The Basal Ganglia and Thalamus of the Long-Tailed Macaque in Stereotaxic Coordinates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Anatomy of the Temporal Lobe
Hindawi Publishing Corporation Epilepsy Research and Treatment Volume 2012, Article ID 176157, 12 pages doi:10.1155/2012/176157 Review Article AnatomyoftheTemporalLobe J. A. Kiernan Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada N6A 5C1 Correspondence should be addressed to J. A. Kiernan, [email protected] Received 6 October 2011; Accepted 3 December 2011 Academic Editor: Seyed M. Mirsattari Copyright © 2012 J. A. Kiernan. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation. -
MRI Atlas of the Human Deep Brain Jean-Jacques Lemaire
MRI Atlas of the Human Deep Brain Jean-Jacques Lemaire To cite this version: Jean-Jacques Lemaire. MRI Atlas of the Human Deep Brain. 2019. hal-02116633 HAL Id: hal-02116633 https://hal.uca.fr/hal-02116633 Preprint submitted on 1 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License MRI ATLAS of the HUMAN DEEP BRAIN Jean-Jacques Lemaire, MD, PhD, neurosurgeon, University Hospital of Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA, France This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. Terminologia Foundational Model Terminologia MRI Deep Brain Atlas NeuroNames (ID) neuroanatomica usages, classical and french terminologies of Anatomy (ID) Anatomica 1998 (ID) 2017 http://fipat.library.dal.ca In -
Regional Cerebral Glucose Utilization During Morphine Withdrawal in the Rat (Cerebral Metabolism/Limbic System/Drug Dependence) G
Proc. Natl Acad. Sci. USA Vol. 79, pp. 3360-3364, May 1982 Neurobiology Regional cerebral glucose utilization during morphine withdrawal in the rat (cerebral metabolism/limbic system/drug dependence) G. F. WOOTEN, P. DISTEFANO, AND R. C. COLLINS Departments of Neurology and Pharmacology, Division of Clinical Neuropharmacology, Washington University School of Medicine, St. Louis, Missouri 63110 Communicated by Oliver H. Lowry, February 26, 1982 ABSTRACT Regional cerebral glucose utilization was studied precipitated morphine withdrawal in the rat. A preliminary re- by 2-deoxy['4C]glucose autoradiography in morphine-dependent port of this work has appeared as an abstract (17). rats and during naloxone-induced morphine withdrawal. In mor- phine-dependent rats, glucose utilization was increased compared MATERIALS AND METHODS with naive controls uniformly (23-54%) in hippocampus, dentate gyrus, and subiculum and reduced in frontal cortex, striatum, an- Preparation of Animals. Male Sprague-Dawley rats weigh- terior ventral thalamus, and medial habenular nucleus. On pre- ing 275-325 g were used. On experimental day 1, a single pellet cipitation ofmorphine withdrawal by subcutaneous administration containing 75 mg of morphine as free base was implanted sub- of naloxone at 0.5 mg/kg to morphine-dependent rats, glucose cutaneously under light ether anesthesia. On day 4, two pellets, utilization was increased in the central nucleus ofamygdala (51%), each containing 75 mg of morphine as free base, were im- lateral mammillary nucleus (40%), lateral habenular nucleus planted. On day 7, after being deprived of food for 12 hr, the (39%), medial mammillary nucleus (35%), and medial septal nu- rats were lightly anesthetized with 2% halothane, the pellets cleus (35%) (all, P < 0.01). -
The Hypothalamus and Periaqueductal Gray Are the Sources of Dopamine Fibers in the Paraventricular Nucleus of the Thalamus in Th
ORIGINAL RESEARCH ARTICLE published: 20 November 2014 NEUROANATOMY doi: 10.3389/fnana.2014.00136 The hypothalamus and periaqueductal gray are the sources of dopamine fibers in the paraventricular nucleus of the thalamus in the rat Sa Li 1,2, Yuxiu Shi 1* and Gilbert J. Kirouac 2,3 1 PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China 2 Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, MB, Canada 3 Department of Psychiatry, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada Edited by: The paraventricular nucleus of the thalamus (PVT) sends a very dense projection to the Kathleen S. Rockland, Boston nucleus accumbens. This area of the striatum plays a key role in motivation and recent University School Medicine, USA experimental evidence indicates that the PVT may have a similar function. It is well known Reviewed by: Ariel Y. Deutch, Vanderbilt that a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus University Medical Center, USA accumbens is a key regulator of motivation and reward-related behavior. Dopamine (DA) Carmen Cavada, Universidad fibers have also been localized in the PVT but the source of these fibers in the rat Autonoma de Madrid, Spain has not been unequivocally identified. The present study was done to re-examine this *Correspondence: question. Small iontophoretic injections of cholera toxin B (CTb) were made in the PVT Yuxiu Shi, PTSD Laboratory, Department of Histology and to retrogradely label tyrosine hydroxylase (TH) neurons. Neurons that were double-labeled Embryology, Institute of Pathology for TH/CTb were found scattered in DA cell groups of the hypothalamus (ventrorostral and Pathophysiology, China Medical A10, A11, A13, A15 DA cell groups) and the midbrain (dorsocaudal A10 embedded in the University, Basic Medical Sciences periaqueductal gray). -
Hypothesis-Driven Structural Connectivity Analysis Supports Network Over Hierarchical Model of Brain Architecture
Hypothesis-driven structural connectivity analysis supports network over hierarchical model of brain architecture Richard H. Thompson and Larry W. Swanson1 Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 Contributed by Larry W. Swanson, June 30, 2010 (sent for review May 14, 2010) The brain is usually described as hierarchically organized, although (9) and a massive input from the SUBv (10). Only two major an alternative network model has been proposed. To help distin- brainstem inputs were identified: the dorsal raphé (DR), the guish between these two fundamentally different structure-function presumptive source of ACBdmt serotonin (11), and the inter- hypotheses, we developed an experimental circuit-tracing strategy fascicular nucleus (IF), the presumptive source of ACBdmt do- that can be applied to any starting point in the nervous system and pamine (12) that is medial to the expected ventral tegmental area then systematically expanded, and applied it to a previously obscure (VTA) itself (13). Thus, the ACBdmt receives direct inputs from dorsomedial corner of the nucleus accumbens identified functionally three massively interconnected cerebral regions implicated in as a “hedonic hot spot.” A highly topographically organized set of stress and depression, as well as restricted brainstem sites pro- connections involving expected and unexpected gray matter regions viding dopaminergic and serotonergic terminals. was identified that prominently features regions associated with Only one ACBdmt axonal output was labeled with PHAL (Fig. appetite, stress, and clinical depression. These connections are 1A; the filled purple area is a representative injection site): a arranged as a longitudinal series of circuits (closed loops). Thus, the descending pathway through the medial forebrain bundle with two results do not support a rigidly hierarchical model of nervous system clear terminal fields. -
The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification
The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification Emmanuel Mandonnet, Silvio Sarubbo, Laurent Petit To cite this version: Emmanuel Mandonnet, Silvio Sarubbo, Laurent Petit. The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.94. 10.3389/fnana.2018.00094. hal-01929504 HAL Id: hal-01929504 https://hal.archives-ouvertes.fr/hal-01929504 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 06 November 2018 doi: 10.3389/fnana.2018.00094 The Nomenclature of Human White Matter Association Pathways: Proposal for a Systematic Taxonomic Anatomical Classification Emmanuel Mandonnet 1* †, Silvio Sarubbo 2† and Laurent Petit 3* 1Department of Neurosurgery, Lariboisière Hospital, Paris, France, 2Division of Neurosurgery, Structural and Functional Connectivity Lab, Azienda Provinciale per i Servizi Sanitari (APSS), Trento, Italy, 3Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives—UMR 5293, CNRS, CEA University of Bordeaux, Bordeaux, France The heterogeneity and complexity of white matter (WM) pathways of the human brain were discretely described by pioneers such as Willis, Stenon, Malpighi, Vieussens and Vicq d’Azyr up to the beginning of the 19th century. -
Demarcating the Anatomical Structure of the Claustrum: Piecing Together a New Functional Puddle
bioRxiv preprint doi: https://doi.org/10.1101/179879; this version posted August 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Demarcating the anatomical structure of the claustrum: piecing together a new functional puddle Christopher M Dillingham1, Bethany E Frost1, Maciej M Jankowski2, Marie AC Lambert3 and Shane M O’Mara1 1Institute of Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland 2Hebrew University of Jerusalem, Department of Neurobiology, Jerusalem, Israel 3Université de Poitiers, Faculté des Sciences Fondamentales et Appliquées, Poitiers, France Journal: Brain Structure and Function Corresponding Author Professor Shane O’Mara Room 3.43, Institute of Neuroscience Lloyd Building Trinity College Dublin College Green Dublin 2 Ireland Tel: +353 (01) 896 8447 Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/179879; this version posted August 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Background: A major obstacle in the understanding of the functional anatomy of the claustrum has been, and continues to be, the contradiction surrounding its anatomical boundary and, in particular, its rostral (i.e. anterior to striatum), extent. In a recent review we highlighted gene expression-based evidence from the mouse brain which lends weight to the idea that the anatomical boundary of the claustrum does in fact extend rostral to the anterior apex of the striatum. -
A Time-Dependent Role of Midline Thalamic Nuclei in the Retrieval of Fear Memory
Neuropharmacology 62 (2012) 457e463 Contents lists available at SciVerse ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm A time-dependent role of midline thalamic nuclei in the retrieval of fear memory Nancy Padilla-Coreano1, Fabricio H. Do-Monte1, Gregory J. Quirk* Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan 00936, Puerto Rico article info abstract Article history: Increasing evidence indicates that the medial prefrontal cortex (mPFC) and the amygdala mediate Received 6 June 2011 expression and extinction of conditioned fear, but few studies have examined the inputs to these Received in revised form structures. The dorsal part of the midline thalamus (dMT) contains structures such as the mediodorsal 21 August 2011 nucleus, paraventricular nucleus, and paratenial nucleus that project prominently to mPFC, as well as to Accepted 22 August 2011 basal (BA) and central (Ce) nuclei of the amygdala. Using temporary inactivation with GABA agonist muscimol, we found that dMT was necessary for retrieving auditory fear memory that was 24 h old, but Keywords: not 2e8 h old. However, pre-training infusions did not impair fear acquisition or extinction. To determine Thalamus Central amygdala the possible targets of dMT that might modulate fear retrieval, we combined dMT inactivation with Fos Fos immunohistochemistry. Rats with inactivation-induced impairment in fear retrieval showed increased Prefrontal cortex Fos in the lateral division of Ce (CeL), and decreased Fos in the medial division of Ce. No differences in Fos Extinction expression were observed in the mPFC or BA. We suggest that the projections from the paraventricular nucleus to CeL are involved in retrieval of well consolidated fear memories. -
Arterial Patterns of the Rat Rhinencephalon and Related Structures
EXPEKIRIEN'TAI. NE~'ROI.OGY 49, 671-690 (1975) Arterial Patterns of the Rat Rhinencephalon and Related Structures PETER CoYLE1 Rccciz*cd J~r~w 7. 19i5 Course and distribution information on arteries in the rat rhinencephalon was not found in the literature. Such data are useful for designing experi- ments and interpreting findings, tracing nerve fibers on or to intracerebral vessels, and in considering routes for diffusion or transport of intracerebral injected agents. Adult rats were perfused with silicone rubber and many brains were cleared in glycerin. The major arteries to the olfactory bulb stem from the anterior cerebral artery. A middle cerebral arterial ramus could provide a collateral source. The septum receives supply exclusively from the anterior cerebral artery. A rostra1 lesion in the medial septum would most likely involve arteries supplying more caudal structures includ- ing hippocampal afferent and efferent fibers. No anastomoses between septal arteries or with middle or posterior cerebral arterial rami were observed. The cingulate cortex receives anterior cerebral arterial branches with the middle cerebral artery being a collateral source. The amygdala and over- lying cortex receive branches of the internal carotid and middle cerebral arteries. Transverse arteries in the hippocampal fissure stem from the longitudinal hippocampal artery, a branch of the posterior cerebral artery, to nourish the hippocampus and portions of the fascia dentata. Other branches supply the remainder of the fascia dentata, entorhinal and sub- icular structures, and certain vessels anastomose with middle cerebral arterial rami. A transverse artery occlusion would probably result in a lesion : No intracerebral arterial anastomoses were observed. -
Projections of the Paraventricular and Paratenial Nuclei of the Dorsal Midline Thalamus in the Rat
THE JOURNAL OF COMPARATIVE NEUROLOGY 508:212–237 (2008) Projections of the Paraventricular and Paratenial Nuclei of the Dorsal Midline Thalamus in the Rat ROBERT P. VERTES* AND WALTER B. HOOVER Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431 ABSTRACT The paraventricular (PV) and paratenial (PT) nuclei are prominent cell groups of the midline thalamus. To our knowledge, only a single early report has examined PV projections and no previous study has comprehensively analyzed PT projections. By using the antero- grade anatomical tracer, Phaseolus vulgaris leucoagglutinin, and the retrograde tracer, FluoroGold, we examined the efferent projections of PV and PT. We showed that the output of PV is virtually directed to a discrete set of limbic forebrain structures, including ‘limbic’ regions of the cortex. These include the infralimbic, prelimbic, dorsal agranular insular, and entorhinal cortices, the ventral subiculum of the hippocampus, dorsal tenia tecta, claustrum, lateral septum, dorsal striatum, nucleus accumbens (core and shell), olfactory tubercle, bed nucleus of stria terminalis (BST), medial, central, cortical, and basal nuclei of amygdala, and the suprachiasmatic, arcuate, and dorsomedial nuclei of the hypothalamus. The posterior PV distributes more heavily than the anterior PV to the dorsal striatum and to the central and basal nuclei of amygdala. PT projections significantly overlap with those of PV, with some important differences. PT distributes less heavily than PV to BST and to the amygdala, but much more densely to the medial prefrontal and entorhinal cortices and to the ventral subiculum of hippocampus. As described herein, PV/PT receive a vast array of afferents from the brainstem, hypothalamus, and limbic forebrain, related to arousal and attentive states of the animal, and would appear to channel that information to structures of the limbic forebrain in the selection of appropriate responses to changing environmental conditions. -
A 3D Population-Based Brain Atlas of the Mouse Lemur Primate with Examples of Applications in Aging Studies and Comparative Anatomy
NeuroImage 185 (2019) 85–95 Contents lists available at ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/neuroimage A 3D population-based brain atlas of the mouse lemur primate with examples of applications in aging studies and comparative anatomy Nachiket A. Nadkarni a,b, Salma Bougacha a,b,c,d,Clement Garin a,b, Marc Dhenain a,b,*, Jean-Luc Picq a,b,e a Centre National de la Recherche Scientifique (CNRS), Universite Paris-Sud, Universite Paris-Saclay, UMR 9199, Neurodegenerative Diseases Laboratory, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France b Commissariat al ’Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, 18 Route du Panorama, F-92265, Fontenay-aux-Roses, France c Inserm, Inserm UMR-S U1237, Normandie Univ, UNICAEN, GIP Cyceron, Caen, France d Normandie University, UNICAEN, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Memoire Humaine, 14000, Caen, France e Laboratoire de Psychopathologie et de Neuropsychologie, EA 2027, Universite Paris 8, 2 Rue de la, Liberte, 93000, St Denis, France ARTICLE INFO ABSTRACT Keywords: The gray mouse lemur (Microcebus murinus) is a small prosimian of growing interest for studies of primate biology Atlas and evolution, and notably as a model organism of brain aging. As brain atlases are essential tools for brain Cerebral atrophy investigation, the objective of the current work was to create the first 3D digital atlas of the mouse lemur brain. Comparative anatomy For this, a template image was constructed from in vivo magnetic resonance imaging (MRI) data of 34 animals. -
2008 Neuroimage 42 Dorr.Pdf
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy www.elsevier.com/locate/ynimg NeuroImage 42 (2008) 60–69 High resolution three-dimensional brain atlas using an average magnetic resonance image of 40 adult C57Bl/6J mice ⁎ A.E. Dorr,a J.P. Lerch,b S. Spring,b N. Kabani,a, ,1 and R.M. Henkelmanb,1 aClinical Integrative Biology, Sunnybrook Health Sciences Centre, Toronto ON, Canada bMouse Imaging Centre, Hospital for Sick Children, Toronto Centre for Phenogenomics, Toronto ON, Canada Received 30 November 2007; revised 26 February 2008; accepted 16 March 2008 Available online 8 April 2008 Detailed anatomical atlases can provide considerable interpretive power of the underlying anatomy along with high-resolution MR scans in studies of both human and rodent neuroanatomy. Here we describe upon which to base the segmentation. a three-dimensional atlas of the mouse brain, manually segmented To date, a few structural murine brain atlases have been created μ into 62 structures, based on an average of 32 m isotropic resolution with the aid of MRI on neonatal and postnatal mice; each study using T -weighted, within skull images of forty 12 week old C57Bl/6J mice, 2 differing methodologies and characteristics.