Processing in the Superior Olivary Complex.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Processing in the Superior Olivary Complex.Pdf Processing in The Superior Olivary Complex Alan R. Palmer Medical Research Council Institute of Hearing Research University Park Nottingham NG7 2RD, UK Binaural cues for Localising Sounds in Space time Interaural Time Differences (ITDs) Interaural Level Differences (ILDs) Binaural Mechanisms of Sound Localization • Interaural time (or phase) difference at low frequency are initially analysed in the MSO by coincidence detectors connected by a delay line system. • Interaural level differences at high frequency are initially analysed in the LSO by input that is inhibitory from one ear and excitatory from the other. 1 The Auditory Nervous System Cortex Cortex MGB Medial Geniculate Body Excitatory GABAergic IC Inferior Colliculus GlycinergicInteraural Level Differences DNLL Nuclei of the Lateral Lemniscus LateralInteraural Lemniscus Time Differences Cochlear Nucleus DCN PVCN MSO Lateral Superior Olive AVCN Medial Superior Olive Cochlea MNTB Medial Nucleus of the Trapezoid Body Superior Olive Binaural Hearing The ability to extract specific forms of auditory information using two ears, that would not be possible using one ear only. 2 Advantages of Two Ears • Improved detection / increased loudness • Removing interference from echoes • Improved detection of sounds in interfering backgrounds • Spatial localization • Detection of auditory motion 20 dB 700 μs Nordlund Interaural level differences ((ghigh freq uency) 3 PARALLEL PROCESSING OF INFORMATION IN THE COCHLEAR NUCLEUS To medial superior olive: information about sound To inferior colliculus: information about pinna localisation using timing (and possibly time coding of speech) sound transformations To lateral superior olive: information about sound localisation using interaural intensity To medial nucleus of the trapezoid body: information Either commisural or to inferior colliculus about sound localisation using interaural intensity information about sound level and voice pitch To inferior colliculus: information about complex sounds (possibly place coding of speech) Input from cochlear nerve Interaural Level Difference Pathway Excitatory Inhibitory _ + + + + 4 Ipsilateral Contralateral 100 100 el (dB SPL) el (dB v Sound le 20 20 0.12532 0.125 32 Frequency (kHz) Caird and Klinke 1983 5 Caspary and Finlayson (1991) Irvine (1986) Interaural time differences ((qy)low frequency) The discharges of cochlear nerve fibres to lowlow-- frequency sounds are not random; they occur at particular times (phase locking). Evans (1975) 6 PARALLEL PROCESSING OF INFORMATION IN THE COCHLEAR NUCLEUS To medial superior olive: information about sound To inferior colliculus: information about pinna localisation using timing (and possibly time coding of speech) sound transformations To lateral superior olive: information about sound localisation using interaural intensity To medial nucleus of the trapezoid body: information Either commisural or to inferior colliculus about sound localisation using interaural intensity information about sound level and voice pitch To inferior colliculus: information about complex sounds (possibly place coding of speech) Input from cochlear nerve Interaural Time Difference Pathway The coincidence detection model of Jeffress (1948) is the widely accepted model for lowlow--frequencyfrequency sound localisation Response 0 Interaural Time Difference 7 Response 0 Interaural Time Difference Department of Neurophysiology,University of Wisconsin ALT TAB Ipsilateral Contralateral Barn Owl: Konishi et al 1988 8 Pena et al 2001 Matches between the inputs from the two ears in the Barn Owl Nucleus Laminaris Fischer and Pena 2009 Pathways for analysing interaural time differences To inferior colliculus Excitatory Cochlear Cochlear Left Ear + Nucleus Nucleus Right Ear Semicircular Canals + + + Window MSO Large calyx synaptic ending 9 0 μs Time Delay 0 μs Cochlear Cochlear Left Ear Nucleus Nucleus Right Ear Semicircular Can als Window MSO Auditory Nerve Activity Large calyx synaptic ending 0 μs Time Delay Arrives at left ear 300 μs later than at the right 300 μs Cochlear Cochlear Left Ear Nucleus Nucleus Right Ear Se micir cul ar Canals Window MSO Auditory Nerve Activity Large calyx synaptic ending 300 μs Time Delay Coincident spikes Arrives at left ear 300 μs 0 μs Time Delay later than at the right 300 μs 0 μs Cochlear Cochlear Left Ear Nucleus Nucleus Right Ear Se micir cul ar Canals Window MSO Auditory Nerve Activity Large calyx synaptic ending 300 μs Time Delay 0 μs Time Delay Coincident spikes 10 -600 -300 0 300 600 ITD (μs) Interaural Phase Sensitivity in the MSO Best Delay 1 ms 1 ms Yin and Chan (1988) Smith et al 1993 11 Bekius et al 1999 Noise BF tones Guinea Pig Palmer et al., 1990 Cat Yin et al., 1986 Palmer et al 1990 Distribution of peaks of ITD functions in response to interaurally-delayed noise Physiological range 80 ones r 60 40 Number of Neu of Number 20 0 -500 0 500 1000 Interaural Delays (μs) McAlpine Jiang and Palmer 2001 12 McAlpine, Jiang and Palmer 1996 1/8 1/4 1/2 cycle 1/16 McAlpine Jiang and Palmer 2001 Brand et al 2002 13 Grothe 2003 Brand et al., 2002 325 Hz 500 Hz 700 Hz ed Response ed -1000 -500 0 500 1000 Normalis ITD (μs) 1.0 kHz 1.4 kHz -1000 -500 0 500 1000 -1000 -500 0 500 1000 McAlpine Jiang and Palmer 2001 ITD (μs) ITD (μs) 14 Distribution of steepest slopes of ITD functions in response to interaurally-delayed noise Physiological range 80 60 urones 40 Number of Ne 20 0 -500 0 500 1000 Interaural Delays (μs) McAlpine Jiang and Palmer 2001 600 0.5 Interaural Phase Difference 1.0 s) μ 500 0.4 0.8 400 0.6 0.3 300 0.4 0.2 200 ural Time Difference Difference ( ural Time ormalised Response a (cycles) N 0.2 0.1 Inter 100 0.0 -1000 -500 0 500 1000 0 0.0 Interaural Time Difference (μs) 0.00 0.25 0.50 0.75 1.00 1.25 1.50 Frequency (kHz) McAlpine Jiang and Palmer 2001 ITD processing is BF-BF-dependent.dependent. ITD functions are steepest around midline. The consequence of this is that: As ITD increases across the physiological range the activity at any frequency increases 15 Descending pathways Spangler and Warr 1991 Warr 1978, Warr and Guinan 1979 16 Spoendlin 1971 Wiederhold and Kiang 1971 Function of the descending or centrifugal innervation • Protection from acoustic trauma • Control of the mechanical state of the cochlea • Involvement in selective attention • Detection of complex signal in noise 17.
Recommended publications
  • Auditory and Vestibular Systems Objective • to Learn the Functional
    Auditory and Vestibular Systems Objective • To learn the functional organization of the auditory and vestibular systems • To understand how one can use changes in auditory function following injury to localize the site of a lesion • To begin to learn the vestibular pathways, as a prelude to studying motor pathways controlling balance in a later lab. Ch 7 Key Figs: 7-1; 7-2; 7-4; 7-5 Clinical Case #2 Hearing loss and dizziness; CC4-1 Self evaluation • Be able to identify all structures listed in key terms and describe briefly their principal functions • Use neuroanatomy on the web to test your understanding ************************************************************************************** List of media F-5 Vestibular efferent connections The first order neurons of the vestibular system are bipolar cells whose cell bodies are located in the vestibular ganglion in the internal ear (NTA Fig. 7-3). The distal processes of these cells contact the receptor hair cells located within the ampulae of the semicircular canals and the utricle and saccule. The central processes of the bipolar cells constitute the vestibular portion of the vestibulocochlear (VIIIth cranial) nerve. Most of these primary vestibular afferents enter the ipsilateral brain stem inferior to the inferior cerebellar peduncle to terminate in the vestibular nuclear complex, which is located in the medulla and caudal pons. The vestibular nuclear complex (NTA Figs, 7-2, 7-3), which lies in the floor of the fourth ventricle, contains four nuclei: 1) the superior vestibular nucleus; 2) the inferior vestibular nucleus; 3) the lateral vestibular nucleus; and 4) the medial vestibular nucleus. Vestibular nuclei give rise to secondary fibers that project to the cerebellum, certain motor cranial nerve nuclei, the reticular formation, all spinal levels, and the thalamus.
    [Show full text]
  • Anatomy of the Superior Olivary Complex.Pdf
    Douglas Oliver University of Connecticut Health Center SUPERIOR OLIVE Auditory Pathways Auditory CORTEX GLUT Cortex GABA GLY Medial Geniculate MGB Body Inferior IC Colliculus DLL DLL COCHLEA VLL VLL DCN VCN SOC Auditory Pathways IC Organization of Superior Olivary Complex . Subdivisions and Cytoarchitecture . Neuron types . Inputs . Outputs . Synapses . Basic Circuit Cytoarchitecture of Superior Olivary Complex LSO LSO MSO MSO MNTB D MNTB M (somata & dendrites) (axons & endings) Tsuchitani, 1978, Fig. 10 Comparative anatomy of SOC Tetsufumi Ito & Shig Kuwada Binaural Basic Circuits 8 ‐ 9 Brodal Fig MSO: medial superior olive; LSO: lateral superior olive NTB: nucleus of trapezoid body; IC: inferior colliculus MSO Principle glutamate Cells . Fusiform . Bipolar . Disc‐shaped . Each dendrite innervated by a different side MSO‐In situ hybridization RPO MSO MNTB SPO LSO VGLUT1 VGLUT2 VIAAT NISSL MSO Inputs and Synapses H=high frequency EI - ILD L=low frequency EE - ITD LSO MSO L L B H B B H G LNTB TO LSO MNTB E=Excitation (glutamate) ‐‐‐ I=Inhibition (glycine) ITD CODING Unlike retinal targets, the cochlear nuclei contain maps of frequency, not location. So how does the auditory system know ‘where’ a sound is coming from? T + ITD T By comparing the interaural time differences (ITD) between the ears How is this accomplished?... LSO MSO Right Input A Right Input B C Time Code Time Code E E A A B B C C D D E E Output Output abcde Place Code abcde Place Code Excitation MSO creates a response to Left Input Left Input Inhibition interaural time differences I Time Code E Time Code DEMSO "peak" unit LSO "trough" unit ITD ITD Figure 14.2 Binaural Responses in MSO MSO Summary .
    [Show full text]
  • The Superior Olivary Complex +
    Excitatory and inhibitory transmission in the superior olivary complex. Ian D. Forsythe, Matt Barker, Margaret Barnes-Davies, Brian Billups, Paul Dodson, Fatima Osmani, Steven Owens and Adrian Wong. Department of Cell Physiology and Pharmacology, University of Leicester, Leicester LE1 9HN. UK. The timing and pattern of action potentials propagating into the brainstem from both cochleae contain information about the azimuth location of that sound in auditory space. This binaural information is integrated in the superior olivary complex. This part of the auditory pathway is adapted for fast conduction speeds and the preservation of timing information with several complimentary mechanisms (see Oertel, 1999; Trussell, 1999). There are large diameter axons terminating in giant somatic synapses that activate receptor ion channels with fast kinetics. The resultant postsynaptic potentials generated in the receiving neuron are integrated with a suite of voltage-gated ion channels that determine the action potential threshold, duration and repetitive firing properties. We have studied presynaptic and postsynaptic mechanisms that regulate efficacy, timing and integration of synaptic responses in the medial nucleus of the trapezoid body and the medial and lateral superior olives. Presynaptic calcium currents in the calyx of Held. The calyx of Held is a giant synaptic terminal that forms around the soma of principal cells in the Medial Nucleus of the Trapezoid Body (MNTB) (Forsythe, 1994). Each MNTB neuron receives a single calyx. Action potentials propagating into the synaptic terminal trigger the opening of P-type calcium channels (Forsythe et al. 1998) which in turn trigger the release of glutamate into the synaptic cleft (Borst et al., 1995).
    [Show full text]
  • ON-LINE FIG 1. Selected Images of the Caudal Midbrain (Upper Row
    ON-LINE FIG 1. Selected images of the caudal midbrain (upper row) and middle pons (lower row) from 4 of 13 total postmortem brains illustrate excellent anatomic contrast reproducibility across individual datasets. Subtle variations are present. Note differences in the shape of cerebral peduncles (24), decussation of superior cerebellar peduncles (25), and spinothalamic tract (12) in the midbrain of subject D (top right). These can be attributed to individual anatomic variation, some mild distortion of the brain stem during procurement at postmortem examination, and/or differences in the axial imaging plane not easily discernable during its prescription parallel to the anterior/posterior commissure plane. The numbers in parentheses in the on-line legends refer to structures in the On-line Table. AJNR Am J Neuroradiol ●:●●2019 www.ajnr.org E1 ON-LINE FIG 3. Demonstration of the dentatorubrothalamic tract within the superior cerebellar peduncle (asterisk) and rostral brain stem. A, Axial caudal midbrain image angled 10° anterosuperior to posteroinferior relative to the ACPC plane demonstrates the tract traveling the midbrain to reach the decussation (25). B, Coronal oblique image that is perpendicular to the long axis of the hippocam- pus (structure not shown) at the level of the ventral superior cerebel- lar decussation shows a component of the dentatorubrothalamic tract arising from the cerebellar dentate nucleus (63), ascending via the superior cerebellar peduncle to the decussation (25), and then enveloping the contralateral red nucleus (3). C, Parasagittal image shows the relatively long anteroposterior dimension of this tract, which becomes less compact and distinct as it ascends toward the thalamus. ON-LINE FIG 2.
    [Show full text]
  • Evolution of Mammalian Sound Localization Circuits: a Developmental Perspective
    Progress in Neurobiology 141 (2016) 1–24 Contents lists available at ScienceDirect Progress in Neurobiology journal homepage: www.elsevier.com/locate/pneurobio Review article Evolution of mammalian sound localization circuits: A developmental perspective a,b, Hans Gerd Nothwang * a Neurogenetics group, Center of Excellence Hearing4All, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany b Research Center for Neurosensory Science, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany A R T I C L E I N F O A B S T R A C T Article history: Localization of sound sources is a central aspect of auditory processing. A unique feature of mammals is Received 29 May 2015 the smooth, tonotopically organized extension of the hearing range to high frequencies (HF) above Received in revised form 27 February 2016 10 kHz, which likely induced positive selection for novel mechanisms of sound localization. How this Accepted 27 February 2016 change in the auditory periphery is accompanied by changes in the central auditory system is unresolved. Available online 28 March 2016 + I will argue that the major VGlut2 excitatory projection neurons of sound localization circuits (dorsal cochlear nucleus (DCN), lateral and medial superior olive (LSO and MSO)) represent serial homologs with Keywords: modifications, thus being paramorphs. This assumption is based on common embryonic origin from an Brainstem + + Atoh1 /Wnt1 cell lineage in the rhombic lip of r5, same cell birth, a fusiform cell morphology, shared Evolution Homology genetic components such as Lhx2 and Lhx9 transcription factors, and similar projection patterns. Such a Innovation parsimonious evolutionary mechanism likely accelerated the emergence of neurons for sound Rhombomere localization in all three dimensions.
    [Show full text]
  • Acoustically Responsive Fibers in the Vestibular Nerve of the Cat
    The Journal of Neuroscience, October 1994, 74(10): 6056-6070 Acoustically Responsive Fibers in the Vestibular Nerve of the Cat Michael P. McCue1v2*a and John J. Guinan, Jr.r.2.3-4 ‘Eaton-Peabody Laboratory of Auditory Physiology, Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, 2Harvard-MIT Division of Health Science and Technology and Research Laboratory of Electronics, and 3Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, and 4Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115 Recordings were made from single afferent fibers in the and levels within the normal range of human hearing. We inferior vestibular nerve, which innervates the saccule and suggest a number of auditory roles that these fibers may posterior semicircular canal. A substantial portion of the fi- play in the everyday life of mammals. bers with irregular background activity increased their firing [Key words: saccule, otoliths, auditory system, mamma- in response to moderately intense clicks and tones. lian sound reception, middle-ear muscles, cochlear nucleus] In responsive fibers, acoustic clicks evoked action poten- tials with minimum latencies of I 1 .O msec. Fibers fell into The vertebrate inner ear contains several senseorgans involved two classes, with the shortest latency either to condensation in the maintenance of equilibrium and the detection of vibra- clicks (PUSH fibers) or to rarefaction clicks (PULL fibers). tion. The precise sensory role assumedby homologous organs Low-frequency (800 Hz) tone bursts at moderately high sound varies among species.For example, the sacculeis thought to act levels (>80 dB SPL) caused synchronization of spikes to asa linear accelerometerin mammals(Fernindez and Goldberg, preferred phases of the tone cycle.
    [Show full text]
  • Processing in the Cochlear Nucleus
    Processing in The Cochlear Nucleus Alan R. Palmer Medical Research Council Institute of Hearing Research University Park Nottingham NG7 2RD, UK The Auditory Nervous System Cortex Cortex MGB Medial Geniculate Body Excitatory GABAergic IC Inferior Colliculus Glycinergic DNLL Nuclei of the Lateral Lemniscus Lateral Lemniscus Cochlear Nucleus DCN PVCN MSO Lateral Superior Olive AVCN Medial Superior Olive Cochlea MNTB Medial Nucleus of the Trapezoid Body Superior Olive The cochlear nucleus is the site of termination of fibres of the auditory nerve Cochlear Nucleus Auditory Nerve Cochlea 1 Frequency Tonotopicity Basilar membrane Inner hair cell Auditory nerve Fibre To the brain Each auditory-nerve fibre responds only to a narrow range of frequencies Tuning curve Action potential Evans 1975 2 Palmer and Evans 1975 There are many overlapping single-fibre tuning curves in the auditory nerve Audiogram Palmer and Evans 1975 Tonotopic Organisation Lorente - 1933 3 Tonotopic Organisation Base Anterior Cochlea Characteristic Basilar Membrane Frequency Hair Cells Auditory Nerve Apex Cochlear Nucleus Spiral Ganglion Posterior Tonotopic projection of auditory-nerve fibers into the cochlear nucleus Ryugo and Parks, 2003 The cochlear nucleus: the first auditory nucleus in the CNS Best frequency Position along electrode track (mm) Evans 1975 4 stellate (DCN) Inhibitory Synapse Excitatory Synapse DAS to inferior colliculus cartwheel fusiform SUPERIOR OLIVARY giant COMPLEX INFERIOR COLLICULUS granule vertical vertical OCB AANN to CN & IC via TB golgi DORSAL
    [Show full text]
  • Universität Leipzig Fakultät Für Biowissenschaften, Pharmazie Und Psychologie
    Universität Leipzig Fakultät für Biowissenschaften, Pharmazie und Psychologie IMPRS NeuroCom" Marc Schönwiesner" " " Auditory and vestibular system Michael Hawke MD / CC-BY-SA-4.0 The middle ear The middle ear Bekesy’s fluid model The traveling wave Problem: traveling waves have very broad peaks – frequency discrimination can not be based on the location of the peak vibration! Masking masker Sound intensity Sound frequency inaudible audible Masking and mp3 encoding Idea: signals that are inaudible because of masking can be removed from the file to save space. The organ of Corti Hair cells Outer hair cell motility The active cochlea model (video by J. Ashmore 1987) Connections from outer and inner hair cells Microtubule inside of a cilium 9 doublet microtubules + 2 central microtubule Dynein arms http://scienceblogs.com/transcript/upload/2006/08/axoneme.gif /www.uni-mainz.de/FB/Medizin/Anatomie Tilting of stereocilia bundles cause graded de- or hyperpolarization in hair cells (and modulation of action potential rates in afferent nerve fibers) Intracellular recording Mechanical stimulation Extracellular recording from afferent nerve fiber The lateral line system Adequate stimulus: Tilting of stereovilli by water movement Lateral line Afferent and efferent innervation Dudel, Menzel, Schmidt Hair cell: One type of sensory cell, different functions through specific accessory structures A. Perception and integration of water-flow pattern at the body surface Vestibular system Vestibular system The vestibular labyrinth answers two basic questions: Where am I going? Which way is up? The vestibular labyrinth answers the two questions by sensing: Head angular acceleration (semicircular canals) = Head rotation Head linear acceleration (saccule and utricle)" = Translational motion.
    [Show full text]
  • The Auditory Nervous System
    The Auditory Nervous System Cortex Processing in The Superior Olivary Complex Cortex Advantages of Two Ears MGB Medial Geniculate Body • Improved detection / increased loudness Excitatory Alan R. Palmer GABAergic IC Inferior Colliculus • Removing interference from echoes GlycinergicInteraural Level Differences • Improved detection of sounds in Medical Research Council Institute of Hearing Research DNLL Nuclei of the Lateral Lemniscus interfering backgrounds University Park LateralInteraural Lemniscus Time Differences Nottingham NG7 2RD, UK Cochlear Nucleus • Spatial localization DCN • Detection of auditory motion PVCN MSO Lateral Superior Olive AVCN Medial Superior Olive Cochlea MNTB Medial Nucleus of the Trapezoid Body Superior Olive Binaural cues for Localising Sounds in Space 20 dB time 700 μs Interaural Time Differences (ITDs) Interaural Level Differences (ILDs) Nordlund Binaural Mechanisms of Sound Localization Binaural Hearing • Interaural time (or phase) difference at low frequency are initially analysed in the MSO by coincidence detectors connected by a delay line system. Interaural level differences • Interaural level differences at high frequency are initially The ability to extract specific forms of auditory analysed in the LSO by input that is inhibitory from one information using two ears , that would not be ((ghigh freq uency) ear and excitatory from the other. possible using one ear only. 1 PARALLEL PROCESSING OF INFORMATION IN THE COCHLEAR NUCLEUS To medial superior olive: information about sound To inferior colliculus:
    [Show full text]
  • A Place Principle for Vertigo
    Auris Nasus Larynx 35 (2008) 1–10 www.elsevier.com/locate/anl A place principle for vertigo Richard R. Gacek * Department of Otolaryngology, Head and Neck Surgery, University of Massachusetts Medical School, Worcester, MA 01655, USA Received 16 March 2007; accepted 13 April 2007 Available online 24 October 2007 Abstract Objective: To provide a road map of the vestibular labyrinth and its innervation leading to a place principle for different forms of vertigo. Method: The literature describing the anatomy and physiology of the vestibular system was reviewed. Results: Different forms of vertigo may be determined by the type of sense organ, type of ganglion cell and location in the vestibular nerve. Conclusion: Partial lesions (viral) of the vestibular ganglion are manifested as various forms of vertigo. # 2007 Elsevier Ireland Ltd. All rights reserved. Keywords: Vertigo; Vestibular nerve; Pathology Contents 1. Introduction . ............................................................................... 1 2. Sense organ. ............................................................................... 2 3. Ganglion cells ............................................................................... 4 4. Hair cells . ............................................................................... 5 5. Hair cell polarization . ....................................................................... 5 6. Efferent vestibular system ....................................................................... 8 7. A place principle for vertigo . .................................................................
    [Show full text]
  • Gene Delivery in Mouse Auditory Brainstem and Hindbrain Using in Utero Electroporation Laurence S David, Jamila Aitoubah, Lee Stephen Lesperance and Lu-Yang Wang*
    David et al. Molecular Brain 2014, 7:51 http://www.molecularbrain.com/content/7/1/51 METHODOLOGY Open Access Gene delivery in mouse auditory brainstem and hindbrain using in utero electroporation Laurence S David, Jamila Aitoubah, Lee Stephen Lesperance and Lu-Yang Wang* Abstract Background: Manipulation of gene expression via recombinant viral vectors and creation of transgenic knock-out/ in animals has revolutionized our understanding of genes that play critical roles during neuronal development and pathophysiology of neurological disorders. Recently, target-specific genetic manipulations are made possible to perform in combination with specific Cre-lines, albeit costly, labor-intensive and time consuming. Thus, alternative methods of gene manipulations to address important biological questions are highly desirable. In this study, we utilized in utero electroporation technique which involves efficient delivery of hindbrain-specific enhancer/promoter construct, Krox20 into the third ventricle of live mouse embryo to investigate green fluorescent protein (GFP) expression pattern in mouse auditory brainstem and other hindbrain neurons. Results: We created a GFP/DNA construct containing a Krox20 B enhancer and β-globin promoter to drive GFP expression in the hindbrain via injection into the third ventricle of E12 to E13.5 mice. Electrical currents were applied directly to the embryonic hindbrain to allow DNA uptake into the cell. Confocal images were then acquired from fixed brain slices to analyze GFP expression in mouse whole brain at different postnatal stages (P6-P21). By using a cell-type specific enhancer as well as region specific injection and electroporation, robust GFP expression in the cerebellum and auditory brainstem but not in the forebrain was observed.
    [Show full text]
  • The Vestibulo- Cochlear Nerve)
    Cranial Nerve VIII (The Vestibulo- Cochlear Nerve) Lecture (11) ▪ Important ▪ Doctors Notes Please check our Editing File ▪ Notes/Extra explanation ه هذا العمل مب ين بشكل أسا يس عىل عمل دفعة 436 مع المراجعة { َوَم نْ يَ َت َو َ ّكْ عَ َلْ ا َّْلل فَهُ َوْ َحْ سْ ُ ُُْ} والتدقيق وإضافة المﻻحظات وﻻ يغ ين عن المصدر اﻷسا يس للمذاكرة ▪ Objectives At the end of the lecture, students should be able to: ✓ List the nuclei related to vestibular and cochlear nerves in the brain stem. ✓ Describe the type and site of each nucleus. ✓ Describe the vestibular pathways and its main connections. ✓ Describe the auditory pathway and its main connections. Due to the difference of arrangement of the lecture between the girls and boys slides we will stick to the girls slides then summarize the pathway according to the boys slides. Ponto-medullary Sulcus (cerebello- pontine angle) Recall: both cranial nerves 8 and 7 emerge from the ventral surface of the brainstem at the ponto- medullary sulcus Brain – Ventral Surface (cerebello-pontine angle) Vestibulo-Cochlear (VIII) 8th Cranial Nerve o Type: Special sensory (SSA) o Conveys impulses from inner ear to nervous system. o Components: • Vestibular part: conveys impulses associated with body posture ,balance and coordination of head & eye movements. • Cochlear part: conveys impulses associated with hearing. o Vestibular & cochlear parts attach to the ventral surface* of brain stem through the pontomedullary sulcus at the junction of the medulla & pons (cerebellopontine angle)* (lateral to facial nerve), run laterally in posterior cranial fossa and enter the internal acoustic meatus along with 7th (facial) nerve.
    [Show full text]