<<

Douglas Oliver University of Connecticut Health Center SUPERIOR OLIVE Auditory Pathways

Auditory CORTEX GLUT Cortex GABA GLY Medial Geniculate MGB Body

Inferior IC Colliculus

DLL DLL COCHLEA VLL VLL

DCN

VCN

SOC Auditory Pathways

IC Organization of

. Subdivisions and Cytoarchitecture . Neuron types . Inputs . Outputs . Synapses . Basic Circuit Cytoarchitecture of Superior Olivary Complex

LSO LSO

MSO MSO MNTB D MNTB M

(somata & dendrites) ( & endings)

Tsuchitani, 1978, Fig. 10 Comparative anatomy of SOC

Tetsufumi Ito & Shig Kuwada MSO: NTB: Binaural

medial nucleus

superior of trapezoid

olive; Basic body;

LSO:

IC: lateral Circuits inferior

superior colliculus

olive

Brodal Fig 9‐8 MSO Principle glutamate Cells

. Fusiform . Bipolar . Disc‐shaped . Each dendrite innervated by a different side MSO‐In situ hybridization

RPO

MSO

MNTB

SPO LSO

VGLUT1 VGLUT2 VIAAT NISSL

MSO Inputs and Synapses

H=high frequency EI - ILD L=low frequency EE - ITD LSO MSO

L L

B H B B

H G

LNTB TO LSO MNTB

E=Excitation (glutamate) ‐‐‐ I=Inhibition (glycine) ITD CODING Unlike retinal targets, the cochlear nuclei contain maps of frequency, not location. So how does the know ‘where’ a sound is coming from?

T + ITD

T

By comparing the interaural time differences (ITD) between the How is this accomplished?... LSO MSO Right Input A Right Input B C Time Code Time Code E E A A B B C C D D E E

Output Output abcde Place Code abcde Place Code Excitation MSO creates a response to Left Input Left Input Inhibition interaural time differences I Time Code E Time Code DE MSO "peak" unit LSO "trough" unit

ITD ITD Figure 14.2 Binaural Responses in MSO MSO Summary . Cytoarchitecture – Laminar stack . Neuron types ‐ glutamate . Inputs –Spherical bushy AVCN . Outputs – . Synapses – Excitatory glutamate . Basic Circuit – Coincidence detector for ITD MSO: NTB: Binaural

medial nucleus

superior of trapezoid

olive; Basic body;

LSO:

IC: lateral Circuits inferior

superior colliculus

olive

Brodal Fig 9‐8 LSO‐In situ hybridization

RPO

MSO

MNTB

SPO LSO

VGLUT1 VGLUT2 VIAAT NISSL Calyx VGLUT1 LSO Inputs and Synapses

H=high frequency EI - ILD EE - ITD L=low frequency LSO MSO

L L

B H B B

H G

MNTB

E=Excitation (glutamate) ‐‐‐ I=Inhibition (glycine) MSO LSO Right Input A Right Input B C Time Code Time Code E E A A B B C C D D E E

Output Output abcde Place Code abcde Place Code Excitation Left Input Left Input Inhibition I Time Code E Time Code DE MSO "peak" unit LSO "trough" unit

ITD ITD Figure 14.2 Binaural Responses in Superior Olive ILD CODING

ITDs work only for the low frequency components of sound

What about higher frequencies?

Louder Softer

The sound shadow cast by the head produces interaural level differences

How is this comparison made?... LSO vs MNTB Response to ILD LSO Creates ILD Responses

. EI inputs to LSO . When sound is louder in ipsilateral , LSO neurons fire action potentials . When sound is louder in the contralateral ear, LSO neurons are inhibited

EI - ILD EE - ITD LSO MSO L L

B H E B B H G I MNTB MSO: NTB:

medial nucleus Output

superior of trapezoid

olive; of glutamate

body;

LSO: SOC

IC: lateral

inferior to

superior

glycine IC colliculus

olive

Brodal Fig 9‐8 LSO Summary . Cytoarchitecture –S‐shaped laminae . Neuron types – glutamate or glycine . Inputs –  Spherical bushy AVCN ipsilateral  MNTB principle cells driven by globular bushy cells contralateral . Outputs – Bilateral inferior colliculus . Synapses –  Excitatory glutamate from ipsilateral  Inhibitory glycine from MNTB . Basic Circuit –  Coincidence detector for ILD and ITD Periolivary‐In situ hybridization

RPO

MSO

MNTB

SPO LSO

VGLUT1 VGLUT2 VIAAT NISSL Periolivary Nuclei IPSILATERAL DPO VCN

SPO

VLPO

VMPO

CONTRLATERAL VCN Basic Circuit of SPON Other Inputs: Descending System Periolivary Nuclei Summary

. Neurons use GABA, glycine, or acetylcholine . Inputs from , one side only . Monaural . Output to  IC: SPON  Cochlear nucleus: VNTB & VLPO  Cochlea ‐medial OCB: VMPO & other  Cochlea ‐lateral OCB: VLPO & other