The Importance of Sleep in Fear Conditioning and Posttraumatic Stress Disorder
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Psychogenic and Organic Amnesia. a Multidimensional Assessment of Clinical, Neuroradiological, Neuropsychological and Psychopathological Features
Behavioural Neurology 18 (2007) 53–64 53 IOS Press Psychogenic and organic amnesia. A multidimensional assessment of clinical, neuroradiological, neuropsychological and psychopathological features Laura Serraa,∗, Lucia Faddaa,b, Ivana Buccionea, Carlo Caltagironea,b and Giovanni A. Carlesimoa,b aFondazione IRCCS Santa Lucia, Roma, Italy bClinica Neurologica, Universita` Tor Vergata, Roma, Italy Abstract. Psychogenic amnesia is a complex disorder characterised by a wide variety of symptoms. Consequently, in a number of cases it is difficult distinguish it from organic memory impairment. The present study reports a new case of global psychogenic amnesia compared with two patients with amnesia underlain by organic brain damage. Our aim was to identify features useful for distinguishing between psychogenic and organic forms of memory impairment. The findings show the usefulness of a multidimensional evaluation of clinical, neuroradiological, neuropsychological and psychopathological aspects, to provide convergent findings useful for differentiating the two forms of memory disorder. Keywords: Amnesia, psychogenic origin, organic origin 1. Introduction ness of the self – and a period of wandering. According to Kopelman [33], there are three main predisposing Psychogenic or dissociative amnesia (DSM-IV- factors for global psychogenic amnesia: i) a history of TR) [1] is a clinical syndrome characterised by a mem- transient, organic amnesia due to epilepsy [52], head ory disorder of nonorganic origin. Following Kopel- injury [4] or alcoholic blackouts [20]; ii) a history of man [31,33], psychogenic amnesia can either be sit- psychiatric disorders such as depressed mood, and iii) uation specific or global. Situation specific amnesia a severe precipitating stress, such as marital or emo- refers to memory loss for a particular incident or part tional discord [23], bereavement [49], financial prob- of an incident and can arise in a variety of circum- lems [23] or war [21,48]. -
Extinction of Cocaine Self-Administration Reveals Functionally and Temporally Distinct Dopaminergic Signals in the Nucleus Accumbens
Neuron, Vol. 46, 661–669, May 19, 2005, Copyright ©2005 by Elsevier Inc. DOI 10.1016/j.neuron.2005.04.036 Extinction of Cocaine Self-Administration Reveals Functionally and Temporally Distinct Dopaminergic Signals in the Nucleus Accumbens Garret D. Stuber,1 R. Mark Wightman,1,3 2004), which can then become associated with neutral and Regina M. Carelli1,2,* environmental stimuli. Because of this, dopaminergic 1Curriculum in Neurobiology transmission within the NAc may promote the formation 2 Department of Psychology of an unnatural relationship between drugs of abuse 3 Department of Chemistry and Neuroscience Center and environmental cues (O’Brien et al., 1993; Everitt et The University of North Carolina al., 1999; Hyman and Malenka, 2001; Wise, 2004). How- Chapel Hill, North Carolina 27599 ever, because cocaine has a potent pharmacological effect to inhibit monoamine uptake (Jones et al., 1995; Wu et al., 2001), it has been difficult to separate in- Summary creases in dopamine due to either the primary pharma- cological or secondary conditioned effects of the drug. While Pavlovian and operant conditioning influence Microdialysis studies in self-administrating animals drug-seeking behavior, the role of rapid dopamine have shown that NAc dopamine decreases over min- signaling in modulating these processes is unknown. utes leading up to a lever press for cocaine and then During self-administration of cocaine, two dopami- increases slowly after the drug infusion (Wise et al., nergic signals, measured with 100 ms resolution, oc- 1995). When dopamine changes are examined with curred immediately before and after the lever press greater temporal resolution, electrochemical studies (termed pre- and postresponse dopamine transients). -
What Is It Like to Be Confabulating?
What is it like to be Confabulating? Sahba Besharati, Aikaterini Fotopoulou and Michael D. Kopelman Kings College London, Institute of Psychiatry, London UK Different kinds of confabulations may arise in neurological and psychiatric disorders. This chapter first offers conceptual distinctions between spontaneous and momentary (“provoked”) confabulations, as well as between these types of confabulation and other kinds of false memories. The chapter then reviews current explanatory theories, emphasizing that both neurocognitive and motivational factors account for the content of confabulations. We place particular emphasis on a general model of confabulation that considers cognitive dysfunctions in memory and executive functioning in parallel with social and emotional factors. It is argued that all these dimensions need to be taken into account for a phenomenologically rich description of confabulation. The role of the motivated content of confabulation and the subjective experience of the patient are particularly relevant in effective management and rehabilitation strategies. Finally, we discuss a case example in order to illustrate how seemingly meaningless false memories are actually meaningful if placed in the context of the patient’s own perspective and autobiographical memory. Key words: Confabulation; False memory; Motivation; Self; Rehabilitation. 1 Memory is often subject to errors of omission and commission such that recollection includes instances of forgetting, or distorting past experience. The study of pathological forms of exaggerated memory distortion has provided useful insights into the mechanisms of normal reconstructive remembering (Johnson, 1991; Kopelman, 1999; Schacter, Norman & Kotstall, 1998). An extreme form of pathological memory distortion is confabulation. Different variants of confabulation are found to arise in neurological and psychiatric disorders. -
Extinction Learning in Humans: Role of the Amygdala and Vmpfc
Neuron, Vol. 43, 897–905, September 16, 2004, Copyright 2004 by Cell Press Extinction Learning in Humans: Role of the Amygdala and vmPFC Elizabeth A. Phelps,1,* Mauricio R. Delgado,1 CR). Extinction occurs when a CS is presented alone, Katherine I. Nearing,1 and Joseph E. LeDoux2 without the US, for a number of trials and eventually the 1Department of Psychology and CR is diminished or eliminated. Behavioral studies of 2Center for Neural Science extinction suggest that it is not a process of “unlearning” New York University but rather is a process of new learning of fear inhibition. New York, New York 10003 This view of extinction as an active learning process is supported by studies showing that after extinction the CR can return in a number of situations, such as the Summary passage of time (spontaneous recovery), the presenta- tion of the US alone (reinstatement), or if the animal is Understanding how fears are acquired is an important placed in the context of initial learning (renewal; see step in translating basic research to the treatment Bouton, 2002, for a review). Although animal models of of fear-related disorders. However, understanding how the mechanisms of fear acquisition have been investi- learned fears are diminished may be even more valuable. gated over the last several decades, studies of the We explored the neural mechanisms of fear extinction mechanisms of extinction learning have only recently in humans. Studies of extinction in nonhuman animals started to emerge. Research examining the neural sys- have focused on two interconnected brain regions: tems of fear extinction in nonhuman animals have fo- the amygdala and the ventral medial prefrontal cortex cused on two interconnected brain regions: the ventral (vmPFC). -
Meta-Consolidation for Continual Learning
Meta-Consolidation for Continual Learning K J Joseph and Vineeth N Balasubramanian Department of Computer Science and Engineering Indian Institute of Technology Hyderabad, India {cs17m18p100001,vineethnb}@iith.ac.in Abstract The ability to continuously learn and adapt itself to new tasks, without losing grasp of already acquired knowledge is a hallmark of biological learning systems, which current deep learning systems fall short of. In this work, we present a novel methodology for continual learning called MERLIN: Meta-Consolidation for Continual Learning. We assume that weights of a neural network , for solving task t, come from a meta-distribution p( t). This meta-distribution is learned and consolidated incrementally. We operate| in the challenging online continual learning setting, where a data point is seen by the model only once. Our experiments with continual learning benchmarks of MNIST, CIFAR-10, CIFAR-100 and Mini- ImageNet datasets show consistent improvement over five baselines, including a recent state-of-the-art, corroborating the promise of MERLIN. 1 Introduction The human brain is able to constantly, and incrementally, consolidate new information with existing information, allowing for quick recall when needed [5, 78]. In this natural setting, it is not common to see the same data sample multiple times, or even twice at times. Human memory capacity is also limited which forbids memorizing all examples that are seen during its lifetime [39]. Hence, the brain operates in an online manner, where it is able to adapt itself to continuously changing data distributions without losing grasp of its previously acquired knowledge [33]. Unfortunately, deep neural networks have been known to suffer from catastrophic forgetting [53, 25], where they fail to retain performance on older tasks, while learning new tasks. -
613638V1.Full.Pdf
bioRxiv preprint doi: https://doi.org/10.1101/613638; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Hippocampal network reorganization underlies the formation of a temporal association memory Mohsin S. Ahmed1,2,*, James B. Priestley2,3,4,*, Angel Castro1,2, Fabio Stefanini3,4, Elizabeth M. Balough2,3, Erin Lavoie1,2, Luca Mazzucato2,4,5,6, Stefano Fusi2,4,5, Attila Losonczy2,5y 1 Department of Psychiatry 2 Department of Neuroscience 3 Doctoral Program in Neurobiology and Behavior 4 Center for Theoretical Neuroscience 5 Mortimer B. Zuckerman Mind Brain Behavior Institute Columbia University, New York, NY 10027 USA 6 Departments of Mathematics and Biology University of Oregon, Eugene, OR 97403 USA ∗ These authors contributed equally to this work y To whom correspondence should be addressed: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/613638; this version posted April 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract 1 Episodic memory requires linking events in time, a function dependent on the hippocampus. In 2 \trace" fear conditioning, animals learn to associate a neutral cue with an aversive stimulus despite 3 their separation in time by a delay period on the order of tens of seconds. But how this temporal 4 association forms remains unclear. Here we use 2-photon calcium imaging to track neural 5 population dynamics over the complete time-course of learning and show that, in contrast to 6 previous theories, the hippocampus does not generate persistent activity to bridge the time delay. -
How the Brain and Memory Works 10
Caring For A Loved One With Dementia 10 How the Brain and Memory Works Introduction The way our brain stores memories is a complex process across many areas of the brain. Luckily, memories are not all stored in one place. They are spread out across different brain regions, or lobes, and allow us to keep and recall memories even if one area of the brain is damaged. Although the brain’s process for storing memories is sometimes compared to a filing cabinet, the processes are extremely complex and still not fully understood. 2 Creating memories 3. Store information The human brain is made up of neurons. Neurons are nerve cells that talk to each other through a synapse- a connection This is the process of retaining the information in short term, or between cells that sends information. Neurons receive and more permanently in long term memory. An area of the brain carry information to the parts of the brain to process or store called the Hippocampus plays an important role in storing long information. The brain has approximately 100 billion nerve term memories. cells, give or take 15 billion. 4. Recall To create memories, the brain must accomplish the following processes: Memories that are frequently recalled become stronger than those accessed less frequently. The neurons linked to this 1. Encode information information create a neural pathway- a road to that memory. Think of it as walking along a path. The more frequently you This process allows something of interest to be stored in the walk on the same path, the more defined the trail becomes. -
Play It Again, Mr Sandman
HIGHLIGHTS SLEEP AND MEMORY IN THE NEWS Purple haze Play it again, Mr Sandman A recent flurry of reports in the UK media focused on a paper In a scene familiar to all, a fractious in Nature Neuroscience on the addictive properties of the child is sent to bed in the belief that psychoactive component of the sleep that will surely follow will marijuana. They concerned a allow the child to get some much report by Steven Goldberg needed ‘rest’.But the idea that sleep is that self-administration simply a rest period has been repeat- behaviour is maintained by edly challenged over the years. delta-9-tetrahydrocannabinol (THC) in squirrel monkeys. Initially, the challenge was provided Previous studies that have by the electrophysiological descrip- tried to establish reliable self- tions of the sleep–wake cycle. More administration behaviour in recent findings have linked sleep and animals with THC have been the hippocampus with the consolida- unsuccessful, indicating that tion of neuronal temporalcodes for marijuana might have less spatial memory. However, we still potential for abuse than other drugs such as heroin and know little about sleep. Two recent cocaine. The press interest papers in Science provide thought- was stimulated by the likely provoking additions to this literature. impact of these findings on the In the first paper, Robert Stickgold polarized debate in the UK and colleagues focused on the effect media regarding the issue of of extended mental activity on hypn- whether to decriminalize marijuana. So how did the agogic mentation — the replay of media present the story? mental imagery at the onset of sleep. -
Primary and Secondary Prevention Interventions for Cognitive Decline
2016 Primary and secondary prevention interventions for cognitive decline and dementia Overview of reviews Published by The Norwegian Institute of Public Health Section for evidence summaries in the Knowledge Centre Title Primary and secondary prevention interventions for cognitive decline and dementia Norwegian title Primær‐ og sekundærforebyggende tiltak for kognitiv svikt og demens Responsible Camilla Stoltenberg, direktør Authors Gerd M Flodgren, project leader, researcher, the Knowledge Centre Rigmor C Berg, Head of Unit, for Social Welfare Research at the Knowledge Centre ISBN 978‐82‐8082‐745‐6 Projectnumber 798 Type of publication Overview of reviews No of pages 69 (110 inklusiv vedlegg) Client Nasjonalforeningen for folkehelsen MeSH terms Alzheimer’s disease, dementia, cognition, cognitive impairment, cognitive disorders, memory complaints, primary prevention, secondary prevention Citation Flodgren GM, Berg RC. Primary and secondary prevention interventions for cognitive decline and dementia. [Primær‐ og sekundærforebyggende tiltak for kognitiv svikt og demens] Rapport −2016. Oslo: Folkehelseinstituttet, 2016. 2 Table of contents Table of contents TABLE OF CONTENTS 3 KEY MESSAGES 5 EXECUTIVE SUMMARY 6 Background 6 Objectives 6 Methods 6 Results 6 Discussion 8 Conclusions 8 HOVEDFUNN (NORSK) 9 SAMMENDRAG (NORSK) 10 Bakgrunn 10 Problemstillinger 10 Metoder 10 Resultat 10 Diskusjon 12 Konklusjon 12 PREFACE 13 OBJECTIVES 15 BACKGROUND 16 Description of the condition 16 How the interventions may work 18 Why is it important to do this -
Effect of Phosphatidylserine Administration on Symptoms of Attention-Deficit/Hyperactivity Disorder in Children S
AGRO SET_OTT_06.qxp 27-10-2006 10:14 Pagina 16 Effect of phosphatidylserine administration on symptoms of attention-deficit/hyperactivity disorder in children S. HIRAYAMA1*,Y. MASUDA2,R. RABELER3 *Corresponding author 1. Department of Early Childhood Education and Care, Kurashiki City College, 160 Hieda, Kurashikishi, Okayama, Japan 2. Kojima first High School, Okayama, Japan 3. Cargill Food Ingredients GmbH, Freising, Germany PURPOSE the emotional response in the frontal lobe, due to a problem of disinhibition (1). Disinhibition consists of disinhibition of To clarify whether the administration of phosphatidylserine attention (inattention) and that of behaviour (hyperactivity ("PS") can improve the attention-deficit ("AD") and and impulsiveness). hyperactivity disorder ("HD") symptoms in children. with AD/HD patients are classified into inattention-predominant Infant nutrition AD/HD. type, hyperactivity and impulsiveness -dominant type and mixed type. Each symptom causes problems in learning and relation between family members. Though the cause of STUDY DESIGN AND SUBJECTS disorders has yet to be identified (2), central stimulants (a type of psycho stimulant) are used in the treatment. These A pilot study in 15 AD/HD children 6 to 12 years old (including drugs can alleviate the AD/HD symptoms to some extent (3, 6 suspected to have AD/HD) who had rarely received 4). However, there is no consensus on the long term use of medication before. These 15 children took 200 mg/day of PS these drugs and adverse events (adverse reactions) may in a capsule every day for 2 months. The following items were occur during or years after the treatment (5). Accordingly, investigated at the start of study ("pre-study") and upon supplementary and substitute medication is frequently completion of study ("post-study): 1) AD/HD symptoms advised. -
The Amygdala, Fear and Reconsolidation
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences 140 The Amygdala, Fear and Reconsolidation Neural and Behavioral Effects of Retrieval-Extinction in Fear Conditioning and Spider Phobia JOHANNES BJÖRKSTRAND ACTA UNIVERSITATIS UPSALIENSIS ISSN 1652-9030 ISBN 978-91-554-9863-4 UPPSALA urn:nbn:se:uu:diva-317866 2017 Dissertation presented at Uppsala University to be publicly examined in Gunnar Johansson salen, Blåsenhus, von Kraemers allé 1A, Uppsala, Friday, 12 May 2017 at 13:00 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Emily Holmes (Karolinska institutet, Institutionen för klinisk neurovetenskap; University of Oxford, Department of Psychiatry). Abstract Björkstrand, J. 2017. The Amygdala, Fear and Reconsolidation. Neural and Behavioral Effects of Retrieval-Extinction in Fear Conditioning and Spider Phobia. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Social Sciences 140. 72 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9863-4. The amygdala is crucially involved in the acquisition and retention of fear memories. Experimental research on fear conditioning has shown that memory retrieval shortly followed by pharmacological manipulations or extinction, thereby interfering with memory reconsolidation, decreases later fear expression. Fear memory reconsolidation depends on synaptic plasticity in the amygdala, which has been demonstrated in rodents using both pharmacological manipulations and retrieval-extinction procedures. The retrieval-extinction procedure decreases fear expression also in humans, but the underlying neural mechanism have not been studied. Interfering with reconsolidation is held to alter the original fear memory representation, resulting in long-term reductions in fear responses, and might therefore be used in the treatment of anxiety disorders, but few studies have directly investigated this question. -
Powerpoint Template
The New Science of Learning The New Science of Learning Designing Learning Activities in Harmony with how the Brain Learns 1 Mission-focused, Employee-centric, Teamwork, Integrity, Speed Follow The Research Slide Title • A Quote from Derek Bok, Former President of Harvard University • This quote comes from the recognition of the inconsistent behavior of faculty with regard to the research on teaching. • “In fact, it is somewhat perplexing that we as scientists are resistant to such change. We are well trained in how to approach problems analytically, collect data, make interpretations, form conclusions and then revise experimental hypotheses and protocols accordingly. If we are experts at making evidence–based decisions in our experimental laboratories, then what forces are at play that impede us from adopting equally iterative and evidence-based approaches to teaching in our classrooms.” 2 Mission-focused, Employee-centric, Teamwork, Integrity, Speed Follow The Research Here is our Professional Obligation We must follow where the research leads us even if it makes us uncomfortable or results in major changes in our teaching practices. 3 Mission-focused, Employee-centric, Teamwork, Integrity, Speed Speed of Knowledge Production According to Google-- 2.5 billion gigabytes of data are produced each day. 4 Mission-focused, Employee-centric, Teamwork, Integrity, Speed Speed of Knowledge Production Today’s chip when compared to the 1971 Intel processor chip (4004) • Has 3500 times more performance • Is 90,000 times more energy efficient • Is 60,000 times lower in cost ( Brian Krzanich Intel CEO) 5 Mission-focused, Employee-centric, Teamwork, Integrity, Speed Speed of Knowledge Production Todays beetle would need to go 300,000 mph It would need to get 2 million miles per gallon It would cost 4 cents ( Brian Krzanich Intel CEO) 6 Mission-focused, Employee-centric, Teamwork, Integrity, Speed Speed of Knowledge Production • In 2017 according to United Nations Educational, Scientific and Cultural Organization there were 2.5 million books published worldwide.