Anatomy of the Temporal Lobe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Five Topographically Organized Fields in the Somatosensory Cortex of the Flying Fox: Microelectrode Maps, Myeloarchitecture, and Cortical Modules
THE JOURNAL OF COMPARATIVE NEUROLOGY 317:1-30 (1992) Five Topographically Organized Fields in the Somatosensory Cortex of the Flying Fox: Microelectrode Maps, Myeloarchitecture, and Cortical Modules LEAH A. KRUBITZER AND MIKE B. CALFORD Vision, Touch and Hearing Research Centre, Department of Physiology and Pharmacology, The University of Queensland, Queensland, Australia 4072 ABSTRACT Five somatosensory fields were defined in the grey-headed flying fox by using microelec- trode mapping procedures. These fields are: the primary somatosensory area, SI or area 3b; a field caudal to area 3b, area 1/2; the second somatosensory area, SII; the parietal ventral area, PV; and the ventral somatosensory area, VS. A large number of closely spaced electrode penetrations recording multiunit activity revealed that each of these fields had a complete somatotopic representation. Microelectrode maps of somatosensory fields were related to architecture in cortex that had been flattened, cut parallel to the cortical surface, and stained for myelin. Receptive field size and some neural properties of individual fields were directly compared. Area 3b was the largest field identified and its topography was similar to that described in many other mammals. Neurons in 3b were highly responsive to cutaneous stimulation of peripheral body parts and had relatively small receptive fields. The myeloarchi- tecture revealed patches of dense myelination surrounded by thin zones of lightly myelinated cortex. Microelectrode recordings showed that myelin-dense and sparse zones in 3b were related to neurons that responded consistently or habituated to repetitive stimulation respectively. In cortex caudal to 3b, and protruding into 3b, a complete representation of the body surface adjacent to much of the caudal boundary of 3b was defined. -
'What' but Not 'Where' Auditory Processing Pathway
NeuroImage 82 (2013) 295–305 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Emotion modulates activity in the ‘what’ but not ‘where’ auditory processing pathway James H. Kryklywy d,e, Ewan A. Macpherson c,f, Steven G. Greening b,e, Derek G.V. Mitchell a,b,d,e,⁎ a Department of Psychiatry, University of Western Ontario, London, Ontario N6A 5A5, Canada b Department of Anatomy & Cell Biology, University of Western Ontario, London, Ontario N6A 5A5, Canada c National Centre for Audiology, University of Western Ontario, London, Ontario N6A 5A5, Canada d Graduate Program in Neuroscience, University of Western Ontario, London, Ontario N6A 5A5, Canada e Brain and Mind Institute, University of Western Ontario, London, Ontario N6A 5A5, Canada f School of Communication Sciences and Disorders, University of Western Ontario, London, Ontario N6A 5A5, Canada article info abstract Article history: Auditory cortices can be separated into dissociable processing pathways similar to those observed in the vi- Accepted 8 May 2013 sual domain. Emotional stimuli elicit enhanced neural activation within sensory cortices when compared to Available online 24 May 2013 neutral stimuli. This effect is particularly notable in the ventral visual stream. Little is known, however, about how emotion interacts with dorsal processing streams, and essentially nothing is known about the impact of Keywords: emotion on auditory stimulus localization. In the current study, we used fMRI in concert with individualized Auditory localization Emotion auditory virtual environments to investigate the effect of emotion during an auditory stimulus localization fi Auditory processing pathways task. Surprisingly, participants were signi cantly slower to localize emotional relative to neutral sounds. -
Visual Cortex in Humans 251
Author's personal copy Visual Cortex in Humans 251 Visual Cortex in Humans B A Wandell, S O Dumoulin, and A A Brewer, using fMRI, and we discuss the main features of the Stanford University, Stanford, CA, USA V1 map. We then summarize the positions and proper- ties of ten additional visual field maps. This represents ã 2009 Elsevier Ltd. All rights reserved. our current understanding of human visual field maps, although this remains an active field of investigation, with more maps likely to be discovered. Finally, we Human visua l cortex comprises 4–6 billion neurons that are organ ized into more than a dozen distinct describe theories about the functional purpose and functional areas. These areas include the gray matter organizing principles of these maps. in the occi pital lobe and extend into the temporal and parietal lobes . The locations of these areas in the The Size and Location of Human Visual intact human cortex can be identified by measuring Cortex visual field maps. The neurons within these areas have a variety of different stimulus response proper- The entirety of human cortex occupies a surface area 2 ties. We descr ibe how to measure these visual field on the order of 1000 cm and ranges between 2 and maps, their locations, and their overall organization. 4 mm in thickness. Each cubic millimeter of cortex contains approximately 50 000 neurons so that neo- We then consider how information about patterns, objects, color s, and motion is analyzed and repre- cortex in the two hemispheres contain on the order of sented in these maps. -
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans Ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai
Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai To cite this version: Hans ten Donkelaar, Nathalie Tzourio-Mazoyer, Jürgen Mai. Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex. Frontiers in Neuroanatomy, Frontiers, 2018, 12, pp.93. 10.3389/fnana.2018.00093. hal-01929541 HAL Id: hal-01929541 https://hal.archives-ouvertes.fr/hal-01929541 Submitted on 21 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. REVIEW published: 19 November 2018 doi: 10.3389/fnana.2018.00093 Toward a Common Terminology for the Gyri and Sulci of the Human Cerebral Cortex Hans J. ten Donkelaar 1*†, Nathalie Tzourio-Mazoyer 2† and Jürgen K. Mai 3† 1 Department of Neurology, Donders Center for Medical Neuroscience, Radboud University Medical Center, Nijmegen, Netherlands, 2 IMN Institut des Maladies Neurodégénératives UMR 5293, Université de Bordeaux, Bordeaux, France, 3 Institute for Anatomy, Heinrich Heine University, Düsseldorf, Germany The gyri and sulci of the human brain were defined by pioneers such as Louis-Pierre Gratiolet and Alexander Ecker, and extensified by, among others, Dejerine (1895) and von Economo and Koskinas (1925). -
Connection Interfaces Between Neuronal Elements and Structures Inside Greater Limbic System
Rom J Leg Med [21] 137-148 [2013] DOI: 10.4323/rjlm.2013.137 © 2013 Romanian Society of Legal Medicine Connection interfaces between neuronal elements and structures inside greater limbic system. Evaluation in forensic psycho-affective pathology Gheorghe S. Dragoi1, Petru Razvan Melinte2, Liviu Radu3 _________________________________________________________________________________________ Abstract: The authors achieved a macroanatomic analysis on the location and relations of neuronal structures and elements inside transitional mesocortex and archicortex in order to visualize the connection interfaces of greater limbic system. The analysis was performed on human encephalon using subsystems generally homologated by neuroanatomists: lobus limbicus, hippocampal formation, prefrontal cortex, lobus insularis and subcortical structures. Equally, they performed a research of the literature on the implication of connection interfaces from paralimbic, limbic and archicortex areas, into forensic psycho-affective ortology and pathology. The study draws the attention to time and space development of terminology and homologation of some new concepts bound to multifunctional subsystems such as: medial temporal lobe memory system, prefrontal cortex and limbic midbrain area. Key Words: greater limbic system, transitional mesocortex, archicortex euroanatomy registered remarkable progress (proneocortical or paralimbic zone and periarchicortical or by the diversity of morph-functional and limbic zone); hippocampal formation (with two regions: N anatomic-clinical -
A Pictorial Essay on Anatomy and Pathology of the Hippocampus
Insights Imaging DOI 10.1007/s13244-016-0541-2 PICTORIAL REVIEW BUnforgettable^ – a pictorial essay on anatomy and pathology of the hippocampus Sven Dekeyzer 1,2,3 & Isabelle De Kock2 & Omid Nikoubashman1 & Stephanie Vanden Bossche 2 & Ruth Van Eetvelde2,3 & Jeroen De Groote2 & Marjan Acou2 & Martin Wiesmann1 & Karel Deblaere2 & Eric Achten2 Received: 19 September 2016 /Revised: 18 December 2016 /Accepted: 20 December 2016 # The Author(s) 2017. This article is published with open access at Springerlink.com Abstract • Clinical information is often necessary to come to a correct The hippocampus is a small but complex anatomical structure diagnosis or an apt differential. that plays an important role in spatial and episodic memory. The hippocampus can be affected by a wide range of congen- Keywords Hippocampus . Epilepsy . Dementia . Herpes ital variants and degenerative, inflammatory, vascular, tumoral simplex encephalitis . MRI and toxic-metabolic pathologies. Magnetic resonance imaging is the preferred imaging technique for evaluating the hippo- campus. The main indications requiring tailored imaging se- Abbreviations quences of the hippocampus are medically refractory epilepsy AD Alzheimer’sdementia and dementia. The purpose of this pictorial review is three- DNET Dysembryoblastic neuroepithelial tumour fold: (1) to review the normal anatomy of the hippocampus on IHI Incomplete hippocampal inversion MRI; (2) to discuss the optimal imaging strategy for the eval- HSE Herpes simplex encephalitis uation of the hippocampus; and (3) to present a pictorial over- LE Limbic encephalitis view of the most common anatomic variants and pathologic MTA Mesial temporal atrophy conditions affecting the hippocampus. MTS Mesial temporal sclerosis Teaching points • Knowledge of normal hippocampal anatomy helps recognize Anatomy, embryology, arterial supply and function anatomic variants and hippocampal pathology. -
Multi-Contrast Submillimetric 3Tesla Hippocampal Subfield Segmentation
www.nature.com/scientificdata OPEN Multi-contrast submillimetric SUBJECT CATEGORIES » Brain imaging 3Tesla hippocampal subfield » Magnetic resonance imaging segmentation protocol and dataset » Brain Jessie Kulaga-Yoskovitz1,*, Boris C. Bernhardt1,2,*, Seok-Jun Hong1, Tommaso Mansi3, » Neurology Kevin E. Liang1, Andre J.W. van der Kouwe4, Jonathan Smallwood5, Andrea Bernasconi1,* » Neuroscience & Neda Bernasconi1,* The hippocampus is composed of distinct anatomical subregions that participate in multiple cognitive processes and are differentially affected in prevalent neurological and psychiatric conditions. Advances in high-field MRI allow for the non-invasive identification of hippocampal substructure. These approaches, however, demand time-consuming manual segmentation that relies heavily on anatomical expertise. Here, Received: 10 August 2015 we share manual labels and associated high-resolution MRI data (MNI-HISUB25; submillimetric T1- and Accepted: 07 October 2015 T2-weighted images, detailed sequence information, and stereotaxic probabilistic anatomical maps) based Published: 10 November 2015 on 25 healthy subjects. Data were acquired on a widely available 3 Tesla MRI system using a 32 phased- array head coil. The protocol divided the hippocampal formation into three subregions: subicular complex, merged Cornu Ammonis 1, 2 and 3 (CA1-3) subfields, and CA4-dentate gyrus (CA4-DG). Segmentation was guided by consistent intensity and morphology characteristics of the densely myelinated molecular layer together with few geometry-based boundaries -
Basic Brain Anatomy
Chapter 2 Basic Brain Anatomy Where this icon appears, visit The Brain http://go.jblearning.com/ManascoCWS to view the corresponding video. The average weight of an adult human brain is about 3 pounds. That is about the weight of a single small To understand how a part of the brain is disordered by cantaloupe or six grapefruits. If a human brain was damage or disease, speech-language pathologists must placed on a tray, it would look like a pretty unim- first know a few facts about the anatomy of the brain pressive mass of gray lumpy tissue (Luria, 1973). In in general and how a normal and healthy brain func- fact, for most of history the brain was thought to be tions. Readers can use the anatomy presented here as an utterly useless piece of flesh housed in the skull. a reference, review, and jumping off point to under- The Egyptians believed that the heart was the seat standing the consequences of damage to the structures of human intelligence, and as such, the brain was discussed. This chapter begins with the big picture promptly removed during mummification. In his and works down into the specifics of brain anatomy. essay On Sleep and Sleeplessness, Aristotle argued that the brain is a complex cooling mechanism for our bodies that works primarily to help cool and The Central Nervous condense water vapors rising in our bodies (Aristo- tle, republished 2011). He also established a strong System argument in this same essay for why infants should not drink wine. The basis for this argument was that The nervous system is divided into two major sec- infants already have Central nervous tions: the central nervous system and the peripheral too much moisture system The brain and nervous system. -
01 05 Lateral Surface of the Brain-NOTES.Pdf
Lateral Surface of the Brain Medical Neuroscience | Tutorial Notes Lateral Surface of the Brain 1 MAP TO NEUROSCIENCE CORE CONCEPTS NCC1. The brain is the body's most complex organ. LEARNING OBJECTIVES After study of the assigned learning materials, the student will: 1. Demonstrate the four paired lobes of the cerebral cortex and describe the boundaries of each. 2. Sketch the major features of each cerebral lobe, as seen from the lateral view, identifying major gyri and sulci that characterize each lobe. NARRATIVE by Leonard E. WHITE and Nell B. CANT Duke Institute for Brain Sciences Department of Neurobiology Duke University School of Medicine Overview When you view the lateral aspect of a human brain specimen (see Figures A3A and A102), three structures are usually visible: the cerebral hemispheres, the cerebellum, and part of the brainstem (although the brainstem is not visible in the specimen photographed in lateral view for Fig. 1 below). The spinal cord has usually been severed (but we’ll consider the spinal cord later), and the rest of the subdivisions are hidden from lateral view by the hemispheres. The diencephalon and the rest of the brainstem are visible on the medial surface of a brain that has been cut in the midsagittal plane. Parts of all of the subdivisions are also visible from the ventral surface of the whole brain. Over the next several tutorials, you will find video demonstrations (from the brain anatomy lab) and photographs (in the tutorial notes) of these brain surfaces, and sufficient detail in the narrative to appreciate the overall organization of the parts of the brain that are visible from each perspective. -
Brain Maps – the Sensory Homunculus
Brain Maps – The Sensory Homunculus Our brains are maps. This mapping results from the way connections in the brain are ordered and arranged. The ordering of neural pathways between different parts of the brain and those going to and from our muscles and sensory organs produces specific patterns on the brain surface. The patterns on the brain surface can be seen at various levels of organization. At the most general level, areas that control motor functions (muscle movement) map to the front-most areas of the cerebral cortex while areas that receive and process sensory information are more towards the back of the brain (Figure 1). Motor Areas Primary somatosensory area Primary visual area Sensory Areas Primary auditory area Figure 1. A diagram of the left side of the human cerebral cortex. The image on the left shows the major division between motor functions in the front part of the brain and sensory functions in the rear part of the brain. The image on the right further subdivides the sensory regions to show regions that receive input from somatosensory, auditory, and visual receptors. We then can divide these general maps of motor and sensory areas into regions with more specific functions. For example, the part of the cerebral cortex that receives visual input from the retina is in the very back of the brain (occipital lobe), auditory information from the ears comes to the side of the brain (temporal lobe), and sensory information from the skin is sent to the top of the brain (parietal lobe). But, we’re not done mapping the brain. -
Revista Brasileira De Psiquiatria Official Journal of the Brazilian Psychiatric Association Psychiatry Volume 34 • Number 1 • March/2012
Rev Bras Psiquiatr. 2012;34:101-111 Revista Brasileira de Psiquiatria Official Journal of the Brazilian Psychiatric Association Psychiatry Volume 34 • Number 1 • March/2012 REVIEW ARTICLE Neuroimaging in specific phobia disorder: a systematic review of the literature Ila M.P. Linares,1 Clarissa Trzesniak,1 Marcos Hortes N. Chagas,1 Jaime E. C. Hallak,1 Antonio E. Nardi,2 José Alexandre S. Crippa1 ¹ Department of Neuroscience and Behavior of the Ribeirão Preto Medical School, Universidade de São Paulo (FMRP-USP). INCT Translational Medicine (CNPq). São Paulo, Brazil 2 Panic & Respiration Laboratory. Institute of Psychiatry, Universidade Federal do Rio de Janeiro (UFRJ). INCT Translational Medicine (CNPq). Rio de Janeiro, Brazil Received on August 03, 2011; accepted on October 12, 2011 DESCRIPTORS Abstract Neuroimaging; Objective: Specific phobia (SP) is characterized by irrational fear associated with avoidance of Specific Phobia; specific stimuli. In recent years, neuroimaging techniques have been used in an attempt to better Review; understand the neurobiology of anxiety disorders. The objective of this study was to perform a Anxiety Disorder; systematic review of articles that used neuroimaging techniques to study SP. Method: A literature Phobia. search was conducted through electronic databases, using the keywords: imaging, neuroimaging, PET, spectroscopy, functional magnetic resonance, structural magnetic resonance, SPECT, MRI, DTI, and tractography, combined with simple phobia and specific phobia. One-hundred fifteen articles were found, of which 38 were selected for the present review. From these, 24 used fMRI, 11 used PET, 1 used SPECT, 2 used structural MRI, and none used spectroscopy. Result: The search showed that studies in this area were published recently and that the neuroanatomic substrate of SP has not yet been consolidated. -
Dissociable Large-Scale Networks Anchored in the Right Anterior Insula Subserve Affective Experience and Attention
NeuroImage 60 (2012) 1947–1958 Contents lists available at SciVerse ScienceDirect NeuroImage journal homepage: www.elsevier.com/locate/ynimg Dissociable large-scale networks anchored in the right anterior insula subserve affective experience and attention Alexandra Touroutoglou a,b, Mark Hollenbeck a,b,c, Bradford C. Dickerson a,b,c,1, Lisa Feldman Barrett a,b,d,1,⁎ a Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA b Psychiatric Neuroimaging Research Program, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA c Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA d Department of Psychology, Northeastern University, Boston, Massachusetts, USA article info abstract Article history: Meta-analytic summaries of neuroimaging studies point to at least two major functional-anatomic subdivi- Received 12 November 2011 sions within the anterior insula that contribute to the detection and processing of salient information: a dor- Revised 25 January 2012 sal region that is routinely active during attention tasks and a ventral region that is routinely active during Accepted 4 February 2012 affective experience. In two independent samples of cognitively normal human adults, we used intrinsic Available online 13 February 2012 functional connectivity magnetic resonance imaging to demonstrate that the right dorsal and right ventral anterior insula are nodes in separable large-scale functional networks. Furthermore, stronger intrinsic con- Keywords: Dorsal anterior insula nectivity within the right dorsal anterior insula network was associated with better performance on a task Ventral anterior insula involving attention and processing speed whereas stronger connectivity within the right ventral anterior Intrinsic functional connectivity insula network was associated with more intense affective experience.