MRI Atlas of the Human Deep Brain Jean-Jacques Lemaire

Total Page:16

File Type:pdf, Size:1020Kb

MRI Atlas of the Human Deep Brain Jean-Jacques Lemaire MRI Atlas of the Human Deep Brain Jean-Jacques Lemaire To cite this version: Jean-Jacques Lemaire. MRI Atlas of the Human Deep Brain. 2019. hal-02116633 HAL Id: hal-02116633 https://hal.uca.fr/hal-02116633 Preprint submitted on 1 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License MRI ATLAS of the HUMAN DEEP BRAIN Jean-Jacques Lemaire, MD, PhD, neurosurgeon, University Hospital of Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA, France This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Terminologia Foundational Model Terminologia MRI Deep Brain Atlas NeuroNames (ID) neuroanatomica usages, classical and french terminologies of Anatomy (ID) Anatomica 1998 (ID) 2017 http://fipat.library.dal.ca In Riley, Olszewski & Baxter, /wp- FR (in Laget; Talairach et al, http://braininfo.rprc.washi https://www.unifr.ch/ifaa/Public/EntryPage/TA98%20 Schaltenbrand & Bailey and Acronym MDBA name content/uploads/2017/0 others usages Déjerine, Duvernoy, Guillain & ngton.edu Tree/Alpha/All%20KWIC%20EN.htm Nieuwenhuys, Voogd & Van 2/FIPAT-TNA-Front- Bertrand) Huijzen Matter.pdf hypothalamus tractus opticus tractus optique; bandelette ot optic tract optic tract (460) optic tract (62046) tractus opticus fasciculus opticus (A14.1.08.404) optique (rétrochiasmatique) nucleus dorso-medialis dorsomedial nucleus of dorsomedial nucleus nucleus hypothalami; nucleus dorsomedial nucleus of nucleus dorsomedialis noyau dorso-médian de dm-nu-hypot the hypothalamus of hypothalamus dorsomedialis hypothalamicus dorso- hypothalamus (A14.1.08.922) l'hypothalamus (397) (62331) hypothalami medialis; nucleus centralis infundibuli arcuate nucleus of nucleus arcuatus; infundibular nucleus of arcuate nucleus of the nucleus arcuatus noyau arqué (infundibulaire) inf-nu-hypot hypothalamus semilunaris; arcuate, infundibular, periventricular nucleus infundibular nucleus hypothalamus hypothalamus (395) (A14.1.08.923) de l'hypothalamus (63329) infundibular aire hypothalamique nucleus hypothalamicus lateral hypothalamic lateral hypothalamic lateral hypothalamic area hypothalamica areae hypothalamicae l-hypot-a lateral area latérale; zone latérale de lateralis or area hypothalamica area area (426) area (62030) lateralis (A14.1.08.929) lateralis l'hypothalamus lateralis overlapping of the lateral hypothalamic area lateral intermediate i-hypot-a n.a. and the tuberomammillary nucleus of n.a. hypothalamic area hypothalamus corpus mammillare corpus mammillare; albicans; mammillary body mammillary body (A14.1.08.402); area nucleus lateral, medial, intercalatus; ; area corps mamillaire; tubercule mb mammillary body corpus mammillare candescans; ganglion (412) (74817) hypothalamica posterior mammillary mamillaire mammilare (A14.1.08.933) dorsal nucleus of nucleus dorsalis aire hypothalamique nucleus hypothalamicus post-nu- posterior nucleus of posterior hypothalamic nucleus posterior hypothalamus hypothalami dorsal nucleus postérieure & aire posterior or area hypot hypothalamus PH area (420) hypothalami (77685) (A14.1.08.921) hypothalamique dorsale hypothalamica posterior paraventricular nucleus periventricular nucleus paraventricular nucleus nucleus periventricularis noyau paraventriculaire, pv-nu-hypot of the hypothalamus nucleus (no ID paraventricularis filiformis nucleus paraventricular of hypothalamus (A14.1.08.924) filiforme, de l'hypothalamus (427) number) hypothalami area preoptica area hypothalamica preoptic nucleus of (A14.1.08.407); area preoptic (medial, lateral, anterior) nucleus of noyau préoptique de po-nu-hypot preoptic area (377) preoptic area (62213) anterior area preoptica hypothalamus hypothalamica rostralis hypothalamus; prothalamus l'hypothalamus (chiasmatica) (A14.1.08.902) nucleus suprachiasmaticus suprachiasmatic suprachiasmatic suprachiasmatic nucleus ovoideus or (A14.1.08.911); nucleus nucleus suprachiasmatic nucleus & supra-optic noyau suprachiasmatique & nucleus & supra-optic nucleus (384); nucleus (67883); suprachiasmaticus; nucleus so-nu-hypot supraopticus suprachiasmaticus & (dorsomedial, dorsolateral, ventromedial) noyau supra-optique, de nucleus, of supraoptic nucleus supra-optic nucleus supraopticus (hypophyseus, (A14.1.08.912); area nucleus supraopticus nucleus, of hypothalamus l'hypothalamus hypothalamus (385) (62317) tangentialis) hypothalami hypothalamica rostralis (A14.1.08.902) tuberomammillary nucleus tuberomammillary tuberomammillary nucleus tm-nu-hypot nucleus of tuberomammillaris tuberomamillaris; mamilloinfundibularis noyau tubéro-mammillaire nucleus tubero-mammilaris nucleus (427) nucleus (62335) tuberomammillaris hypothalamus (A14.1.08.932) nucleus hypothalamicus ventro- ventromedial nucleus ventromedial nucleus nucleus ventromedialis nucleus ventromedial nucleus ventromedial nucleus; principal tuberis or noyau ventro-médian de medialis or ventralis tuberis vm-nu-hypot of the hypothalamus of hypothalamus hypothalami ventromedialis of hypothalamus infundibular medialis l'hypothalamus cinerei; nucleus infundibularis (398) (62332) (A14.1.08.928) hypothalami medialis subthalamus anterior zone of az-stf subthalamic n.a. anteromedial to the H field n.a. tegmental field ventrolateral and inferior region of the tegmental pontomesencephalic reticular au area U n.a. n.a. U-Field (Riley, Ziehen) formation; and more specifically of the pedunculopontine nucleus pédoncule cérébelleux supérieur; brachium superior cerebellar conjunctivum (& tractus cerebello-rubralis; brachium peduncle, superior superior cerebellar pedunculus cerebellaris brachium superior cerebellar peduncle (& commissure br-conj commissure de Wernekink, tractus cerebello-tegmentalis conjunctivum cerebellar peduncle of peduncle (72495) superior (A14.1.05.006) conjunctivum of Wernekink, horshoe commissure) entrecroisement du cerebralis the pons (1736) pédoncule cérébelleux supérieur) brachium of the brachium colliculi brachium (pedunculus) brachium of inferior brachium of inferior brachium colliculi bras conjonctival inférieur br-i-coll inferior colliculus inferioris auditory pathway (med-sial geniculate body) colliculi inferioris; caudalis; colliculus colliculus (71114) inferioris ou postérieur (480) (A14.1.06.012) posterius; inferius brachium of the brachium colliculi brachium (pedunculus) brachium of superior brachium of superior brachium colliculi bras conjonctival supérieur br-s-coll superior colliculus superioris visual pathway (lateral geniculate body) colliculi superioris; rostralis; colliculus colliculus (72417) superioris ou antérieur (474) (A14.1.06.013) anterius; superius central tegmental tract central tegmental central tegmental tractus tegmentalis tractus tegmentalis faisceau central de la calotte c-teg-tr (of the midbrain, pons) tractus tegmentalis centralis tract tract (83850) centralis (A14.1.05.325) centralis (thalamo-olivaire) (2204) central zone of ventral to the H field; it contains the cz-teg n.a. n.a. tegmentum fasciculus (bundle) Q of Sano fasciculus longitudinalis periependymalis or dorsal longitudinal fasciculus longitudinalis fasciculus dorsal or posterior longitudinal fasciculus; dorsal longitudinal dorsal longitudinal faisceau longitudinal dorsal; periacquaeductalis; tegmentalis dlon-fa fasciculus of medulla posterior, dorsalis longitudinalis dorsal longitudinal fasciculus of Schultze fascicle fasciculus (1573) faisceau de Schütz, Schüts dosrsalis; tractus bulbo- (72617) (A14.1.04.114) posterior (Schuetz or Schüts) thalamicus; periventricular fibre system dorsal zone of dz-stf: subthalamic n.a. dorsal to the H field n.a. tegmental field area tegmentalis subthlamica; nucleus of field h nucleus campi medialis containing the prelemniscal radiations; champs H, prérubrique; f-h-f Forel’s H field field H (440) campi medialis prerubral field; H; medial field; (62037) [H] (A14.1.08.704) medial field radiations de la calotte area tegmentalis H colliculus inferior or caudalis colliculus, tubercule inferior colliculus inferior colliculus colliculus inferior or posterius; corpus i-coll inferior colliculus colliculus inferior posterior colliculus quadrijumeau, inférieur, (476) (62404) (A14.1.06.014) quadrigeminium inferius or postérieur posterius interbrain central substance grise sous- ic-gray central gray (1584) n.a. central gray substantia grisea centralis gray ependymaire area parabigemina posterior; parabigeminal area the parabigeminal area (Riley) is contained area bigemina; area inferior parabigeminal nucleus parabigeminalis nucleus inf-pbga (1241) and cuneiform within the nucleus cuneiformis (Olszewski & aire parabigéminale cuneiformis; nuclei parabigeminal area nucleus (72415) (A14.1.06.320) parabigeminalis nucleus (502) Baxter) cuneiformis and subcuneiformis nucleus (corpus, ganglion) nucleus intercruralis or interpeduncular
Recommended publications
  • Anatomy of the Temporal Lobe
    Hindawi Publishing Corporation Epilepsy Research and Treatment Volume 2012, Article ID 176157, 12 pages doi:10.1155/2012/176157 Review Article AnatomyoftheTemporalLobe J. A. Kiernan Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1 Correspondence should be addressed to J. A. Kiernan, [email protected] Received 6 October 2011; Accepted 3 December 2011 Academic Editor: Seyed M. Mirsattari Copyright © 2012 J. A. Kiernan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation.
    [Show full text]
  • The Human Thalamus Is an Integrative Hub for Functional Brain Networks
    5594 • The Journal of Neuroscience, June 7, 2017 • 37(23):5594–5607 Behavioral/Cognitive The Human Thalamus Is an Integrative Hub for Functional Brain Networks X Kai Hwang, Maxwell A. Bertolero, XWilliam B. Liu, and XMark D’Esposito Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, California 94720 The thalamus is globally connected with distributed cortical regions, yet the functional significance of this extensive thalamocortical connectivityremainslargelyunknown.Byperforminggraph-theoreticanalysesonthalamocorticalfunctionalconnectivitydatacollected from human participants, we found that most thalamic subdivisions display network properties that are capable of integrating multi- modal information across diverse cortical functional networks. From a meta-analysis of a large dataset of functional brain-imaging experiments, we further found that the thalamus is involved in multiple cognitive functions. Finally, we found that focal thalamic lesions in humans have widespread distal effects, disrupting the modular organization of cortical functional networks. This converging evidence suggests that the human thalamus is a critical hub region that could integrate diverse information being processed throughout the cerebral cortex as well as maintain the modular structure of cortical functional networks. Key words: brain networks; diaschisis; functional connectivity; graph theory; thalamus Significance Statement The thalamus is traditionally viewed as a passive relay station of information from sensory organs or subcortical structures to the cortex. However, the thalamus has extensive connections with the entire cerebral cortex, which can also serve to integrate infor- mation processing between cortical regions. In this study, we demonstrate that multiple thalamic subdivisions display network properties that are capable of integrating information across multiple functional brain networks. Moreover, the thalamus is engaged by tasks requiring multiple cognitive functions.
    [Show full text]
  • Higher-Order Thalamic Relays Burst More Than First-Order Relays
    Higher-order thalamic relays burst more than first-order relays E. J. Ramcharan*, J. W. Gnadt†, and S. M. Sherman‡§ *Center for Complex Systems and Brain Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431; †Department of Neurobiology, State University of New York, Stony Brook, NY 11794-5230; and ‡Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, MC 0926, 316 Abbott, 947 East 58th Street, Chicago, IL 60637 Edited by Robert H. Wurtz, National Institutes of Health, Bethesda, MD, and approved July 11, 2005 (received for review April 6, 2005) There is a strong correlation between the behavior of an animal trasted with the higher-order relays, such as the pulvinar for and the firing mode (burst or tonic) of thalamic relay neurons. vision, the magnocellular (or ‘‘nonlemniscal’’) portion of the Certain differences between first- and higher-order thalamic relays medial geniculate nucleus for hearing, and the posterior medial (which relay peripheral information to the cortex versus informa- nucleus for somesthesis, which are thought to serve as a link in tion from one cortical area to another, respectively) suggest that cortico-thalamo-cortical pathways that continue to process these more bursting might occur in the higher-order relays. Accordingly, information streams. we recorded bursting behavior in single cells from awake, behav- We thought that it would be useful to extend the observations ing rhesus monkeys in first-order (the lateral geniculate nucleus, of bursting to higher-order thalamic relays in the behaving the ventral posterior nucleus, and the ventral portion of the medial monkey for the following reasons.
    [Show full text]
  • Magnetic Resonance Imaging of Mediodorsal, Pulvinar, and Centromedian Nuclei of the Thalamus in Patients with Schizophrenia
    ORIGINAL ARTICLE Magnetic Resonance Imaging of Mediodorsal, Pulvinar, and Centromedian Nuclei of the Thalamus in Patients With Schizophrenia Eileen M. Kemether, MD; Monte S. Buchsbaum, MD; William Byne, MD, PhD; Erin A. Hazlett, PhD; Mehmet Haznedar, MD; Adam M. Brickman, MPhil; Jimcy Platholi, MA; Rachel Bloom Background: Postmortem and magnetic resonance im- reduced in all 3 nuclei; differences in relative reduction aging (MRI) data have suggested volume reductions in did not differ among the nuclei. The remainder of the the mediodorsal (MDN) and pulvinar nuclei (PUL) of the thalamic volume (whole thalamus minus the volume of thalamus. The centromedian nucleus (CMN), impor- the 3 delineated nuclei) was not different between schizo- tant in attention and arousal, has not been previously stud- phrenic patients and controls, indicating that the vol- ied with MRI. ume reduction was specific to these nuclei. Volume rela- tive to brain size was reduced in all 3 nuclei and remained Methods: A sample of 41 patients with schizophrenia significant when only patients who had never been ex- (32 men and 9 women) and 60 healthy volunteers (45 posed to neuroleptic medication (n=15) were consid- men and 15 women) underwent assessment with high- ered. For the MDN, women had larger relative volumes resolution 1.2-mm thick anatomical MRI. Images were than men among controls, but men had larger volumes differentiated to enhance the edges and outline of the than women among schizophrenic patients. whole thalamus, and the MDN, PUL, and CMN were out- lined on all slices by a tracer masked to diagnostic Conclusions: Three association regions of the thala- status.
    [Show full text]
  • ON-LINE FIG 1. Selected Images of the Caudal Midbrain (Upper Row
    ON-LINE FIG 1. Selected images of the caudal midbrain (upper row) and middle pons (lower row) from 4 of 13 total postmortem brains illustrate excellent anatomic contrast reproducibility across individual datasets. Subtle variations are present. Note differences in the shape of cerebral peduncles (24), decussation of superior cerebellar peduncles (25), and spinothalamic tract (12) in the midbrain of subject D (top right). These can be attributed to individual anatomic variation, some mild distortion of the brain stem during procurement at postmortem examination, and/or differences in the axial imaging plane not easily discernable during its prescription parallel to the anterior/posterior commissure plane. The numbers in parentheses in the on-line legends refer to structures in the On-line Table. AJNR Am J Neuroradiol ●:●●2019 www.ajnr.org E1 ON-LINE FIG 3. Demonstration of the dentatorubrothalamic tract within the superior cerebellar peduncle (asterisk) and rostral brain stem. A, Axial caudal midbrain image angled 10° anterosuperior to posteroinferior relative to the ACPC plane demonstrates the tract traveling the midbrain to reach the decussation (25). B, Coronal oblique image that is perpendicular to the long axis of the hippocam- pus (structure not shown) at the level of the ventral superior cerebel- lar decussation shows a component of the dentatorubrothalamic tract arising from the cerebellar dentate nucleus (63), ascending via the superior cerebellar peduncle to the decussation (25), and then enveloping the contralateral red nucleus (3). C, Parasagittal image shows the relatively long anteroposterior dimension of this tract, which becomes less compact and distinct as it ascends toward the thalamus. ON-LINE FIG 2.
    [Show full text]
  • Learning & Memory
    Downloaded from learnmem.cshlp.org on September 27, 2021 - Published by Cold Spring Harbor Laboratory Press Review Unraveling the contributions of the diencephalon to recognition memory: A review John P. Aggleton,1,3 Julie R. Dumont,1 and Elizabeth Clea Warburton2 1School of Psychology, Cardiff University, Cardiff, CF10 3AT, Wales, United Kingdom; 2MRC Centre for Synaptic Plasticity, School of Physiology, University of Bristol, Bristol BS8 1TD, United Kingdom Both clinical investigations and studies with animals reveal nuclei within the diencephalon that are vital for recognition memory (the judgment of prior occurrence). This review seeks to identify these nuclei and to consider why they might be important for recognition memory. Despite the lack of clinical cases with circumscribed pathology within the diencepha- lon and apparent species differences, convergent evidence from a variety of sources implicates a subgroup of medial dien- cephalic nuclei. It is supposed that the key functional interactions of this subgroup of diencephalic nuclei are with the medial temporal lobe, the prefrontal cortex, and with cingulate regions. In addition, some of the clinical evidence most readily supports dual-process models of recognition, which assume two independent cognitive processes (recollective-based and familiarity-based) that combine to direct recognition judgments. From this array of information a “multi-effect multi- nuclei” model is proposed, in which the mammillary bodies and the anterior thalamic nuclei are of preeminent importance for recollective-based recognition. The medial dorsal thalamic nucleus is thought to contribute to familiarity-based recog- nition, but this nucleus, along with various midline and intralaminar thalamic nuclei, is also assumed to have broader, indirect effects upon both recollective-based and familiarity-based recognition.
    [Show full text]
  • Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics
    Published August 13, 2020 as 10.3174/ajnr.A6693 REVIEW ARTICLE Neuroimaging Advances in Deep Brain Stimulation: Review of Indications, Anatomy, and Brain Connectomics E.H. Middlebrooks, R.A. Domingo, T. Vivas-Buitrago, L. Okromelidze, T. Tsuboi, J.K. Wong, R.S. Eisinger, L. Almeida, M.R. Burns, A. Horn, R.J. Uitti, R.E. Wharen Jr, V.M. Holanda, and S.S. Grewal ABSTRACT SUMMARY: Deep brain stimulation is an established therapy for multiple brain disorders, with rapidly expanding potential indi- cations. Neuroimaging has advanced the field of deep brain stimulation through improvements in delineation of anatomy, and, more recently, application of brain connectomics. Older lesion-derived, localizationist theories of these conditions have evolved to newer, network-based “circuitopathies,” aided by the ability to directly assess these brain circuits in vivo through the use of advanced neuroimaging techniques, such as diffusion tractography and fMRI. In this review, we use a combination of ultra-high-field MR imaging and diffusion tractography to highlight relevant anatomy for the currently approved indications for deep brain stimulation in the United States: essential tremor, Parkinson disease, drug-resistant epilepsy, dystonia, and obsessive-compulsive disorder. We also review the literature regarding the use of fMRI and diffusion tractography in under- standing the role of deep brain stimulation in these disorders, as well as their potential use in both surgical targeting and de- vice programming. ABBREVIATIONS: AL ¼ ansa lenticularis; ALIC
    [Show full text]
  • Projections of Auditory Cortex to the Medial Geniculate Body of the Cat
    THE JOURNAL OF COMPARATIVE NEUROLOGY 430:27–55 (2001) Projections of Auditory Cortex to the Medial Geniculate Body of the Cat JEFFERY A. WINER,* JAMES J. DIEHL, AND DAVID T. LARUE Division of Neurobiology, Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, California 94720-3200 ABSTRACT The corticofugal projection from 12 auditory cortical fields onto the medial geniculate body was investigated in adult cats by using wheat germ agglutinin conjugated to horserad- ish peroxidase or biotinylated dextran amines. The chief goals were to determine the degree of divergence from single cortical fields, the pattern of convergence from several fields onto a single nucleus, the extent of reciprocal relations between corticothalamic and thalamocortical connections, and to contrast and compare the patterns of auditory corticogeniculate projec- tions with corticofugal input to the inferior colliculus. The main findings were that (1) single areas showed a wide range of divergence, projecting to as few as 5, and to as many as 15, thalamic nuclei; (2) most nuclei received projections from approximately five cortical areas, whereas others were the target of as few as three areas; (3) there was global corticothalamic- thalamocortical reciprocity in every experiment, and there were also significant instances of nonreciprocal projections, with the corticothalamic input often more extensive; (4) the corti- cothalamic projection was far stronger and more divergent than the corticocollicular projec- tion from the same areas, suggesting that the thalamus and the inferior colliculus receive differential degrees of corticofugal control; (5) cochleotopically organized areas had fewer corticothalamic projections than fields in which tonotopy was not a primary feature; and (6) all corticothalamic projections were topographic, focal, and clustered, indicating that areas with limited cochleotopic organization still have some internal spatial arrangement.
    [Show full text]
  • The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification
    The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification Emmanuel Mandonnet, Silvio Sarubbo, Laurent Petit To cite this version: Emmanuel Mandonnet, Silvio Sarubbo, Laurent Petit. The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.94. 10.3389/fnana.2018.00094. hal-01929504 HAL Id: hal-01929504 https://hal.archives-ouvertes.fr/hal-01929504 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 06 November 2018 doi: 10.3389/fnana.2018.00094 The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification Emmanuel Mandonnet 1* †, Silvio Sarubbo 2† and Laurent Petit 3* 1Department of Neurosurgery, Lariboisière Hospital, Paris, France, 2Division of Neurosurgery, Structural and Functional Connectivity Lab, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy, 3Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives—UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France The heterogeneity and complexity of white matter (WM) pathways of the human brain were discretely described by pioneers such as Willis, Stenon, Malpighi, Vieussens and Vicq d’Azyr up to the beginning of the 19th century.
    [Show full text]
  • Imaging the Centromedian Thalamic Nucleus Using Quantitative Susceptibility Mapping
    UC Berkeley UC Berkeley Previously Published Works Title Imaging the Centromedian Thalamic Nucleus Using Quantitative Susceptibility Mapping. Permalink https://escholarship.org/uc/item/7pm0m9bk Authors Li, Jun Li, Yufei Gutierrez, Lorenzo et al. Publication Date 2019 DOI 10.3389/fnhum.2019.00447 Peer reviewed eScholarship.org Powered by the California Digital Library University of California BRIEF RESEARCH REPORT published: 09 January 2020 doi: 10.3389/fnhum.2019.00447 Imaging the Centromedian Thalamic Nucleus Using Quantitative Susceptibility Mapping Jun Li 1†, Yufei Li 2†, Lorenzo Gutierrez 2, Wenying Xu 1, Yiwen Wu 3, Chunlei Liu 4,5, Dianyou Li 1, Bomin Sun 1, Chencheng Zhang 1* and Hongjiang Wei 2* 1Department of Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China, 2Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China, 3Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, Edited by: China, 4Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, United 5 Adolfo Ramirez-Zamora, States, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States University of Florida Health, United States The centromedian (CM) nucleus is an intralaminar thalamic nucleus that is considered as Reviewed by: a potentially effective target of deep brain stimulation (DBS) and ablative surgeries for the Wolf-Julian Neumann, Charité Medical University of Berlin, treatment of multiple neurological and psychiatric disorders. However, the structure of Germany CM is invisible on the standard T1- and T2-weighted (T1w and T2w) magnetic resonance Zhijiang Wang, Peking University Sixth Hospital, images, which hamper it as a direct DBS target for clinical applications.
    [Show full text]
  • Motor Systems Basal Ganglia
    Motor systems 409 Basal Ganglia You have just read about the different motor-related cortical areas. Premotor areas are involved in planning, while MI is involved in execution. What you don’t know is that the cortical areas involved in movement control need “help” from other brain circuits in order to smoothly orchestrate motor behaviors. One of these circuits involves a group of structures deep in the brain called the basal ganglia. While their exact motor function is still debated, the basal ganglia clearly regulate movement. Without information from the basal ganglia, the cortex is unable to properly direct motor control, and the deficits seen in Parkinson’s and Huntington’s disease and related movement disorders become apparent. Let’s start with the anatomy of the basal ganglia. The important “players” are identified in the adjacent figure. The caudate and putamen have similar functions, and we will consider them as one in this discussion. Together the caudate and putamen are called the neostriatum or simply striatum. All input to the basal ganglia circuit comes via the striatum. This input comes mainly from motor cortical areas. Notice that the caudate (L. tail) appears twice in many frontal brain sections. This is because the caudate curves around with the lateral ventricle. The head of the caudate is most anterior. It gives rise to a body whose “tail” extends with the ventricle into the temporal lobe (the “ball” at the end of the tail is the amygdala, whose limbic functions you will learn about later). Medial to the putamen is the globus pallidus (GP).
    [Show full text]
  • Targeting the Centromedian Thalamic Nucleus for Deep Brain Stimulation
    medRxiv preprint doi: https://doi.org/10.1101/19008136; this version posted October 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Title: Targeting the centromedian thalamic nucleus for deep brain stimulation Authors: Aaron E.L Warren1,2,3, Linda J. Dalic1,3,4, Wesley Thevathasan4,5,6, Annie Roten1, Kristian J. Bulluss5,7,8, John S. Archer1,2,3,4 1Department of Medicine (Austin Health), University of Melbourne, Heidelberg, Victoria, Australia 2Murdoch Children’s Research Institute, Parkville, Victoria, Australia 3The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia 4Department of Neurology, Austin Health, Heidelberg, Victoria, Australia 5Bionics Institute, East Melbourne, Victoria, Australia 6Department of Medicine, University of Melbourne, and Department of Neurology, The Royal Melbourne Hospital, Parkville, Victoria, Australia 7Department of Neurosurgery, Austin Health, Heidelberg, Victoria, Australia 8Department of Surgery, University of Melbourne, Parkville, Victoria, Australia Corresponding author: Aaron E.L. Warren Ph: +613 9035 7110 Email: [email protected] Address: Melbourne Brain Centre, 245 Burgundy Street, Heidelberg, VIC, Australia 3084 Key words: Deep brain stimulation, centromedian nucleus, thalamus, epilepsy, Lennox- Gastaut syndrome, microelectrode recording, fMRI 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/19008136; this version posted October 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
    [Show full text]