off) 0.17M Ammonium chloride solution (Stemcell, Cat. No.
    [Show full text]