ON-LINE FIG 1. Selected Images of the Caudal Midbrain (Upper Row
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MR Imaging of Ventral Thalamic Nuclei
ORIGINAL RESEARCH MR Imaging of Ventral Thalamic Nuclei K. Yamada BACKGROUND AND PURPOSE: The Vim and VPL are important target regions of the thalamus for DBS. K. Akazawa Our aim was to clarify the anatomic locations of the ventral thalamic nuclei, including the Vim and VPL, on MR imaging. S. Yuen M. Goto MATERIALS AND METHODS: Ten healthy adult volunteers underwent MR imaging by using a 1.5T S. Matsushima whole-body scanner. The subjects included 5 men and 5 women, ranging in age from 23 to 38 years, with a mean age of 28 years. The subjects were imaged with STIR sequences (TR/TE/TI ϭ 3200 ms/15 A. Takahata ms/120 ms) and DTI with a single-shot echo-planar imaging technique (TR/TE ϭ 6000 ms/88 ms, M. Nakagawa b-value ϭ 2000 s/mm2). Tractography of the CTC and spinothalamic pathway was used to identify the K. Mineura thalamic nuclei. Tractography of the PT was used as a reference, and the results were superimposed T. Nishimura on the STIR image, FA map, and color-coded vector map. RESULTS: The Vim, VPL, and PT were all in close contact at the level through the ventral thalamus. The Vim was bounded laterally by the PT and medially by the IML. The VPL was bounded anteriorly by the Vim, laterally by the internal capsule, and medially by the IML. The posterior boundary of the VPL was defined by a band of low FA that divided the VPL from the pulvinar. CONCLUSIONS: The ventral thalamic nuclei can be identified on MR imaging by using reference structures such as the PT and the IML. -
NS201C Anatomy 1: Sensory and Motor Systems
NS201C Anatomy 1: Sensory and Motor Systems 25th January 2017 Peter Ohara Department of Anatomy [email protected] The Subdivisions and Components of the Central Nervous System Axes and Anatomical Planes of Sections of the Human and Rat Brain Development of the neural tube 1 Dorsal and ventral cell groups Dermatomes and myotomes Neural crest derivatives: 1 Neural crest derivatives: 2 Development of the neural tube 2 Timing of development of the neural tube and its derivatives Timing of development of the neural tube and its derivatives Gestational Crown-rump Structure(s) age (Weeks) length (mm) 3 3 cerebral vesicles 4 4 Optic cup, otic placode (future internal ear) 5 6 cerebral vesicles, cranial nerve nuclei 6 12 Cranial and cervical flexures, rhombic lips (future cerebellum) 7 17 Thalamus, hypothalamus, internal capsule, basal ganglia Hippocampus, fornix, olfactory bulb, longitudinal fissure that 8 30 separates the hemispheres 10 53 First callosal fibers cross the midline, early cerebellum 12 80 Major expansion of the cerebral cortex 16 134 Olfactory connections established 20 185 Gyral and sulcul patterns of the cerebral cortex established Clinical case A 68 year old woman with hypertension and diabetes develops abrupt onset numbness and tingling on the right half of the face and head and the entire right hemitrunk, right arm and right leg. She does not experience any weakness or incoordination. Physical Examination: Vitals: T 37.0° C; BP 168/87; P 86; RR 16 Cardiovascular, pulmonary, and abdominal exam are within normal limits. Neurological Examination: Mental Status: Alert and oriented x 3, 3/3 recall in 3 minutes, language fluent. -
Magnetic Resonance Imaging Techniques for Visualization of the Subthalamic Nucleus
J Neurosurg 115:971–984, 2011 Magnetic resonance imaging techniques for visualization of the subthalamic nucleus A review ELLEN J. L. BRUNENbeRG, M.SC.,1 BRAM PLATEL, PH.D.,2 PAUL A. M. HOFMAN, PH.D., M.D.,3 BART M. TER HAAR ROmeNY, PH.D.,1,4 AND VeeRLE VIsseR-VANdeWALLE, PH.D., M.D.5,6 1Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven; Departments of 3Radiology, 4Biomedical Engineering, and 5Neurosurgery, and 6Maastricht Institute for Neuromodulative Development, Maastricht University Medical Center, Maastricht, The Netherlands; and 2Fraunhofer MEVIS, Bremen, Germany The authors reviewed 70 publications on MR imaging–based targeting techniques for identifying the subtha- lamic nucleus (STN) for deep brain stimulation in patients with Parkinson disease. Of these 70 publications, 33 presented quantitatively validated results. There is still no consensus on which targeting technique to use for surgery planning; methods vary greatly between centers. Some groups apply indirect methods involving anatomical landmarks, or atlases incorporating ana- tomical or functional data. Others perform direct visualization on MR imaging, using T2-weighted spin echo or inver- sion recovery protocols. The combined studies do not offer a straightforward conclusion on the best targeting protocol. Indirect methods are not patient specific, leading to varying results between cases. On the other hand, direct targeting on MR imaging suffers from lack of contrast within the subthalamic region, resulting in a poor delineation of the STN. These defi- ciencies result in a need for intraoperative adaptation of the original target based on test stimulation with or without microelectrode recording. It is expected that future advances in MR imaging technology will lead to improvements in direct targeting. -
Neuromodulation of Whisking Related Neural Activity in Superior Colliculus
The Journal of Neuroscience, May 28, 2014 • 34(22):7683–7695 • 7683 Systems/Circuits Neuromodulation of Whisking Related Neural Activity in Superior Colliculus Tatiana Bezdudnaya and Manuel A. Castro-Alamancos Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129 The superior colliculus is part of a broader neural network that can decode whisker movements in air and on objects, which is a strategy used by behaving rats to sense the environment. The intermediate layers of the superior colliculus receive whisker-related excitatory afferents from the trigeminal complex and barrel cortex, inhibitory afferents from extrinsic and intrinsic sources, and neuromodulatory afferents from cholinergic and monoaminergic nuclei. However, it is not well known how these inputs regulate whisker-related activity in the superior colliculus. We found that barrel cortex afferents drive the superior colliculus during the middle portion of the rising phase of the whisker movement protraction elicited by artificial (fictive) whisking in anesthetized rats. In addition, both spontaneous and whisker-related neural activities in the superior colliculus are under strong inhibitory and neuromodulator control. Cholinergic stimu- lation activates the superior colliculus by increasing spontaneous firing and, in some cells, whisker-evoked responses. Monoaminergic stimulation has the opposite effects. The actions of neuromodulator and inhibitory afferents may be the basis of the different firing rates and sensory responsiveness observed in the superior colliculus of behaving animals during distinct behavioral states. Key words: acetylcholine; neuromodulation; norepinephrine; superior colliculus; whisker Introduction ment and active touch (i.e., whisking on objects; Bezdudnaya and The superior colliculus is a well known hub for sensorimotor Castro-Alamancos, 2011). -
A Network of Genetic Repression and Derepression Specifies Projection
A network of genetic repression and derepression INAUGURAL ARTICLE specifies projection fates in the developing neocortex Karpagam Srinivasana,1, Dino P. Leonea, Rosalie K. Batesona, Gergana Dobrevab, Yoshinori Kohwic, Terumi Kohwi-Shigematsuc, Rudolf Grosschedlb, and Susan K. McConnella,2 aDepartment of Biology, Stanford University, Stanford, CA 94305; bMax-Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany; and cLawrence Berkeley National Laboratory, Berkeley, CA 94720 This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2011. Contributed by Susan K. McConnell, September 28, 2012 (sent for review August 24, 2012) Neurons within each layer in the mammalian cortex have stereotypic which results in a suppression of corticothalamic and callosal projections. Four genes—Fezf2, Ctip2, Tbr1, and Satb2—regulate fates, respectively, and axon extension along the corticospinal these projection identities. These genes also interact with each tract (CST). Fezf2 mutant neurons fail to repress Satb2 and Tbr1, other, and it is unclear how these interactions shape the final pro- thus their axons cross the CC and/or innervate the thalamus jection identity. Here we show, by generating double mutants of inappropriately. Fezf2, Ctip2, and Satb2, that cortical neurons deploy a complex In callosal projection neurons, Satb2 represses the expression Ctip2 Bhlhb5 genetic switch that uses mutual repression to produce subcortical of and , leading to a repression of subcerebral fates. Satb2 Tbr1 or callosal projections. We discovered that Tbr1, EphA4, and Unc5H3 Interestingly, we found that promotes expression in fi upper layer callosal neurons, and Tbr1 expression in these neu- are critical downstream targets of Satb2 in callosal fate speci ca- fi tion. -
The Superior Colliculus–Pretectum Mediates the Direct Effects of Light on Sleep
Proc. Natl. Acad. Sci. USA Vol. 95, pp. 8957–8962, July 1998 Neurobiology The superior colliculus–pretectum mediates the direct effects of light on sleep ANN M. MILLER*, WILLIAM H. OBERMEYER†,MARY BEHAN‡, AND RUTH M. BENCA†§ *Neuroscience Training Program and †Department of Psychiatry, University of Wisconsin–Madison, 6001 Research Park Boulevard, Madison, WI 53719; and ‡Department of Comparative Biosciences, University of Wisconsin–Madison, Room 3466, Veterinary Medicine Building, 2015 Linden Drive West, Madison, WI 53706 Communicated by James M. Sprague, The University of Pennsylvania School of Medicine, Philadelphia, PA, May 27, 1998 (received for review August 26, 1997) ABSTRACT Light and dark have immediate effects on greater REM sleep expression occurring in light rather than sleep and wakefulness in mammals, but the neural mecha- dark periods (8, 9). nisms underlying these effects are poorly understood. Lesions Another behavioral response of nocturnal rodents to of the visual cortex or the superior colliculus–pretectal area changes in lighting conditions consists of increased amounts of were performed in albino rats to determine retinorecipient non-REM (NREM) sleep and total sleep after lights-on and areas that mediate the effects of light on behavior, including increased wakefulness following lights-off (4). None of the rapid eye movement sleep triggering by lights-off and redis- light-induced behaviors (i.e., REM sleep, NREM sleep, or tribution of non-rapid eye movement sleep in short light–dark waking responses to lighting changes) appears to be under cycles. Acute responses to changes in light conditions were primary circadian control: the behaviors are not eliminated by virtually eliminated by superior colliculus-pretectal area le- destruction of the suprachiasmatic nucleus (24) and can be sions but not by visual cortex lesions. -
The Superior and Inferior Colliculi of the Mole (Scalopus Aquaticus Machxinus)
THE SUPERIOR AND INFERIOR COLLICULI OF THE MOLE (SCALOPUS AQUATICUS MACHXINUS) THOMAS N. JOHNSON' Laboratory of Comparative Neurology, Departmmt of Amtomy, Un&versity of hfiehigan, Ann Arbor INTRODUCTION This investigation is a study of the afferent and efferent connections of the tectum of the midbrain in the mole (Scalo- pus aquaticus machrinus). An attempt is made to correlate these findings with the known habits of the animal. A subterranean animal of the middle western portion of the United States, Scalopus aquaticus machrinus is the largest of the genus Scalopus and its habits have been more thor- oughly studied than those of others of this genus according to Jackson ('15) and Hamilton ('43). This animal prefers a well-drained, loose soil. It usually frequents open fields and pastures but also is found in thin woods and meadows. Following a rain, new superficial burrows just below the surface of the ground are pushed in all directions to facili- tate the capture of worms and other soil life. Ten inches or more below the surface the regular permanent highway is constructed; the mole retreats here during long periods of dry weather or when frost is in the ground. The principal food is earthworms although, under some circumstances, larvae and adult insects are the more usual fare. It has been demonstrated conclusively that, under normal conditions, moles will eat vegetable matter. It seems not improbable that they may take considerable quantities of it at times. A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University of Michigan. -
Interruption of the Connections of the Mammillary Bodies Protects Against Generalized Pentylenetetrazol Seizures in Guinea Pigs
The Journal of Neuroscience, March 1987, 7(3): 662-670 Interruption of the Connections of the Mammillary Bodies Protects Against Generalized Pentylenetetrazol Seizures in Guinea Pigs Marek A. Mirski and James A. Ferrendelli Division of Clinical Neuropharmacology, Department of Pharmacology and Department of Neurology and Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri 63110 Electrolytic lesions in the anterior and mid-diencephalon and Morin, 1953; Gellhorn et al., 1959) fields of Fore1(Jinnai, 1966; ventral midbrain in guinea pigs were produced to examine Jinnai et al., 1969; Jinnai and Mukawa, 1970), substantianigra the effects of interruption of the fornix (FX), mammillothal- (Iadarola and Gale, 1982; Garant and Gale, 1983; Gonzalez and amic tracts (MT), and mammillary peduncles (MP), respec- Hettinger, 1984; McNamara et al., 1983, 1984), and several tively, on the expression of pentylenetetrazol (PTZ) sei- thalamic nuclei (Mullen et al., 1967; Jinnai et al., 1969; Feeney zures. As a group, all mid-diencephalic lesioned animals and Gullotta, 1972; Kusske et al., 1972; Van Straaten, 1975; had some degree of protection from the electroencephalo- Quesney et al., 1977). graphic and behavioral convulsant and lethal effects of the Recently we observed the selective metabolic activation of drug. Through a composite volume analysis of protected the mammillary bodies (MB) and their immediate connections versus unprotected animals, as well as a retrospective com- during a threshold convulsive stimulus induced by the co-in- parison between MT and non-MT lesioned animals, it was fusion of pentylenetetrazol (PTZ) and ethosuximide (ESM) demonstrated that small mid-diencephalic lesions incorpo- (Mirski and Ferrendelli, 1983). -
Neuronal Organization in the Inferior Colliculus Revisited with Cell-Type- Dependent Monosynaptic Tracing
This Accepted Manuscript has not been copyedited and formatted. The final version may differ from this version. Research Articles: Systems/Circuits Neuronal organization in the inferior colliculus revisited with cell-type- dependent monosynaptic tracing Chenggang Chen1, Mingxiu Cheng1,2, Tetsufumi Ito3 and Sen Song1 1Tsinghua Laboratory of Brain and Intelligence (THBI) and Department of Biomedical Engineering, Beijing Innovation Center for Future Chip, Center for Brain-Inspired Computing Research, McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China 2National Institute of Biological Sciences, Beijing, 102206, China 3Anatomy II, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, 920-0293, Japan DOI: 10.1523/JNEUROSCI.2173-17.2018 Received: 31 July 2017 Revised: 2 February 2018 Accepted: 7 February 2018 Published: 24 February 2018 Author contributions: C.C., T.I., and S.S. designed research; C.C. and M.C. performed research; C.C. and T.I. analyzed data; C.C. wrote the first draft of the paper; C.C., T.I., and S.S. edited the paper; C.C., T.I., and S.S. wrote the paper. Conflict of Interest: The authors declare no competing financial interests. This work was supported by funding from the National Natural Science Foundation of China (31571095, 91332122, for S.S.), Special Fund of Suzhou-Tsinghua Innovation Leading Action (for S.S.), Beijing Program on the Study of Brain-Inspired Computing System and Related Core Technologies (for S.S.), Beijing Innovation Center for Future Chip (for S.S.), and Chinese Academy of Sciences Institute of Psychology Key Laboratory of Mental Health Open Research Grant (KLMH2012K02, for S.S.), grants from Ministry of Education, Science, and Culture of Japan (KAKENHI grant, Grant numbers 16K07026 and 16H01501; for T.I.), and Takahashi Industrial and Economic Research Foundation (for T.I.). -
Regional Differences in Serotonin Content in the Nucleus of the Solitary Tract of Male Rats After Hypovolemia Produced by Polyethylene Glycol
J Physiol Sci (2013) 63:39–46 DOI 10.1007/s12576-012-0229-4 ORIGINAL PAPER Regional differences in serotonin content in the nucleus of the solitary tract of male rats after hypovolemia produced by polyethylene glycol J. Thomas Curtis • Michael B. Anderson • Kathleen S. Curtis Received: 30 June 2012 / Accepted: 6 August 2012 / Published online: 4 September 2012 Ó The Physiological Society of Japan and Springer 2012 Abstract Serotonin (5-HT) has been implicated in cen- and hormonal responses, occur over a comparatively long trally mediated compensatory responses to volume loss in period of time, whereas changes in autonomic nervous rats. Accordingly, we hypothesized that slowly developing, system activity occur in a much shorter time frame. Short- non-hypotensive hypovolemia increases serotonin in the term responses, in particular, involve low pressure baro- hindbrain nucleus of the solitary tract (NTS). We produced receptors in the heart and great veins which signal volume loss in adult male rats by administering hyperon- increased or decreased volume, and subsequently activate cotic polyethylene glycol (PEG) and then assessed 5-HT hindbrain baroreflex pathways, the connectivity and neu- levels in the NTS using measurements of tissue 5-HT rochemistry of which are well defined (for review, see [1]). content or 5-HT immunohistochemistry. The results show Activation in these pathways has been reported in response selective increases of 5-HT in the caudal NTS after PEG to increased volume [2–4] and, perhaps more familiarly, in treatment, but no change in the primary 5-HT metabolite, response to decreased volume [5–8], such as that produced 5-HIAA. -
DR. Sanaa Alshaarawy
By DR. Sanaa Alshaarawy 1 By the end of the lecture, students will be able to : Distinguish the internal structure of the components of the brain stem in different levels and the specific criteria of each level. 1. Medulla oblongata (closed, mid and open medulla) 2. Pons (caudal, mid “Trigeminal level” and rostral). 3. Mid brain ( superior and inferior colliculi). Describe the Reticular formation (structure, function and pathway) being an important content of the brain stem. 2 1. Traversed by the Central Canal. Motor Decussation*. Spinal Nucleus of Trigeminal (Trigeminal sensory nucleus)* : ➢ It is a larger sensory T.S of Caudal part of M.O. nucleus. ➢ It is the brain stem continuation of the Substantia Gelatinosa of spinal cord 3 The Nucleus Extends : Through the whole length of the brain stem and upper segments of spinal cord. It lies in all levels of M.O, medial to the spinal tract of the trigeminal. It receives pain and temperature from face, forehead. Its tract present in all levels of M.O. is formed of descending fibers that terminate in the trigeminal nucleus. 4 It is Motor Decussation. Formed by pyramidal fibers, (75-90%) cross to the opposite side They descend in the Decuss- = crossing lateral white column of the spinal cord as the lateral corticospinal tract. The uncrossed fibers form the ventral corticospinal tract. 5 Traversed by Central Canal. Larger size Gracile & Cuneate nuclei, concerned with proprioceptive deep sensations of the body. Axons of Gracile & Cuneate nuclei form the internal arcuate fibers; decussating forming Sensory Decussation. Pyramids are prominent ventrally. 6 Formed by the crossed internal arcuate fibers Medial Leminiscus: Composed of the ascending internal arcuate fibers after their crossing. -
The Responsiveness of Neurons in the Insular Gustatory Cortex of the Macaque Monkey Is Independent of Hunger
Physiology & Behavior, Vol. 42, pp. 223--229. Copyright ~ Pergamon Press plc, 1988. Printed in the U.S.A. 0031-9384/88 $3.00 + .00 The Responsiveness of Neurons in the Insular Gustatory Cortex of the Macaque Monkey is Independent of Hunger SIMON YAXLEY, EDMUND T. ROLLS 1 AND ZENON J. SIENKIEW1CZ University of Oxfi)rd, Department of Experimental Psychology South Parks Road, Oxford OXI 3UD, England Received 19 August 1986 YAXLEY, S., E. T. ROLLS AND Z. J. S1ENKIEWICZ. The responsiveness of neurons in the insular gustatory cortex of the macaque monkey is independent of hunger. PHYSIOL BEHAV 42(3) 223-229. 1988.--(1) In order to determine whether the responsiveness of neurons in the insular gustatory cortex is influenced by hunger, neuronal activity was analysed in it while macaque monkeys (Maeaca jhscicularis) were fed to satiety. The responses of single neurons in the insular gustatory cortex to the protypical taste stimuli glucose, NaCI, HCI and quinine HCI, and to fruit juice, were measured before, while, and after the monkey was fed to satiety with glucose or fruit juice. (2) While behavior turned from avid acceptance to active rejection upon repletion, the responsiveness of the neurons to the stimulus array, including the satiating solution, was unmodified. (3) It is concluded that in the insular gustatory cortex, neuronal responses to gustatory stimuli are not influenced by the normal transition from hunger to satiety. This is in contrast to the responses of a population of neurons recorded in the hypothalamus, which only respond to the taste of food when the monkey is hungry.