Large-Scale Regional Interactions with Medial Prefrontal Cortex, Orbitofrontal Cortex, and Anterior Cingulate Cortex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extinction of Cocaine Self-Administration Reveals Functionally and Temporally Distinct Dopaminergic Signals in the Nucleus Accumbens
Neuron, Vol. 46, 661–669, May 19, 2005, Copyright ©2005 by Elsevier Inc. DOI 10.1016/j.neuron.2005.04.036 Extinction of Cocaine Self-Administration Reveals Functionally and Temporally Distinct Dopaminergic Signals in the Nucleus Accumbens Garret D. Stuber,1 R. Mark Wightman,1,3 2004), which can then become associated with neutral and Regina M. Carelli1,2,* environmental stimuli. Because of this, dopaminergic 1Curriculum in Neurobiology transmission within the NAc may promote the formation 2 Department of Psychology of an unnatural relationship between drugs of abuse 3 Department of Chemistry and Neuroscience Center and environmental cues (O’Brien et al., 1993; Everitt et The University of North Carolina al., 1999; Hyman and Malenka, 2001; Wise, 2004). How- Chapel Hill, North Carolina 27599 ever, because cocaine has a potent pharmacological effect to inhibit monoamine uptake (Jones et al., 1995; Wu et al., 2001), it has been difficult to separate in- Summary creases in dopamine due to either the primary pharma- cological or secondary conditioned effects of the drug. While Pavlovian and operant conditioning influence Microdialysis studies in self-administrating animals drug-seeking behavior, the role of rapid dopamine have shown that NAc dopamine decreases over min- signaling in modulating these processes is unknown. utes leading up to a lever press for cocaine and then During self-administration of cocaine, two dopami- increases slowly after the drug infusion (Wise et al., nergic signals, measured with 100 ms resolution, oc- 1995). When dopamine changes are examined with curred immediately before and after the lever press greater temporal resolution, electrochemical studies (termed pre- and postresponse dopamine transients). -
Extinction Learning in Humans: Role of the Amygdala and Vmpfc
Neuron, Vol. 43, 897–905, September 16, 2004, Copyright 2004 by Cell Press Extinction Learning in Humans: Role of the Amygdala and vmPFC Elizabeth A. Phelps,1,* Mauricio R. Delgado,1 CR). Extinction occurs when a CS is presented alone, Katherine I. Nearing,1 and Joseph E. LeDoux2 without the US, for a number of trials and eventually the 1Department of Psychology and CR is diminished or eliminated. Behavioral studies of 2Center for Neural Science extinction suggest that it is not a process of “unlearning” New York University but rather is a process of new learning of fear inhibition. New York, New York 10003 This view of extinction as an active learning process is supported by studies showing that after extinction the CR can return in a number of situations, such as the Summary passage of time (spontaneous recovery), the presenta- tion of the US alone (reinstatement), or if the animal is Understanding how fears are acquired is an important placed in the context of initial learning (renewal; see step in translating basic research to the treatment Bouton, 2002, for a review). Although animal models of of fear-related disorders. However, understanding how the mechanisms of fear acquisition have been investi- learned fears are diminished may be even more valuable. gated over the last several decades, studies of the We explored the neural mechanisms of fear extinction mechanisms of extinction learning have only recently in humans. Studies of extinction in nonhuman animals started to emerge. Research examining the neural sys- have focused on two interconnected brain regions: tems of fear extinction in nonhuman animals have fo- the amygdala and the ventral medial prefrontal cortex cused on two interconnected brain regions: the ventral (vmPFC). -
Regional Cerebral Glucose Utilization During Morphine Withdrawal in the Rat (Cerebral Metabolism/Limbic System/Drug Dependence) G
Proc. Natl Acad. Sci. USA Vol. 79, pp. 3360-3364, May 1982 Neurobiology Regional cerebral glucose utilization during morphine withdrawal in the rat (cerebral metabolism/limbic system/drug dependence) G. F. WOOTEN, P. DISTEFANO, AND R. C. COLLINS Departments of Neurology and Pharmacology, Division of Clinical Neuropharmacology, Washington University School of Medicine, St. Louis, Missouri 63110 Communicated by Oliver H. Lowry, February 26, 1982 ABSTRACT Regional cerebral glucose utilization was studied precipitated morphine withdrawal in the rat. A preliminary re- by 2-deoxy['4C]glucose autoradiography in morphine-dependent port of this work has appeared as an abstract (17). rats and during naloxone-induced morphine withdrawal. In mor- phine-dependent rats, glucose utilization was increased compared MATERIALS AND METHODS with naive controls uniformly (23-54%) in hippocampus, dentate gyrus, and subiculum and reduced in frontal cortex, striatum, an- Preparation of Animals. Male Sprague-Dawley rats weigh- terior ventral thalamus, and medial habenular nucleus. On pre- ing 275-325 g were used. On experimental day 1, a single pellet cipitation ofmorphine withdrawal by subcutaneous administration containing 75 mg of morphine as free base was implanted sub- of naloxone at 0.5 mg/kg to morphine-dependent rats, glucose cutaneously under light ether anesthesia. On day 4, two pellets, utilization was increased in the central nucleus ofamygdala (51%), each containing 75 mg of morphine as free base, were im- lateral mammillary nucleus (40%), lateral habenular nucleus planted. On day 7, after being deprived of food for 12 hr, the (39%), medial mammillary nucleus (35%), and medial septal nu- rats were lightly anesthetized with 2% halothane, the pellets cleus (35%) (all, P < 0.01). -
The Importance of Sleep in Fear Conditioning and Posttraumatic Stress Disorder
Biological Psychiatry: Commentary CNNI The Importance of Sleep in Fear Conditioning and Posttraumatic Stress Disorder Robert Stickgold and Dara S. Manoach Abnormal sleep is a prominent feature of Axis I neuropsychia- fear and distress are extinguished. Based on a compelling tric disorders and is often included in their DSM-5 diagnostic body of work from human and rodent studies, fear extinction criteria. While often viewed as secondary, because these reflects not the erasure of the fear memory but the develop- disorders may themselves diminish sleep quality, there is ment of a new safety or “extinction memory” that inhibits the growing evidence that sleep disorders can aggravate, trigger, fear memory and its associated emotional response. and even cause a range of neuropsychiatric conditions. In this issue, Straus et al. (3 ) report that total sleep Moreover, as has been shown in major depression and deprivation can impair the retention of such extinction mem- attention-deficit/hyperactivity disorder, treating sleep can ories. In their study, healthy human participants in three improve symptoms, suggesting that disrupted sleep contri- groups successfully learned to associate a blue circle (condi- butes to the clinical syndrome and is an appropriate target for tioned stimulus) with the occurrence of an electric shock treatment. In addition to its effects on symptoms, sleep (unconditioned stimulus) during a fear acquisition session. disturbance, which is known to impair emotional regulation The following day, during extinction learning, the blue circle and cognition in otherwise healthy individuals, may contribute was repeatedly presented without the shock. The day after to or cause disabling cognitive deficits. For sleep to be a target that, extinction recall was tested by again repeatedly present- for treatment of symptoms and cognitive deficits in neurop- ing the blue circle without the shock. -
Noradrenergic Blockade Stabilizes Prefrontal Activity and Enables Fear
Noradrenergic blockade stabilizes prefrontal activity PNAS PLUS and enables fear extinction under stress Paul J. Fitzgeralda,1, Thomas F. Giustinoa,b,1, Jocelyn R. Seemanna,b,1, and Stephen Marena,b,2 aDepartment of Psychology, Texas A&M University, College Station, TX 77843; and bInstitute for Neuroscience, Texas A&M University, College Station, TX 77843 Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved June 1, 2015 (received for review January 12, 2015) Stress-induced impairments in extinction learning are believed to preferentially involved in fear extinction (32–34). Stress-induced sustain posttraumatic stress disorder (PTSD). Noradrenergic sig- alterations in the balance of neuronal activity in PL and IL as a naling may contribute to extinction impairments by modulating consequence of noradrenergic hyperarousal might therefore con- medial prefrontal cortex (mPFC) circuits involved in fear regula- tribute to extinction impairments and the maintenance of PTSD. tion. Here we demonstrate that aversive fear conditioning rapidly To address this question, we combine in vivo microelectrode re- and persistently alters spontaneous single-unit activity in the cording in freely moving rats with behavioral and pharmacological prelimbic and infralimbic subdivisions of the mPFC in behaving manipulations to determine whether β-noradrenergic receptors rats. These conditioning-induced changes in mPFC firing were mediate stress-induced alterations in mPFC neuronal activity. mitigated by systemic administration of propranolol (10 mg/kg, Further, we examine whether systemic propranolol treatment, i.p.), a β-noradrenergic receptor antagonist. Moreover, proprano- given immediately after an aversive experience, rescues stress- lol administration dampened the stress-induced impairment in ex- induced impairments in fear extinction. -
The Hypothalamus and Periaqueductal Gray Are the Sources of Dopamine Fibers in the Paraventricular Nucleus of the Thalamus in Th
ORIGINAL RESEARCH ARTICLE published: 20 November 2014 NEUROANATOMY doi: 10.3389/fnana.2014.00136 The hypothalamus and periaqueductal gray are the sources of dopamine fibers in the paraventricular nucleus of the thalamus in the rat Sa Li 1,2, Yuxiu Shi 1* and Gilbert J. Kirouac 2,3 1 PTSD Laboratory, Department of Histology and Embryology, Institute of Pathology and Pathophysiology, China Medical University, Shenyang, China 2 Department of Oral Biology, Faculty of Dentistry, University of Manitoba, Winnipeg, MB, Canada 3 Department of Psychiatry, Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada Edited by: The paraventricular nucleus of the thalamus (PVT) sends a very dense projection to the Kathleen S. Rockland, Boston nucleus accumbens. This area of the striatum plays a key role in motivation and recent University School Medicine, USA experimental evidence indicates that the PVT may have a similar function. It is well known Reviewed by: Ariel Y. Deutch, Vanderbilt that a dopaminergic projection from the ventral tegmental area (VTA) to the nucleus University Medical Center, USA accumbens is a key regulator of motivation and reward-related behavior. Dopamine (DA) Carmen Cavada, Universidad fibers have also been localized in the PVT but the source of these fibers in the rat Autonoma de Madrid, Spain has not been unequivocally identified. The present study was done to re-examine this *Correspondence: question. Small iontophoretic injections of cholera toxin B (CTb) were made in the PVT Yuxiu Shi, PTSD Laboratory, Department of Histology and to retrogradely label tyrosine hydroxylase (TH) neurons. Neurons that were double-labeled Embryology, Institute of Pathology for TH/CTb were found scattered in DA cell groups of the hypothalamus (ventrorostral and Pathophysiology, China Medical A10, A11, A13, A15 DA cell groups) and the midbrain (dorsocaudal A10 embedded in the University, Basic Medical Sciences periaqueductal gray). -
Hypothesis-Driven Structural Connectivity Analysis Supports Network Over Hierarchical Model of Brain Architecture
Hypothesis-driven structural connectivity analysis supports network over hierarchical model of brain architecture Richard H. Thompson and Larry W. Swanson1 Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089 Contributed by Larry W. Swanson, June 30, 2010 (sent for review May 14, 2010) The brain is usually described as hierarchically organized, although (9) and a massive input from the SUBv (10). Only two major an alternative network model has been proposed. To help distin- brainstem inputs were identified: the dorsal raphé (DR), the guish between these two fundamentally different structure-function presumptive source of ACBdmt serotonin (11), and the inter- hypotheses, we developed an experimental circuit-tracing strategy fascicular nucleus (IF), the presumptive source of ACBdmt do- that can be applied to any starting point in the nervous system and pamine (12) that is medial to the expected ventral tegmental area then systematically expanded, and applied it to a previously obscure (VTA) itself (13). Thus, the ACBdmt receives direct inputs from dorsomedial corner of the nucleus accumbens identified functionally three massively interconnected cerebral regions implicated in as a “hedonic hot spot.” A highly topographically organized set of stress and depression, as well as restricted brainstem sites pro- connections involving expected and unexpected gray matter regions viding dopaminergic and serotonergic terminals. was identified that prominently features regions associated with Only one ACBdmt axonal output was labeled with PHAL (Fig. appetite, stress, and clinical depression. These connections are 1A; the filled purple area is a representative injection site): a arranged as a longitudinal series of circuits (closed loops). Thus, the descending pathway through the medial forebrain bundle with two results do not support a rigidly hierarchical model of nervous system clear terminal fields. -
Impaired Learning, Memory, and Extinction in Posttraumatic Stress
medRxiv preprint doi: https://doi.org/10.1101/2021.07.19.21260790; this version posted July 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Title page Title: Impaired learning, memory, and extinction in posttraumatic stress disorder: translational meta-analysis of clinical and preclinical studies Running title: cross-species meta-analysis of learning/memory in PTSD Milou S.C. Sep, MSc. [1][2] * Elbert Geuze, PhD. [1][3] # Marian Joëls, PhD. [2][4] # [1] Brain Research and Innovation Centre, Ministry of Defence, Utrecht, the Netherlands [2] Department of Translational Neuroscience, UMC Utrecht Brain Center, Utrecht University, The Netherlands [3] Department of Psychiatry, UMC Utrecht Brain Center, Utrecht University, Utrecht, the Netherlands [4] University of Groningen, University Medical Center Groningen, The Netherlands * Corresponding author: Milou S.C. Sep; @: [email protected]; T: +31 30 250 26 91; Universiteitsweg 100, 3584 CG Utrecht, the Netherlands. # These authors contributed equally and share senior authorship. Keywords: PTSD; Learning; Memory; Extinction; Systematic Review; Random Forest NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.1 medRxiv preprint doi: https://doi.org/10.1101/2021.07.19.21260790; this version posted July 22, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. -
THEORETICAL BEHAVIORISM John Staddon Duke University “Isms”
Behavior and Philosophy, 45, 27-44 (2017). © 2017 Cambridge Center for Behavioral Studies THEORETICAL BEHAVIORISM John Staddon Duke University Abstract: B. F. Skinner’s radical behaviorism has been highly successful experimentally, revealing new phenomena with new methods. But Skinner’s dismissal of theory limited its development. Theoretical behaviorism recognizes that a historical system, an organism, has a state as well as sensitivity to stimuli and the ability to emit responses. Indeed, Skinner himself acknowledged the possibility of what he called “latent” responses in humans, even though he neglected to extend this idea to rats and pigeons. Latent responses constitute a repertoire, from which operant reinforcement can select. The paper describes some applications of theoretical behaviorism to operant learning. Key words: Skinner, response repertoire, teaching, classical conditioning, memory “Isms” are rarely a “plus” for science. The suffix sounds political. It implies a coherence and consistency that is rarely matched by reality. But labels are effective rhetorically. J. B. Watson’s 1913 behaviorist paper (Watson, 1913) would not have been as influential without his rather in-your-face term. Theoretical behaviorism accepts the “ism” with reluctance. ThB is not a doctrine or even a philosophy. As I will try to show, it is an attempt to bring behavioristic psychology back into the mainstream of science: avoiding the Scylla of atheoretical simplism on one side and the Charybdis of scientistic mentalism on the other. John Watson was both realistic and naïve. The realism was in his rejection of the subjective, of first-person accounts as a part of science. ‘Qualia’ are not data and little has been learned through reports of conscious experience. -
Demarcating the Anatomical Structure of the Claustrum: Piecing Together a New Functional Puddle
bioRxiv preprint doi: https://doi.org/10.1101/179879; this version posted August 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Demarcating the anatomical structure of the claustrum: piecing together a new functional puddle Christopher M Dillingham1, Bethany E Frost1, Maciej M Jankowski2, Marie AC Lambert3 and Shane M O’Mara1 1Institute of Neuroscience, Trinity College Dublin, College Green, Dublin 2, Ireland 2Hebrew University of Jerusalem, Department of Neurobiology, Jerusalem, Israel 3Université de Poitiers, Faculté des Sciences Fondamentales et Appliquées, Poitiers, France Journal: Brain Structure and Function Corresponding Author Professor Shane O’Mara Room 3.43, Institute of Neuroscience Lloyd Building Trinity College Dublin College Green Dublin 2 Ireland Tel: +353 (01) 896 8447 Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/179879; this version posted August 23, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract Background: A major obstacle in the understanding of the functional anatomy of the claustrum has been, and continues to be, the contradiction surrounding its anatomical boundary and, in particular, its rostral (i.e. anterior to striatum), extent. In a recent review we highlighted gene expression-based evidence from the mouse brain which lends weight to the idea that the anatomical boundary of the claustrum does in fact extend rostral to the anterior apex of the striatum. -
The Basal Ganglia and Thalamus of the Long-Tailed Macaque in Stereotaxic Coordinates
Brain Struct Funct (2012) 217:613–666 DOI 10.1007/s00429-011-0370-5 ORIGINAL ARTICLE The basal ganglia and thalamus of the long-tailed macaque in stereotaxic coordinates. A template atlas based on coronal, sagittal and horizontal brain sections Jose´ L. Lanciego • Alfonso Va´zquez Received: 20 September 2011 / Accepted: 2 December 2011 / Published online: 18 December 2011 Ó The Author(s) 2011. This article is published with open access at Springerlink.com Abstract A stereotaxic brain atlas of the basal ganglia and Keywords Stereotaxy Á Parkinson’s disease Á thalamus of Macaca fascicularis presented here is designed Ventriculography Á Cerebral cartography with a surgical perspective. In this regard, all coordinates have been referenced to a line linking the anterior and pos- Abbreviations terior commissures (ac–pc line) and considering the center 3n Oculomotor nerve fibers of the ac at the midline as the origin of the bicommissural 3V Third ventricle space. The atlas comprises of 43 different plates (19 coronal 4 Trochlear nucleus levels, 10 sagittal levels and 14 horizontal levels). In addition 4n Trochlear nerve to ‘classical’ cyto- and chemoarchitectural techniques such 5n Trigeminal nerve as the Nissl method and the acetylcholinesterase stain, ABA Accessory basal amygdaloid nucleus several immunohistochemical stains have been performed in ac Anterior commissure adjacent sections, including the detection of tyrosine Acb Nucleus accumbens hydroxylase, enkephalin, neurofilaments, parvalbumin and AD Anterodorsal nucleus calbindin. In comparison to other existing stereotaxic atlases al Ansa lenticularis for M. fasicularis, this atlas has two main advantages: firstly, alv Alveus brain cartography is based on a wide variety of cyto- and AM Anteromedian nucleus chemoarchitectural stains carried out on adjacent sections, Amg Amygdaloid complex therefore enabling accurate segmentation. -
A Time-Dependent Role of Midline Thalamic Nuclei in the Retrieval of Fear Memory
Neuropharmacology 62 (2012) 457e463 Contents lists available at SciVerse ScienceDirect Neuropharmacology journal homepage: www.elsevier.com/locate/neuropharm A time-dependent role of midline thalamic nuclei in the retrieval of fear memory Nancy Padilla-Coreano1, Fabricio H. Do-Monte1, Gregory J. Quirk* Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, P.O. Box 365067, San Juan 00936, Puerto Rico article info abstract Article history: Increasing evidence indicates that the medial prefrontal cortex (mPFC) and the amygdala mediate Received 6 June 2011 expression and extinction of conditioned fear, but few studies have examined the inputs to these Received in revised form structures. The dorsal part of the midline thalamus (dMT) contains structures such as the mediodorsal 21 August 2011 nucleus, paraventricular nucleus, and paratenial nucleus that project prominently to mPFC, as well as to Accepted 22 August 2011 basal (BA) and central (Ce) nuclei of the amygdala. Using temporary inactivation with GABA agonist muscimol, we found that dMT was necessary for retrieving auditory fear memory that was 24 h old, but Keywords: not 2e8 h old. However, pre-training infusions did not impair fear acquisition or extinction. To determine Thalamus Central amygdala the possible targets of dMT that might modulate fear retrieval, we combined dMT inactivation with Fos Fos immunohistochemistry. Rats with inactivation-induced impairment in fear retrieval showed increased Prefrontal cortex Fos in the lateral division of Ce (CeL), and decreased Fos in the medial division of Ce. No differences in Fos Extinction expression were observed in the mPFC or BA. We suggest that the projections from the paraventricular nucleus to CeL are involved in retrieval of well consolidated fear memories.