Basic Organization of Projections from the Oval and Fusiform Nuclei of the Bed Nuclei of the Stria Terminalis in Adult Rat Brain

Total Page:16

File Type:pdf, Size:1020Kb

Basic Organization of Projections from the Oval and Fusiform Nuclei of the Bed Nuclei of the Stria Terminalis in Adult Rat Brain THE JOURNAL OF COMPARATIVE NEUROLOGY 436:430–455 (2001) Basic Organization of Projections From the Oval and Fusiform Nuclei of the Bed Nuclei of the Stria Terminalis in Adult Rat Brain HONG-WEI DONG,1,2 GORICA D. PETROVICH,3 ALAN G. WATTS,1 AND LARRY W. SWANSON1* 1Neuroscience Program and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520 2Institute of Neuroscience, The Fourth Military Medical University, Xi’an, Shannxi 710032, China 3Department of Psychology, Johns Hopkins University, Baltimore, Maryland 21218 ABSTRACT The organization of axonal projections from the oval and fusiform nuclei of the bed nuclei of the stria terminalis (BST) was characterized with the Phaseolus vulgaris-leucoagglutinin (PHAL) anterograde tracing method in adult male rats. Within the BST, the oval nucleus (BSTov) projects very densely to the fusiform nucleus (BSTfu) and also innervates the caudal anterolateral area, anterodorsal area, rhomboid nucleus, and subcommissural zone. Outside the BST, its heaviest inputs are to the caudal substantia innominata and adjacent central amygdalar nucleus, retrorubral area, and lateral parabrachial nucleus. It generates moderate inputs to the caudal nucleus accumbens, parasubthalamic nucleus, and medial and ventrolateral divisions of the periaqueductal gray, and it sends a light input to the anterior parvicellular part of the hypothalamic paraventricular nucleus and nucleus of the solitary tract. The BSTfu displays a much more complex projection pattern. Within the BST, it densely innervates the anterodorsal area, dorsomedial nucleus, and caudal anterolateral area, and it moderately innervates the BSTov, subcommissural zone, and rhomboid nucleus. Outside the BST, the BSTfu provides dense inputs to the nucleus accumbens, caudal substantia innominata and central amygdalar nucleus, thalamic paraventricular nucleus, hypothalamic paraventricular and periventricular nuclei, hypothalamic dorsomedial nucleus, perifornical lateral hypothalamic area, and lateral tegmental nucleus. Moderately dense inputs are found in the parastrial, tuberal, dorsal raphe´, and para- brachial nuclei and in the retrorubral area, ventrolateral division of the periaqueductal gray, and pontine central gray. Light projections end in the olfactory tubercle, lateral septal nucleus, posterior basolateral amygdalar nucleus, supramammillary nucleus, and nucleus of the solitary tract. These and other results suggest that the BSTov and BSTfu are basal telencephalic parts of a circuit that coordinates autonomic, neuroendocrine, and ingestive behavioral responses during stress. J. Comp. Neurol. 436:430–455, 2001. © 2001 Wiley-Liss, Inc. Indexing terms: autonomic; central amygdalar nucleus; CRH; ingestive behavior; paraventricular nucleus of the hypothalamus; stress Many studies indicate that the bed nuclei of the stria bens (ventral striatum), substantia innominata (ventral terminalis (BST) play an important role in the coordina- pallidum), hypothalamus, midline thalamic nuclei, and tion of neuroendocrine, autonomic, and somatomotor re- sponses during behaviors associated with a definite affec- tive or emotional component (Casada and Dafny, 1991; Swanson, 1991; Gray et al., 1993; Dunn and Williams, Contract grant sponsor: National Institutes of Health; Contract grant 1995; Herman and Cullinan, 1997; Risold et al., 1997; number: 2R01NS16686; Contract grant number: NS29728; Contract grant number: NSKO401833. Watts, 2001). The BST receive massive, topographically *Correspondence to: Dr. L.W. Swanson, Hedco Neuroscience Building, organized inputs from most parts of the amygdala (Kret- Rm. 428, University of Southern California, Los Angeles, CA 90089-2520. tek and Price, 1978; Weller and Smith, 1982; Dong et al., E-mail: [email protected] 2001) and in turn project massively to the nucleus accum- Received 13 February 2001; Revised 3 April 2001; Accepted 15 May 2001 © 2001 WILEY-LISS, INC. BST PROJECTIONS 431 Abbreviations AAA anterior amygdalar area CUN cuneiform nucleus ac anterior commissure DMH dorsomedial nucleus hypothalamus ACB nucleus accumbens DMHa dorsomedial nucleus hypothalamus, anterior part aco anterior commissure, olfactory limb DMHp dorsomedial nucleus hypothalamus, posterior part act anterior commissure, temporal limb DMHv dorsomedial nucleus hypothalamus, ventral part ADP anterodorsal nucleus thalamus DMX dorsal motor nucleus vagus nerve AHA anterior hypothalamic area DR dorsal nucleus raphe´ AHN anterior hypothalamic nucleus DTN dorsal tegmental nucleus AHNa anterior hypothalamic nucleus, anterior part ENTl entorhinal area, lateral part AHNc anterior hypothalamic nucleus, central part EPv endopiriform nucleus, ventral part AHNd anterior hypothalamic nucleus, dorsal part EW Edinger-Westphal nucleus AHNp anterior hypothalamic nucleus, posterior part FF fields of Forel AMd anteromedial nucleus thalamus, dorsal part fi fimbria AP area postrema fr fasciculus retroflexus AQ cerebral aqueduct FS fundus of the striatum ARH arcuate nucleus hypothalamus fx columns of the fornix AVP anteroventral preoptic nucleus GP globus pallidus AVPV anteroventral periventricular nucleus hypothalamus GPl globus pallidus, lateral segment B Barrington’s nucleus GPm globus pallidus, medial segment BA bed nucleus accessory olfactory tract GR gracile nucleus BLAa basolateral amygdalar nucleus, anterior part GRN gigantocellular reticular nucleus BLAp basolateral amygdalar nucleus, posterior part IA intercalated nuclei amygdala BMAa basomedial amygdalar nucleus, anterior part IAM interanteromedial nucleus thalamus BMAp basomedial amygdalar nucleus, posterior part ic internal capsule BST bed nuclei of the stria terminalis IC inferior colliculus BSTad bed nuclei of the stria terminalis, anterior division, an- ICc inferior colliculus, central nucleus terodorsal area ICe inferior colliculus, external nucleus BSTal bed nuclei of the stria terminalis, anterior division, an- IF interfascicular nucleus terolateral area ILA infralimbic cortical area BSTav bed nuclei of the stria terminalis, anterior division, an- IMD intermediodorsal nucleus thalamus teroventral area INS insular cortical area BSTcc bed nuclei of the stria terminalis, anterior division, an- int internal capsule terodorsal area, central core isl islands of Calleja (olfactory tubercle) BSTd bed nuclei of the stria terminalis, posterior division, dor- IVn trochlear nerve sal nucleus KF Ko¨lliker-Fuse subnucleus (of PB) BSTdl bed nuclei of the stria terminalis, anterior division, dorso- LA lateral amygdalar nucleus lateral nucleus LC locus coeruleus BSTdm bed nuclei of the stria terminalis, anterior division, dorso- LDT laterodorsal tegmental nucleus medial nucleus LH lateral habenula BSTfu bed nuclei of the stria terminalis, anterior division, fusi- LHA lateral hypothalamic area form nucleus LM lateral mammillary nucleus BSTif bed nuclei of the stria terminalis, posterior division, inter- LPO lateral preoptic area fascicular nucleus LS lateral septal nucleus BSTju bed nuclei of the stria terminalis, anterior division, juxta- LSc lateral septal nucleus, caudal part capsular nucleus BSTmg bed nuclei of the stria terminalis, anterior division, mag- LSr lateral septal nucleus, rostral part nocellular nucleus LSr.vl.v. lateral septal nucleus, rostral part, ventrolateral zone, BSTov bed nuclei of the stria terminalis, anterior division, oval ventral region nucleus LSv lateral septal nucleus, ventral part BSTpr bed nuclei of the stria terminalis, posterior division, prin- LTN lateral tegmental nucleus cipal nucleus LV lateral ventricle BSTrh bed nuclei of the stria terminalis, anterior division, rhom- MA magnocellular preoptic nucleus boid nucleus MD mediodorsal nucleus thalamus BSTsc bed nuclei of the stria terminalis, anterior division, sub- MDc mediodorsal nucleus thalamus, central part commissural zone MDl mediodorsal nucleus thalamus, lateral part BSTse bed nuclei of the stria terminalis, posterior division, stria MDm mediodorsal nucleus thalamus, medial part extension MEAad medial nucleus amygdalar, anterodorsal part BSTsz bed nuclei of the stria terminalis, posterior division, cell- MEApd medial nucleus amygdalar, posterodorsal part sparse zone MEApv medial nucleus amygdalar, posteroventral part BSTtr bed nuclei of the stria terminalis, posterior division, MEPO median preoptic nucleus transverse nucleus MEV mesencephalic nucleus of the trigeminal BSTv bed nuclei of the stria terminalis, anterior division, ven- ml medial lemniscus tral nucleus mlf medial longitudinal fascicle CA1 field CA1, ammon’s horn MM medial mammillary nucleus CA2 field CA2, ammon’s horn moV motor root of the trigeminal nerve CA3 field CA3, ammon’s horn mp mammillary peduncle CEA central nucleus amygdala MPN medial preoptic nucleus CEAc central nucleus amygdala, capsular part MPO medial preoptic area CEAl central nucleus amygdala, lateral part MRN mesencephalic reticular nucleus CEAm central nucleus amygdala, medial part MS medial septal nucleus CLI central linear nucleus raphe´ mtt mammillothalamic tract CM central medial nucleus thalamus mtV mesencephalic tract of the trigeminal nerve COAa cortical nucleus amygdala, anterior part NDB nucleus of the diagonal band COApl cortical nucleus amygdala, posterior part, lateral zone NLOT nucleus of the lateral olfactory tract COApm cortical nucleus amygdala, posterior part, medial zone NTS nucleus of solitary tract COM commissural nucleus, periaqueductal gray NTSce nucleus of the solitary tract, central part CP caudoputamen NTSge nucleus of the solitary
Recommended publications
  • Resting State Connectivity of the Human Habenula at Ultra-High Field
    Author’s Accepted Manuscript Resting State Connectivity of the Human Habenula at Ultra-High Field Salvatore Torrisi, Camilla L. Nord, Nicholas L. Balderston, Jonathan P. Roiser, Christian Grillon, Monique Ernst www.elsevier.com PII: S1053-8119(16)30587-0 DOI: http://dx.doi.org/10.1016/j.neuroimage.2016.10.034 Reference: YNIMG13531 To appear in: NeuroImage Received date: 26 August 2016 Accepted date: 20 October 2016 Cite this article as: Salvatore Torrisi, Camilla L. Nord, Nicholas L. Balderston, Jonathan P. Roiser, Christian Grillon and Monique Ernst, Resting State Connectivity of the Human Habenula at Ultra-High Field, NeuroImage, http://dx.doi.org/10.1016/j.neuroimage.2016.10.034 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. 1 Resting State Connectivity of the Human Habenula at Ultra-High Field Salvatore Torrisi1, Camilla L. Nord2, Nicholas L. Balderston1, Jonathan P. Roiser2, Christian Grillon1, Monique Ernst1 Affiliations 1 Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD 2 Neuroscience and Cognitive Neuropsychiatry group, University of College, London, UK Abstract The habenula, a portion of the epithalamus, is implicated in the pathophysiology of depression, anxiety and addiction disorders.
    [Show full text]
  • Behavioral and Electrophysiological Properties of Nucleus Reuniens: Role in Arousal, Spatial Navigation and Cognitive Processes
    BEHAVIORAL AND ELECTROPHYSIOLOGICAL PROPERTIES OF NUCLEUS REUNIENS: ROLE IN AROUSAL, SPATIAL NAVIGATION AND COGNITIVE PROCESSES by Tatiana Danela Viena A Dissertation Submitted to the Faculty of Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL December 2018 Copyright 2018 by Tatiana Danela Viena ii ACKNOWLEDGEMENTS First, I wish to express my sincere thanks to my advisor Dr. Robert P. Vertes for the opportunity to work on these experiments and for his guidance and patience in completing this project. I also would like to thank the members of my committee, Dr. Robert W. Stackman and Dr. Timothy A. Allen for their challenging questions and suggestions regarding this project, but more importantly for their support. In addition, I want to thank Dr. Stephanie Linley for patiently teaching, guiding and empowering me whenever it was needed. I am grateful to all of the undergraduate research assistants who volunteered their time to assist in the many aspects of this project. They are too many to be named here, but you know who you are! I also would like to extend my gratitude to all of the wonderful individuals who one way or another assisted me over my graduate years and the many programs that sponsored my research activities. I also want to give a special recognition to my family (Bernardo, Randee and Elysse) for their unconditional love and support; and my mother and her daily words of encouragement. Thanks for always believing in me and pushing me to get to the finish line.
    [Show full text]
  • Lesions in the Bed Nucleus of the Stria Terminalis Disrupt
    Neuroscience 128 (2004) 7–14 LESIONS IN THE BED NUCLEUS OF THE STRIA TERMINALIS DISRUPT CORTICOSTERONE AND FREEZING RESPONSES ELICITED BY A CONTEXTUAL BUT NOT BY A SPECIFIC CUE-CONDITIONED FEAR STIMULUS G. M. SULLIVAN,a* J. APERGIS,b D. E. A. BUSH,b Activation of the hypothalamic–pituitary–adrenal (HPA) L. R. JOHNSON,b M. HOUb AND J. E. LEDOUXb axis, including release of glucocorticoids, is a central com- aDepartment of Psychiatry, Columbia University College of Physicians ponent of the adaptive response to real or anticipated and Surgeons, 1051 Riverside Drive, Unit #41, New York, NY 10032, aversive physical or psychological challenge. Surprisingly USA little is known about the neural circuits by which environ- bCenter for Neural Science, New York University, 4 Washington Place, mental stimuli come to elicit HPA responses. Fear condi- New York, NY 10003, USA tioning, a behavioral model of emotional stress, is poten- tially useful for exploring this issue since the neural path- Abstract —The bed nucleus of the stria terminalis (BNST) is ways by which stimuli initiate fear behaviors and believed to be a critical relay between the central nucleus of associated autonomic responses have been characterized the amygdala (CE) and the paraventricular nucleus of the in detail (LeDoux, 2000; Davis and Whalen, 2001; Maren, hypothalamus in the control of hypothalamic–pituitary– 2001). adrenal (HPA) responses elicited by conditioned fear stimuli. Through fear conditioning an organism learns that a If correct, lesions of CE or BNST should block expression of simple sensory stimulus (a cue), or more complex environ- HPA responses elicited by either a specific conditioned fear mental representation (a context), predicts imminent ad- cue or a conditioned context.
    [Show full text]
  • Nucleus Reuniens Thalami Modulates Activity in Hippocampal Field CA1 Through Excitatory and Inhibitory Mechanisms
    The Journal of Neuroscience, July 15, 1997, 17(14):5640–5650 Nucleus Reuniens Thalami Modulates Activity in Hippocampal Field CA1 through Excitatory and Inhibitory Mechanisms M. J. Dolleman-Van der Weel,1,2 F. H. Lopes da Silva,2 and M. P. Witter1 1Graduate School for Neurosciences Amsterdam, Research Institute for Neurosciences, Faculty of Medicine, Department of Anatomy and Embryology, Vrije Universiteit, 1081 BT Amsterdam, The Netherlands, and 2Institute of Neurobiology, Faculty of Biology, University of Amsterdam, 1098 SM Amsterdam, The Netherlands The nucleus reuniens thalami (RE) originates dense projections extracellularly recorded units in strata oriens/alveus and distal to CA1, forming asymmetrical synapses on spines (50%) and radiatum, indicative of the activation of local interneurons. dendrites (50%). The hypothesis that RE input modulates trans- Thus, RE seems to modulate transmission in CA1 through a mission in CA1 through excitation of both pyramidal cells and (subthreshold) depolarization of pyramidal cells and a supra- interneurons was tested using electrophysiological methods in threshold excitation of putative inhibitory oriens/alveus and the anesthetized rat. The RE–CA1 afferents were selectively radiatum interneurons. stimulated at their origin; evoked field potentials and unit ac- RE-evoked monosynaptic or disynaptic field potentials were tivity were recorded in CA1. RE-evoked depth profiles showed associated with stimulation of rostral or caudal RE, respectively. a prominent negative deflection in the stratum lacunosum- Anatomically, a projection from caudal to rostral RE was dem- moleculare and a positive one in the stratum radiatum. The onstrated that can account for the disynaptic RE–CA1 input. lacunosum-moleculare sink–radiatum source configuration is Because caudal RE receives input from the hippocampus via compatible with RE-elicited depolarization of apical dendrites the subiculum, we propose the existence of a closed RE– of pyramidal cells.
    [Show full text]
  • The Connexions of the Amygdala
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.28.2.137 on 1 April 1965. Downloaded from J. Neurol. Neurosurg. Psychiat., 1965, 28, 137 The connexions of the amygdala W. M. COWAN, G. RAISMAN, AND T. P. S. POWELL From the Department of Human Anatomy, University of Oxford The amygdaloid nuclei have been the subject of con- to what is known of the efferent connexions of the siderable interest in recent years and have been amygdala. studied with a variety of experimental techniques (cf. Gloor, 1960). From the anatomical point of view MATERIAL AND METHODS attention has been paid mainly to the efferent connexions of these nuclei (Adey and Meyer, 1952; The brains of 26 rats in which a variety of stereotactic or Lammers and Lohman, 1957; Hall, 1960; Nauta, surgical lesions had been placed in the diencephalon and and it is now that there basal forebrain areas were used in this study. Following 1961), generally accepted survival periods of five to seven days the animals were are two main efferent pathways from the amygdala, perfused with 10 % formol-saline and after further the well-known stria terminalis and a more diffuse fixation the brains were either embedded in paraffin wax ventral pathway, a component of the longitudinal or sectioned on a freezing microtome. All the brains were association bundle of the amygdala. It has not cut in the coronal plane, and from each a regularly spaced generally been recognized, however, that in studying series was stained, the paraffin sections according to the Protected by copyright. the efferent connexions of the amygdala it is essential original Nauta and Gygax (1951) technique and the frozen first to exclude a contribution to these pathways sections with the conventional Nauta (1957) method.
    [Show full text]
  • Functional Heterogeneity in the Bed Nucleus of the Stria Terminalis
    8038 • The Journal of Neuroscience, August 3, 2016 • 36(31):8038–8049 Dual Perspectives Dual Perspectives Companion Paper: Contributions of the Central Extended Amygdala to Fear and Anxiety, by Alexander J. Shackman and Andrew S. Fox Functional Heterogeneity in the Bed Nucleus of the Stria Terminalis Nur Zeynep Gungor and Denis Pare´ Center for Molecular and Behavioral Neuroscience, Rutgers State University, Newark, New Jersey 07102 Early work stressed the differing involvement of the central amygdala (CeA) and bed nucleus of the stria terminalis (BNST) in the genesis of fear versus anxiety, respectively. In 2009, Walker, Miles, and Davis proposed a model of amygdala-BNST interactions to explain these functional differences. This model became extremely influential and now guides a new wave of studies on the role of BNST in humans. Here, we consider evidence for and against this model, in the process highlighting central principles of BNST organization. This analysis leads us to conclude that BNST’s influence is not limited to the generation of anxiety-like responses to diffuse threats, but that it also shapes the impact of discrete threatening stimuli. It is likely that BNST-CeA interactions are involved in modulating responses to such threats. In addition, whereas current views emphasize the contributions of the anterolateral BNST region in anxiety, accumulating data indicate that the anteromedial and anteroventral regions also play a critical role. The presence of multiple functional subregions within the small volume of BNST raises significant technical obstacles for functional imaging studies in humans. Key words: amygdala; anxiety; BNST; fear Introduction et al., 2003; Xu et al., 2012), and alarm pheromones (Breitfeld In 2009, Walker et al.
    [Show full text]
  • White Matter Tracts - Brain A143 (1)
    WHITE MATTER TRACTS - BRAIN A143 (1) White Matter Tracts Last updated: August 8, 2020 CORTICOSPINAL TRACT .......................................................................................................................... 1 ANATOMY .............................................................................................................................................. 1 FUNCTION ............................................................................................................................................. 1 UNCINATE FASCICULUS ........................................................................................................................... 1 ANATOMY .............................................................................................................................................. 1 DTI PROTOCOL ...................................................................................................................................... 4 FUNCTION .............................................................................................................................................. 4 DEVELOPMENT ....................................................................................................................................... 4 CLINICAL SIGNIFICANCE ........................................................................................................................ 4 ARTICLES ..............................................................................................................................................
    [Show full text]
  • Central Respiratory Circuits That Control Diaphragm Function in Cat Revealed by Transneuronal Tracing
    CENTRAL RESPIRATORY CIRCUITS THAT CONTROL DIAPHRAGM FUNCTION IN CAT REVEALED BY TRANSNEURONAL TRACING by James H. Lois B. S. in Neuroscience, University of Pittsburgh, 2006 Submitted to the Graduate Faculty of Arts and Sciences in partial fulfillment of the requirements for the degree of M. S. in Neuroscience University of Pittsburgh 2008 UNIVERSITY OF PITTSBURGH ARTS AND SCIENCES This thesis was presented by James H. Lois It was defended on July 30, 2008 and approved by J. Patrick Card, PhD Linda Rinaman, PhD Alan Sved, PhD Thesis Advisor: J. Patrick Card, PhD ii Copyright © by James H. Lois 2008 iii CENTRAL RESPIRATORY CIRCUITS THAT CONTROL DIAPHRAGM FUNCTION IN CAT REVEALED BY TRANSNEURONAL TRACING James H. Lois, M. S. University of Pittsburgh, 2008 Previous transneuronal tracing studies in the rat and ferret have identified regions throughout the spinal cord, medulla, and pons that are synaptically linked to the diaphragm muscle; however, the extended circuits that innervate the diaphragm of the cat have not been well defined. The N2C strain of rabies virus has been shown to be an effective transneuronal retrograde tracer of the polysynaptic circuits innervating a single muscle. Rabies was injected throughout the left costal region of the diaphragm in the cat to identify brain regions throughout the neuraxis that influence diaphragm function. Infected neurons were localized throughout the cervical and thoracic spinal cord with a concentration of labeling in the vicinity of the phrenic nucleus where diaphragm motoneurons are known to reside. Infection was also found throughout the medulla and pons particularly around the regions of the dorsal and ventral respiratory groups and the medial and lateral reticular formations but also in several other areas including the caudal raphe nuclei, parabrachial nuclear complex, vestibular nuclei, ventral paratrigeminal area, lateral reticular nucleus, and retrotrapezoid nucleus.
    [Show full text]
  • Memory Loss from a Subcortical White Matter Infarct
    J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.51.6.866 on 1 June 1988. Downloaded from Journal of Neurology, Neurosurgery, and Psychiatry 1988;51:866-869 Short report Memory loss from a subcortical white matter infarct CAROL A KOOISTRA, KENNETH M HEILMAN From the Department ofNeurology, College ofMedicine, University ofFlorida, and the Research Service, Veterans Administration Medical Center, Gainesville, FL, USA SUMMARY Clinical disorders of memory are believed to occur from the dysfunction of either the mesial temporal lobe, the mesial thalamus, or the basal forebrain. Fibre tract damage at the level of the fornix has only inconsistently produced amnesia. A patient is reported who suffered a cerebro- vascular accident involving the posterior limb of the left internal capsule that resulted in a persistent and severe disorder of verbal memory. The inferior extent of the lesion effectively disconnected the mesial thalamus from the amygdala and the frontal cortex by disrupting the ventral amygdalofugal and thalamic-frontal pathways as they course through the diencephalon. This case demonstrates that an isolated lesion may cause memory loss without involvement of traditional structures associated with memory and may explain memory disturbances in other white matter disease such as multiple sclerosis and lacunar state. Protected by copyright. Memory loss is currently believed to reflect grey day of his illness the patient was transferred to Shands matter damage of either the mesial temporal lobe,' -4 Teaching Hospital at the University of Florida for further the mesial or the basal forebrain.'0 l evaluation. thalamus,5-9 Examination at that time showed the patient to be awake, Cerebrovascular accidents resulting in memory dys- alert, attentive and fully oriented.
    [Show full text]
  • The Ventral Midline Thalamus (Reuniens and Rhomboid Nuclei) Contributes to the Persistence of Spatial Memory in Rats
    The Journal of Neuroscience, July 18, 2012 • 32(29):9947–9959 • 9947 Behavioral/Systems/Cognitive The Ventral Midline Thalamus (Reuniens and Rhomboid Nuclei) Contributes to the Persistence of Spatial Memory in Rats Michae¨l Loureiro, Thibault Cholvin, Joe¨lle Lopez, Nicolas Merienne, Asma Latreche, Brigitte Cosquer, Karine Geiger, Christian Kelche, Jean-Christophe Cassel,* and Anne Pereira de Vasconcelos* Laboratoire d’Imagerie et de Neurosciences Cognitives, UMR 7237 Centre National de la Recherche Scientifique (CNRS), Universite´ de Strasbourg, Institut Fe´de´ratif de Recherche 37 de Neurosciences, GDR 2905 du CNRS, Faculte´ de Psychologie, F-67000 Strasbourg, France The formation of enduring declarative-like memories engages a dialog between the hippocampus and the prefrontal cortex (PFC). Electrophysiological and neuroanatomical evidence for reciprocal connections with both of these structures makes the reuniens and rhomboid nuclei (ReRh) of the thalamus a major functional link between the PFC and hippocampus. Using immediate early gene imaging (c-Fos), fiber-sparing excitotoxic lesion, and reversible inactivation in rats, we provide evidence demonstrating a contribution of the ReRh to the persistence of a spatial memory. Intact rats trained in a Morris water maze showed increased c-Fos expression (vs home cage and visible platform groups: Ͼ500%) in the ReRh when tested in a probe trial at a 25 d delay, against no change ata5ddelay; behavioral performance was comparable at both delays. In rats subjected to excitotoxic fiber-sparing NMDA lesions circumscribed to the ReRh, we found normal acquisition of the water-maze task (vs sham-operated controls) and normal probe trial performance at the 5 d delay, but there was no evidence for memory retrieval at the 25 d delay.
    [Show full text]
  • Nucleus Reuniens Is Required for Encoding and Retrieving Precise Contextual Fear Memories in Rats
    bioRxiv preprint doi: https://doi.org/10.1101/340190; this version posted June 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Nucleus reuniens is required for encoding and retrieving precise contextual fear memories in rats Karthik R. Ramanathan, Jingji Jin, Reed L. Ressler, and Stephen Maren Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, TX 77843, USA Corresponding author: Stephen Maren Department of Psychological and Brain Sciences TAMU 4235 Texas A&M University College Station, TX 77843-4235 [email protected] Running title: Nucleus reuniens and memory precision Conflict of Interest: The authors declare no competing financial interests. Acknowledgements: This work was supported by grants from the McKnight Endowment for Neuroscience (McKnight Memory and Cognitive Disorders Award to SM) and the National Institutes of Health (R01MH065961) to SM. The authors would like to thank Kelsey J. Clement for his technical assistance. Author contributions: KR and SM designed the experiments, analyzed the data and wrote the manuscript. KR, JJ and RR collected the data. Data availability: The datasets generated during and/or analyzed during the current study are available from the corresponding author upon request. 1 bioRxiv preprint doi: https://doi.org/10.1101/340190; this version posted June 7, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Brain-Implantable Biomimetic Electronics As the Next Era in Neural Prosthetics
    Brain-Implantable Biomimetic Electronics as the Next Era in Neural Prosthetics THEODORE W. BERGER, MICHEL BAUDRY, ROBERTA DIAZ BRINTON, JIM-SHIH LIAW, VASILIS Z. MARMARELIS, FELLOW, IEEE, ALEX YOONDONG PARK, BING J. SHEU, FELLOW, IEEE, AND ARMAND R. TANGUAY, JR. Invited Paper An interdisciplinary multilaboratory effort to develop an im- has been developed—silicon-based multielectrode arrays that are plantable neural prosthetic that can coexist and bidirectionally “neuromorphic,” i.e., designed to conform to the region-specific communicate with living brain tissue is described. Although the final cytoarchitecture of the brain. When the “neurocomputational” and achievement of such a goal is many years in the future, it is proposed “neuromorphic” components are fully integrated, our vision is that that the path to an implantable prosthetic is now definable, allowing the resulting prosthetic, after intracranial implantation, will receive the problem to be solved in a rational, incremental manner.Outlined electrical impulses from targeted subregions of the brain, process in this report is our collective progress in developing the underlying the information using the hardware model of that brain region, and science and technology that will enable the functions of specific communicate back to the functioning brain. The proposed prosthetic brain damaged regions to be replaced by multichip modules con- microchips also have been designed with parameters that can be sisting of novel hybrid analog/digital microchips. The component optimized after implantation, allowing each prosthetic to adapt to a microchips are “neurocomputational” incorporating experimen- particular user/patient. tally based mathematical models of the nonlinear dynamic and adaptive properties of biological neurons and neural networks.
    [Show full text]