Projections of the Paraventricular and Paratenial Nuclei of the Dorsal Midline Thalamus in the Rat

Total Page:16

File Type:pdf, Size:1020Kb

Projections of the Paraventricular and Paratenial Nuclei of the Dorsal Midline Thalamus in the Rat THE JOURNAL OF COMPARATIVE NEUROLOGY 508:212–237 (2008) Projections of the Paraventricular and Paratenial Nuclei of the Dorsal Midline Thalamus in the Rat ROBERT P. VERTES* AND WALTER B. HOOVER Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida 33431 ABSTRACT The paraventricular (PV) and paratenial (PT) nuclei are prominent cell groups of the midline thalamus. To our knowledge, only a single early report has examined PV projections and no previous study has comprehensively analyzed PT projections. By using the antero- grade anatomical tracer, Phaseolus vulgaris leucoagglutinin, and the retrograde tracer, FluoroGold, we examined the efferent projections of PV and PT. We showed that the output of PV is virtually directed to a discrete set of limbic forebrain structures, including ‘limbic’ regions of the cortex. These include the infralimbic, prelimbic, dorsal agranular insular, and entorhinal cortices, the ventral subiculum of the hippocampus, dorsal tenia tecta, claustrum, lateral septum, dorsal striatum, nucleus accumbens (core and shell), olfactory tubercle, bed nucleus of stria terminalis (BST), medial, central, cortical, and basal nuclei of amygdala, and the suprachiasmatic, arcuate, and dorsomedial nuclei of the hypothalamus. The posterior PV distributes more heavily than the anterior PV to the dorsal striatum and to the central and basal nuclei of amygdala. PT projections significantly overlap with those of PV, with some important differences. PT distributes less heavily than PV to BST and to the amygdala, but much more densely to the medial prefrontal and entorhinal cortices and to the ventral subiculum of hippocampus. As described herein, PV/PT receive a vast array of afferents from the brainstem, hypothalamus, and limbic forebrain, related to arousal and attentive states of the animal, and would appear to channel that information to structures of the limbic forebrain in the selection of appropriate responses to changing environmental conditions. Depending on the specific complement of emotionally associated information reaching PV/PT at any one time, PV/PT would appear positioned, by actions on the limbic forebrain, to direct behavior toward a particular outcome over a range of outcomes. J. Comp. Neurol. 508: 212–237, 2008. © 2008 Wiley-Liss, Inc. Indexing terms: medial prefrontal cortex; subiculum of hippocampus; nucleus accumbens; bed nucleus of stria terminalis; central and basal nuclei of amygdala The paraventricular and paratenial nuclei are promi- global effects on the cortical mantle (Bentivoglio et al., nent cell groups of the midline thalamus (Swanson, 1998; 1991; Groenewegen and Berendse, 1994). The notion, how- Van der Werf et al., 2002). The paraventricular nucleus ever, of the midline thalamus as ‘nonspecific’ has been (PV) lies dorsally on the midline directly below the third revised based on the subsequent anatomical demonstra- ventricle and extends rostrocaudally virtually throughout the thalamus. The paratenial nucleus (PT) borders PV laterally and overlaps with approximately the rostral one- Grant sponsor: National Institute of Mental Health; Grant numbers: third of PV. MH42900, MH63519. Based on the early demonstration that low-frequency *Correspondence to: Dr. Robert P. Vertes, Center for Complex Systems stimulation of the midline and intralaminar nuclei of the and Brain Sciences, Florida Atlantic University, Boca Raton, FL 33431. E-mail: [email protected] thalamus produced slow synchronous activity over wide- Received 29 August 2007; Revised 20 December 2007; Accepted 10 Jan- spread regions of the cortex (recruiting responses) (Demp- uary 2008 sey and Morrison, 1942), the midline thalamus was DOI 10.1002/cne.21679 viewed as ‘nonspecific’ thalamus, exerting nonspecific or Published online in Wiley InterScience (www.interscience.wiley.com). © 2008 WILEY-LISS, INC. The Journal of Comparative Neurology EFFERENTS OF PV AND PT NUCLEI 213 tion that nuclei of the midline thalamus do not project (mPFC) and ACC were themselves directly connected widely throughout the neocortex, but rather selectively to (mPFC to ACC). With respect to the paraventricular nu- specific regions of cortex, primarily those of the prefrontal cleus, PV distributes to the prelimbic cortex (of mPFC) cortex (Berendse and Groenewegen, 1991; Van der Werf et and to the medial shell region of ACC, and PL, in turn, al., 2002; Groenewegen and Witter, 2004; Vertes, 2006). In projects to the shell of ACC (Berendse and Groenewegen, addition, recent reports have shown that stimulation of 1990, 1991; Berendse et al., 1992). individual nuclei of the midline thalamus produce selec- Undoubtedly owing to the early emphasis on PV projec- tive effects on their cortical targets—as opposed to wide- tions to the ventral striatum and to mPFC, subsequent spread actions throughout the cortex (Dolleman-Van der reports largely focused on these target sites. Using dual Weel et al., 1997; Bertram and Zhang, 1999; Kung and retrograde labeling techniques, Otake and Nakamura Shyu, 2002; Zhang and Bertram, 2002; Viana Di Prisco (1998) reported that of the nuclei of the midline thalamus, and Vertes, 2006). PV contained the largest percentage of cells with collat- In a series of reports, Groenewegen and colleagues (Be- eral projections to ACC and mPFC. In like manner, Bub- rendse and Groenewegen, 1990, 1991; Berendse et al., ser and Deutch (1998) showed that Ϸ15% of PV cells 1992; Groenewegen et al., 1999) showed that major tar- distribute via collaterals to the medial shell of ACC and PL, gets of midline thalamic nuclei were the prefrontal cortex while Pinto et al. (2003) demonstrated that PV fibers termi- and ventral striatum (nucleus accumbens, ACC), and fur- nate in close apposition to dopaminergic (DA) terminals in ther that recipient zones in the medial prefrontal cortex nucleus accumbens, but not to DA terminals in the mPFC. Abbreviations AA Anterior amygdaloid area MFB Medial forebrain bundle ac Anterior commissure MG Medial geniculate nucleus of thalamus AC Anterior cingulate cortex MH Medial habenula ACC,c,s Nucleus accumbens, core and shell divisions MO Medial orbital cortex AGm Medial agranular (frontal) cortex mPFC Medial prefrontal cortex AGl Lateral agranular (frontal) cortex MPO Medial preoptic area AH Anterior nucleus of hypothalamus MPN Medial preoptic nucleus AI,d,p,v Agranular insular cortex, dorsal, posterior, ventral divi- MRF Mesencephalic reticular formation sions MS Medial septum AM Anteromedial nucleus of thalamus mt Mammillothalamic tract AON Anterior olfactory nucleus OC Occipital cortex AV Anteroventral nucleus of thalamus OT Olfactory tubercle BLA Basolateral nucleus of amygdala PAp Posterior parietal cortex BMA Basomedial nucleus of amygdala PC Paracentral nucleus of thalamus BST Bed nucleus of stria terminalis PFC Prefrontal cortex CA1,3 Field CA1 and CA3 of Ammon’s horn PH Posterior nucleus of hypothalamus cc Corpus callosum PHA-L Phaseolus vulgaris-leucoagglutinin CEA,c,l,m Central nucleus of amygdala, capsular, lateral, and me- PIR Piriform cortex dial divisions PL Prelimbic cortex CL Central lateral nucleus of the thalamus PO Posterior nucleus of thalamus CLA Claustrum PRC Perirhinal cortex CM Central medial nucleus of thalamus PT Paratenial nucleus of thalamus COA,a,p Cortical nucleus of amygdala, anterior, posterior divisions PV,a,p Paraventricular nucleus of thalamus, anterior and poste- CP Caudate-putamen rior divisions DBh Nucleus of diagonal band, horizontal limb RE Nucleus reuniens of thalamus DMh Dorsomedial nucleus of hypothalamus RH Rhomboid nucleus of thalamus EC,l Entorhinal cortex, lateral division RN Red nucleus ECT Ectorhinal cortex RSC Retrosplenial cortex EN Endopiriform nucleus RT Reticular nucleus of thalamus fa Forceps of the corpus callosum SC Superior colliculus FG Fluorogold SCN Suprachiasmatic nucleus FI Fimbria of hippocampus SI Substantia innominata FP,l,m Frontal polar cortex, lateral, medial divisions sm Stria medullaris FS Fundus of striatum SM Submedial nucleus of thalamus GI Granular insular cortex SNr Substantia nigra, pars reticulata GP Globus pallidus SPZ Subparaventricular zone of hypothalamus HF Hippocampal formation SSI Primary somatosensory cortex IAM Interanteromedial nucleus of thalamus SSII Secondary somatosensory cortex IL Infralimbic cortex st Stria terminalis IMD Intermediodorsal nucleus of thalamus SUB,v Subiculum, ventral division IP Interpeduncular nucleus SUM Supramammillary nucleus LA Lateral nucleus of amygdala TE Temporal cortex LD Lateral dorsal nucleus of thalamus TT,d,v Tenia tecta, dorsal and ventral divisions LH Lateral habenula V3 Third ventricle LHy Lateral hypothalamus VAL Ventral anterior nucleus of thalamus LO Lateral orbital cortex VB Ventral basal nucleus of thalamus LP Lateral posterior nucleus of thalamus VL Lateral ventricle LPO Lateral preoptic area VLO Ventrolateral orbital cortex LS Lateral septum VM Ventral medial nucleus of thalamus MA Magnocellular preoptic nucleus VO Ventral orbital cortex MD Mediodorsal nucleus of thalamus VTA Ventral tegmental area MEA Medial nucleus of the amygdala ZI Zona incerta The Journal of Comparative Neurology 214 R.P. VERTES AND W.B. HOOVER To our knowledge, only a single report (Moga et al., ventral striatum, lateral septum, bed nucleus of stria ter- 1995) has examined the general distribution of PV projec- minalis, and to most of the amygdala, with a concentra- tions “with special emphasis on the projections to the tion in the central and basal nuclei of the amygdala. hypothalamus and
Recommended publications
  • Behavioral and Electrophysiological Properties of Nucleus Reuniens: Role in Arousal, Spatial Navigation and Cognitive Processes
    BEHAVIORAL AND ELECTROPHYSIOLOGICAL PROPERTIES OF NUCLEUS REUNIENS: ROLE IN AROUSAL, SPATIAL NAVIGATION AND COGNITIVE PROCESSES by Tatiana Danela Viena A Dissertation Submitted to the Faculty of Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL December 2018 Copyright 2018 by Tatiana Danela Viena ii ACKNOWLEDGEMENTS First, I wish to express my sincere thanks to my advisor Dr. Robert P. Vertes for the opportunity to work on these experiments and for his guidance and patience in completing this project. I also would like to thank the members of my committee, Dr. Robert W. Stackman and Dr. Timothy A. Allen for their challenging questions and suggestions regarding this project, but more importantly for their support. In addition, I want to thank Dr. Stephanie Linley for patiently teaching, guiding and empowering me whenever it was needed. I am grateful to all of the undergraduate research assistants who volunteered their time to assist in the many aspects of this project. They are too many to be named here, but you know who you are! I also would like to extend my gratitude to all of the wonderful individuals who one way or another assisted me over my graduate years and the many programs that sponsored my research activities. I also want to give a special recognition to my family (Bernardo, Randee and Elysse) for their unconditional love and support; and my mother and her daily words of encouragement. Thanks for always believing in me and pushing me to get to the finish line.
    [Show full text]
  • Nucleus Reuniens Thalami Modulates Activity in Hippocampal Field CA1 Through Excitatory and Inhibitory Mechanisms
    The Journal of Neuroscience, July 15, 1997, 17(14):5640–5650 Nucleus Reuniens Thalami Modulates Activity in Hippocampal Field CA1 through Excitatory and Inhibitory Mechanisms M. J. Dolleman-Van der Weel,1,2 F. H. Lopes da Silva,2 and M. P. Witter1 1Graduate School for Neurosciences Amsterdam, Research Institute for Neurosciences, Faculty of Medicine, Department of Anatomy and Embryology, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands, and 2Institute of Neurobiology, Faculty of Biology, University of Amsterdam, 1098 SM Amsterdam, The Netherlands The nucleus reuniens thalami (RE) originates dense projections extracellularly recorded units in strata oriens/alveus and distal to CA1, forming asymmetrical synapses on spines (50%) and radiatum, indicative of the activation of local interneurons. dendrites (50%). The hypothesis that RE input modulates trans- Thus, RE seems to modulate transmission in CA1 through a mission in CA1 through excitation of both pyramidal cells and (subthreshold) depolarization of pyramidal cells and a supra- interneurons was tested using electrophysiological methods in threshold excitation of putative inhibitory oriens/alveus and the anesthetized rat. The RE–CA1 afferents were selectively radiatum interneurons. stimulated at their origin; evoked field potentials and unit ac- RE-evoked monosynaptic or disynaptic field potentials were tivity were recorded in CA1. RE-evoked depth profiles showed associated with stimulation of rostral or caudal RE, respectively. a prominent negative deflection in the stratum lacunosum- Anatomically, a projection from caudal to rostral RE was dem- moleculare and a positive one in the stratum radiatum. The onstrated that can account for the disynaptic RE–CA1 input. lacunosum-moleculare sink–radiatum source configuration is Because caudal RE receives input from the hippocampus via compatible with RE-elicited depolarization of apical dendrites the subiculum, we propose the existence of a closed RE– of pyramidal cells.
    [Show full text]
  • The Superior Colliculus–Pretectum Mediates the Direct Effects of Light on Sleep
    Proc. Natl. Acad. Sci. USA Vol. 95, pp. 8957–8962, July 1998 Neurobiology The superior colliculus–pretectum mediates the direct effects of light on sleep ANN M. MILLER*, WILLIAM H. OBERMEYER†,MARY BEHAN‡, AND RUTH M. BENCA†§ *Neuroscience Training Program and †Department of Psychiatry, University of Wisconsin–Madison, 6001 Research Park Boulevard, Madison, WI 53719; and ‡Department of Comparative Biosciences, University of Wisconsin–Madison, Room 3466, Veterinary Medicine Building, 2015 Linden Drive West, Madison, WI 53706 Communicated by James M. Sprague, The University of Pennsylvania School of Medicine, Philadelphia, PA, May 27, 1998 (received for review August 26, 1997) ABSTRACT Light and dark have immediate effects on greater REM sleep expression occurring in light rather than sleep and wakefulness in mammals, but the neural mecha- dark periods (8, 9). nisms underlying these effects are poorly understood. Lesions Another behavioral response of nocturnal rodents to of the visual cortex or the superior colliculus–pretectal area changes in lighting conditions consists of increased amounts of were performed in albino rats to determine retinorecipient non-REM (NREM) sleep and total sleep after lights-on and areas that mediate the effects of light on behavior, including increased wakefulness following lights-off (4). None of the rapid eye movement sleep triggering by lights-off and redis- light-induced behaviors (i.e., REM sleep, NREM sleep, or tribution of non-rapid eye movement sleep in short light–dark waking responses to lighting changes) appears to be under cycles. Acute responses to changes in light conditions were primary circadian control: the behaviors are not eliminated by virtually eliminated by superior colliculus-pretectal area le- destruction of the suprachiasmatic nucleus (24) and can be sions but not by visual cortex lesions.
    [Show full text]
  • The Connexions of the Amygdala
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.28.2.137 on 1 April 1965. Downloaded from J. Neurol. Neurosurg. Psychiat., 1965, 28, 137 The connexions of the amygdala W. M. COWAN, G. RAISMAN, AND T. P. S. POWELL From the Department of Human Anatomy, University of Oxford The amygdaloid nuclei have been the subject of con- to what is known of the efferent connexions of the siderable interest in recent years and have been amygdala. studied with a variety of experimental techniques (cf. Gloor, 1960). From the anatomical point of view MATERIAL AND METHODS attention has been paid mainly to the efferent connexions of these nuclei (Adey and Meyer, 1952; The brains of 26 rats in which a variety of stereotactic or Lammers and Lohman, 1957; Hall, 1960; Nauta, surgical lesions had been placed in the diencephalon and and it is now that there basal forebrain areas were used in this study. Following 1961), generally accepted survival periods of five to seven days the animals were are two main efferent pathways from the amygdala, perfused with 10 % formol-saline and after further the well-known stria terminalis and a more diffuse fixation the brains were either embedded in paraffin wax ventral pathway, a component of the longitudinal or sectioned on a freezing microtome. All the brains were association bundle of the amygdala. It has not cut in the coronal plane, and from each a regularly spaced generally been recognized, however, that in studying series was stained, the paraffin sections according to the Protected by copyright. the efferent connexions of the amygdala it is essential original Nauta and Gygax (1951) technique and the frozen first to exclude a contribution to these pathways sections with the conventional Nauta (1957) method.
    [Show full text]
  • Regional Cerebral Glucose Utilization During Morphine Withdrawal in the Rat (Cerebral Metabolism/Limbic System/Drug Dependence) G
    Proc. Natl Acad. Sci. USA Vol. 79, pp. 3360-3364, May 1982 Neurobiology Regional cerebral glucose utilization during morphine withdrawal in the rat (cerebral metabolism/limbic system/drug dependence) G. F. WOOTEN, P. DISTEFANO, AND R. C. COLLINS Departments of Neurology and Pharmacology, Division of Clinical Neuropharmacology, Washington University School of Medicine, St. Louis, Missouri 63110 Communicated by Oliver H. Lowry, February 26, 1982 ABSTRACT Regional cerebral glucose utilization was studied precipitated morphine withdrawal in the rat. A preliminary re- by 2-deoxy['4C]glucose autoradiography in morphine-dependent port of this work has appeared as an abstract (17). rats and during naloxone-induced morphine withdrawal. In mor- phine-dependent rats, glucose utilization was increased compared MATERIALS AND METHODS with naive controls uniformly (23-54%) in hippocampus, dentate gyrus, and subiculum and reduced in frontal cortex, striatum, an- Preparation of Animals. Male Sprague-Dawley rats weigh- terior ventral thalamus, and medial habenular nucleus. On pre- ing 275-325 g were used. On experimental day 1, a single pellet cipitation ofmorphine withdrawal by subcutaneous administration containing 75 mg of morphine as free base was implanted sub- of naloxone at 0.5 mg/kg to morphine-dependent rats, glucose cutaneously under light ether anesthesia. On day 4, two pellets, utilization was increased in the central nucleus ofamygdala (51%), each containing 75 mg of morphine as free base, were im- lateral mammillary nucleus (40%), lateral habenular nucleus planted. On day 7, after being deprived of food for 12 hr, the (39%), medial mammillary nucleus (35%), and medial septal nu- rats were lightly anesthetized with 2% halothane, the pellets cleus (35%) (all, P < 0.01).
    [Show full text]
  • Basic Organization of Projections from the Oval and Fusiform Nuclei of the Bed Nuclei of the Stria Terminalis in Adult Rat Brain
    THE JOURNAL OF COMPARATIVE NEUROLOGY 436:430–455 (2001) Basic Organization of Projections From the Oval and Fusiform Nuclei of the Bed Nuclei of the Stria Terminalis in Adult Rat Brain HONG-WEI DONG,1,2 GORICA D. PETROVICH,3 ALAN G. WATTS,1 AND LARRY W. SWANSON1* 1Neuroscience Program and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520 2Institute of Neuroscience, The Fourth Military Medical University, Xi’an, Shannxi 710032, China 3Department of Psychology, Johns Hopkins University, Baltimore, Maryland 21218 ABSTRACT The organization of axonal projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis (BST) was characterized with the Phaseolus vulgaris-leucoagglutinin (PHAL) anterograde tracing method in adult male rats. Within the BST, the oval nucleus (BSTov) projects very densely to the fusiform nucleus (BSTfu) and also innervates the caudal anterolateral area, anterodorsal area, rhomboid nucleus, and subcommissural zone. Outside the BST, its heaviest inputs are to the caudal substantia innominata and adjacent central amygdalar nucleus, retrorubral area, and lateral parabrachial nucleus. It generates moderate inputs to the caudal nucleus accumbens, parasubthalamic nucleus, and medial and ventrolateral divisions of the periaqueductal gray, and it sends a light input to the anterior parvicellular part of the hypothalamic paraventricular nucleus and nucleus of the solitary tract. The BSTfu displays a much more complex projection pattern. Within the BST, it densely innervates the anterodorsal area, dorsomedial nucleus, and caudal anterolateral area, and it moderately innervates the BSTov, subcommissural zone, and rhomboid nucleus. Outside the BST, the BSTfu provides dense inputs to the nucleus accumbens, caudal substantia innominata and central amygdalar nucleus, thalamic paraventricular nucleus, hypothalamic paraventricular and periventricular nuclei, hypothalamic dorsomedial nucleus, perifornical lateral hypothalamic area, and lateral tegmental nucleus.
    [Show full text]
  • The Ventral Midline Thalamus (Reuniens and Rhomboid Nuclei) Contributes to the Persistence of Spatial Memory in Rats
    The Journal of Neuroscience, July 18, 2012 • 32(29):9947–9959 • 9947 Behavioral/Systems/Cognitive The Ventral Midline Thalamus (Reuniens and Rhomboid Nuclei) Contributes to the Persistence of Spatial Memory in Rats Michae¨l Loureiro, Thibault Cholvin, Joe¨lle Lopez, Nicolas Merienne, Asma Latreche, Brigitte Cosquer, Karine Geiger, Christian Kelche, Jean-Christophe Cassel,* and Anne Pereira de Vasconcelos* Laboratoire d’Imagerie et de Neurosciences Cognitives, UMR 7237 Centre National de la Recherche Scientifique (CNRS), Universite´ de Strasbourg, Institut Fe´de´ratif de Recherche 37 de Neurosciences, GDR 2905 du CNRS, Faculte´ de Psychologie, F-67000 Strasbourg, France The formation of enduring declarative-like memories engages a dialog between the hippocampus and the prefrontal cortex (PFC). Electrophysiological and neuroanatomical evidence for reciprocal connections with both of these structures makes the reuniens and rhomboid nuclei (ReRh) of the thalamus a major functional link between the PFC and hippocampus. Using immediate early gene imaging (c-Fos), fiber-sparing excitotoxic lesion, and reversible inactivation in rats, we provide evidence demonstrating a contribution of the ReRh to the persistence of a spatial memory. Intact rats trained in a Morris water maze showed increased c-Fos expression (vs home cage and visible platform groups: Ͼ500%) in the ReRh when tested in a probe trial at a 25 d delay, against no change ata5ddelay; behavioral performance was comparable at both delays. In rats subjected to excitotoxic fiber-sparing NMDA lesions circumscribed to the ReRh, we found normal acquisition of the water-maze task (vs sham-operated controls) and normal probe trial performance at the 5 d delay, but there was no evidence for memory retrieval at the 25 d delay.
    [Show full text]
  • Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus
    The Journal of Neuroscience, May 1, 2003 • 23(9):3855–3868 • 3855 Neural Correlates of Competing Fear Behaviors Evoked by an Innately Aversive Stimulus Raymond Mongeau,1 Gabriel A. Miller,1 Elizabeth Chiang,1 and David J. Anderson1,2 1Division of Biology and 2Howard Hughes Medical Institute, California Institute of Technology, Pasadena, California 91125 Environment and experience influence defensive behaviors, but the neural circuits mediating such effects are not well understood. We describe a new experimental model in which either flight or freezing reactions can be elicited from mice by innately aversive ultrasound. Flight and freezing are negatively correlated, suggesting a competition between fear motor systems. An unfamiliar environment or a previous aversive event, moreover, can alter the balance between these behaviors. To identify potential circuits controlling this compe- tition, global activity patterns in the whole brain were surveyed in an unbiased manner by c-fos in situ hybridization, using novel experimental and analytical methods. Mice predominantly displaying freezing behavior had preferential neural activity in the lateral septum ventral and several medial and periventricular hypothalamic nuclei, whereas mice predominantly displaying flight had more activity in cortical, amygdalar, and striatal motor areas, the dorsolateral posterior zone of the hypothalamus, and the vertical limb of the diagonal band. These complementary patterns of c-fos induction, taken together with known connections between these structures, suggest ways in which the brain may mediate the balance between these opponent defensive behaviors. Key words: defense behaviors; ultrasound; C56Bl6 mice; anxiety; flight behavior; freezing behavior; septum; hypothalamus; pedunculo- pontine tegmentum; diagonal band; cingulate cortex; motor cortex; retrosplenial cortex; accumbens; caudate putamen; amygdala Introduction iors can, moreover, be altered in a predictable manner by simple Studies of defensive behaviors in rodents provide useful para- environmental manipulations.
    [Show full text]
  • Molecular and Cellular Networks in the Suprachiasmatic Nuclei
    International Journal of Molecular Sciences Review Molecular and Cellular Networks in The Suprachiasmatic Nuclei Lama El Cheikh Hussein, Patrice Mollard and Xavier Bonnefont * Institut de Génomique Fonctionnelle (IGF), University Montpellier, CNRS, INSERM, 34094 Montpellier, France; [email protected] (L.E.C.H.); [email protected] (P.M.) * Correspondence: [email protected]; Tel.: +33-4-3435-9306 Received: 1 April 2019; Accepted: 23 April 2019; Published: 25 April 2019 Abstract: Why do we experience the ailments of jetlag when we travel across time zones? Why is working night-shifts so detrimental to our health? In other words, why can’t we readily choose and stick to non-24 h rhythms? Actually, our daily behavior and physiology do not simply result from the passive reaction of our organism to the external cycle of days and nights. Instead, an internal clock drives the variations in our bodily functions with a period close to 24 h, which is supposed to enhance fitness to regular and predictable changes of our natural environment. This so-called circadian clock relies on a molecular mechanism that generates rhythmicity in virtually all of our cells. However, the robustness of the circadian clock and its resilience to phase shifts emerge from the interaction between cell-autonomous oscillators within the suprachiasmatic nuclei (SCN) of the hypothalamus. Thus, managing jetlag and other circadian disorders will undoubtedly require extensive knowledge of the functional organization of SCN cell networks. Here, we review the molecular and cellular principles of circadian timekeeping, and their integration in the multi-cellular complexity of the SCN.
    [Show full text]
  • The Hypothalamus and Periaqueductal Gray Are the Sources of Dopamine Fibers in the Paraventricular Nucleus of the Thalamus in Th
    ORIGINAL RESEARCH ARTICLE published: 20 November 2014 NEUROANATOMY doi: 10.3389/fnana.2014.00136 The hypothalamus and periaqueductal gray are the sources of dopamine fibers in the paraventricular nucleus of the thalamus in the rat Sa Li 1,2, Yuxiu Shi 1* and Gilbert J. Kirouac 2,3 1 PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China 2 Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, MB, Canada 3 Department of Psychiatry, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada Edited by: The paraventricular nucleus of the thalamus (PVT) sends a very dense projection to the Kathleen S. Rockland, Boston nucleus accumbens. This area of the striatum plays a key role in motivation and recent University School Medicine, USA experimental evidence indicates that the PVT may have a similar function. It is well known Reviewed by: Ariel Y. Deutch, Vanderbilt that a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus University Medical Center, USA accumbens is a key regulator of motivation and reward-related behavior. Dopamine (DA) Carmen Cavada, Universidad fibers have also been localized in the PVT but the source of these fibers in the rat Autonoma de Madrid, Spain has not been unequivocally identified. The present study was done to re-examine this *Correspondence: question. Small iontophoretic injections of cholera toxin B (CTb) were made in the PVT Yuxiu Shi, PTSD Laboratory, Department of Histology and to retrogradely label tyrosine hydroxylase (TH) neurons. Neurons that were double-labeled Embryology, Institute of Pathology for TH/CTb were found scattered in DA cell groups of the hypothalamus (ventrorostral and Pathophysiology, China Medical A10, A11, A13, A15 DA cell groups) and the midbrain (dorsocaudal A10 embedded in the University, Basic Medical Sciences periaqueductal gray).
    [Show full text]
  • Hypothesis-Driven Structural Connectivity Analysis Supports Network Over Hierarchical Model of Brain Architecture
    Hypothesis-driven structural connectivity analysis supports network over hierarchical model of brain architecture Richard H. Thompson and Larry W. Swanson1 Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 Contributed by Larry W. Swanson, June 30, 2010 (sent for review May 14, 2010) The brain is usually described as hierarchically organized, although (9) and a massive input from the SUBv (10). Only two major an alternative network model has been proposed. To help distin- brainstem inputs were identified: the dorsal raphé (DR), the guish between these two fundamentally different structure-function presumptive source of ACBdmt serotonin (11), and the inter- hypotheses, we developed an experimental circuit-tracing strategy fascicular nucleus (IF), the presumptive source of ACBdmt do- that can be applied to any starting point in the nervous system and pamine (12) that is medial to the expected ventral tegmental area then systematically expanded, and applied it to a previously obscure (VTA) itself (13). Thus, the ACBdmt receives direct inputs from dorsomedial corner of the nucleus accumbens identified functionally three massively interconnected cerebral regions implicated in as a “hedonic hot spot.” A highly topographically organized set of stress and depression, as well as restricted brainstem sites pro- connections involving expected and unexpected gray matter regions viding dopaminergic and serotonergic terminals. was identified that prominently features regions associated with Only one ACBdmt axonal output was labeled with PHAL (Fig. appetite, stress, and clinical depression. These connections are 1A; the filled purple area is a representative injection site): a arranged as a longitudinal series of circuits (closed loops). Thus, the descending pathway through the medial forebrain bundle with two results do not support a rigidly hierarchical model of nervous system clear terminal fields.
    [Show full text]
  • Cholinergic Regulation of the Suprachiasmatic Nucleus Circadian Rhythm Via a Muscarinic Mechanism at Night
    The Journal of Neuroscience, January 15, 1996, 16(2):744-751 Cholinergic Regulation of the Suprachiasmatic Nucleus Circadian Rhythm via a Muscarinic Mechanism at Night Chen Liul and Martha U. Gillette’,2,3 1Neuroscience Program, and Departments of 2Cell and Structural Biology and 3Physiology, University of Illinois at Urbana-Champaign, Urbana, Illinois 6 180 I In mammals, the suprachiasmatic nucleus (SCN) is responsible for agonists, muscarine and McN-A-343 (Ml-selective), but not by the generation of most circadian rhythms and for their entrainment nicotine. Furthermore, the effect of carbachol was blocked by the to environmental cues. Carbachol, an agonist of acetylcholine mAChR antagonist atropine (0.1 PM), not by two nicotinic antag- (ACh), has been shown to shift the phase of circadian rhythms in onists, dihydro-6-erythroidine (10 PM) and d-tubocurarine (10 PM). rodents when injected intracerebroventricularly. However, the site The Ml -selective mAChR antagonist pirenzepine completely and receptor type mediating this action have been unknown. In blocked the carbachol effect at 1 PM, whereas an M3-selective the present experiments, we used the hypothalamic brain-slice antagonist, 4,2-(4,4’-diacetoxydiphenylmethyl)pyridine, partially technique to study the regulation of the SCN circadian rhythm of blocked the effect at the same concentration. These results dem- neuronal firing rate by cholinergic agonists and to identify the onstrate that carbachol acts directly on the SCN to reset the receptor subtypes involved. We found that the phase of the os- phase of its firing rhythm during the subjective night via an Ml -like cillation in SCN neuronal activity was reset by a 5 min treatment mAChR.
    [Show full text]