Global Report 2019
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sir Andrew J. Wiles
ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society March 2017 Volume 64, Number 3 Women's History Month Ad Honorem Sir Andrew J. Wiles page 197 2018 Leroy P. Steele Prize: Call for Nominations page 195 Interview with New AMS President Kenneth A. Ribet page 229 New York Meeting page 291 Sir Andrew J. Wiles, 2016 Abel Laureate. “The definition of a good mathematical problem is the mathematics it generates rather Notices than the problem itself.” of the American Mathematical Society March 2017 FEATURES 197 239229 26239 Ad Honorem Sir Andrew J. Interview with New The Graduate Student Wiles AMS President Kenneth Section Interview with Abel Laureate Sir A. Ribet Interview with Ryan Haskett Andrew J. Wiles by Martin Raussen and by Alexander Diaz-Lopez Allyn Jackson Christian Skau WHAT IS...an Elliptic Curve? Andrew Wiles's Marvelous Proof by by Harris B. Daniels and Álvaro Henri Darmon Lozano-Robledo The Mathematical Works of Andrew Wiles by Christopher Skinner In this issue we honor Sir Andrew J. Wiles, prover of Fermat's Last Theorem, recipient of the 2016 Abel Prize, and star of the NOVA video The Proof. We've got the official interview, reprinted from the newsletter of our friends in the European Mathematical Society; "Andrew Wiles's Marvelous Proof" by Henri Darmon; and a collection of articles on "The Mathematical Works of Andrew Wiles" assembled by guest editor Christopher Skinner. We welcome the new AMS president, Ken Ribet (another star of The Proof). Marcelo Viana, Director of IMPA in Rio, describes "Math in Brazil" on the eve of the upcoming IMO and ICM. -
Supervisors Put Transportation Measure on November Ballot
VOLUME XLIX, NUMBER 23 Your Local News Source Since 1963 SERVING DUBLIN • LIVERMORE • PLEASANTON • SUNOL THURSDAY, JUNE 7, 2012 Supervisors Put Transportation Measure on November Ballot Measure B3, with $400 of the population of Alam- projects, help AC Transit reduce cut-through traffic to one full cent, and would million earmarked for a eda County. erase some of its shortfall in the city. continue in perpetuity. The Livermore BART extension, The board's discussion and restore some service, Supervisors already had measure requires the a two- Find Out What's will appear on the ballot in on the measure June 5 was fill potholes in streets in cit- discussed the measure in thirds majority in order to November. confined to a few questions ies, and bring $400 million depth at a hearing they held pass. Happening The Alameda County for Tess Lengyel, an Al- for the phase 1 Livermore a few months ago. ACTC officials have said Board of Supervisors voted ameda County Transporta- BART extension along the The measure is called B3, that the one-cent tax needs Check Out Section A because it is the third round Section A is filled with unanimously June 5 to place tion Commission (ACTC) freeway. to be a continuing revenue information about arts, the $7.7 billion countywide official who presented the Also for the Valley is of funding for transportation source because of major people, entertainment and sales tax measure on the board a short summary of $132 million to widen High- projects in the county from a shifts in the structure of special events. -
An Exploratory Study with Major Professional Content Providers in the United Kingdom
Online science videos: an exploratory study with major professional content providers in the United Kingdom M. Carmen Erviti and Erik Stengler Abstract We present an exploratory study of science communication via online video through various UK-based YouTube science content providers. We interviewed five people responsible for eight of the most viewed and subscribed professionally generated content channels. The study reveals that the immense potential of online video as a science communication tool is widely acknowledged, especially regarding the possibility of establishing a dialogue with the audience and of experimenting with different formats. It also shows that some online video channels fully exploit this potential whilst others focus on providing a supplementary platform for other kinds of science communication, such as print or TV. Keywords Popularization of science and technology; Science and media; Visual communication Context Online video is one of the most popular content choices for Internet users. According to Cisco [2014], video traffic was, in terms of data, 66% of all consumer Internet traffic in 2013 and it is predicted to be 79% by 2018. Online video is extensively used for instructional purposes and various authors have analysed this use in recent years [e.g. Pace and Jones, 2009; DeCesare, 2014; Cooper and Higgins, 2015]. Morain and Swarts [2012] proposed a methodology to analyse instructional online video, focussing on sounds, images and texts, the rhetorical work and the information design of a sample of videos. The use of online video within the academic community is also growing as a means of peer-to-peer communication, and Kousha, Thelwall and Abdoli [2012] studied YouTube videos cited in published academic research. -
Producers of Popular Science Web Videos – Between New Professionalism and Old Gender Issues
Producers of Popular Science Web Videos – Between New Professionalism and Old Gender Issues Jesús Muñoz Morcillo1*, Klemens Czurda*, Andrea Geipel**, Caroline Y. Robertson-von Trotha* ABSTRACT: This article provides an overview of the web video production context related to science communication, based on a quantitative analysis of 190 YouTube videos. The authors explore the main characteristics and ongoing strategies of producers, focusing on three topics: professionalism, producer’s gender and age profile, and community building. In the discussion, the authors compare the quantitative results with recently published qualitative research on producers of popular science web videos. This complementary approach gives further evidence on the main characteristics of most popular science communicators on YouTube, it shows a new type of professionalism that surpasses the hitherto existing distinction between User Generated Content (UGC) and Professional Generated Content (PGC), raises gender issues, and questions the participatory culture of science communicators on YouTube. Keywords: Producers of Popular Science Web Videos, Commodification of Science, Gender in Science Communication, Community Building, Professionalism on YouTube Introduction Not very long ago YouTube was introduced as a platform for sharing videos without commodity logic. However, shortly after Google acquired YouTube in 2006, the free exchange of videos gradually shifted to an attention economy ruled by manifold and omnipresent advertising (cf. Jenkins, 2009: 120). YouTube has meanwhile become part of our everyday experience, of our “being in the world” (Merleau Ponty) with all our senses, as an active and constitutive dimension of our understanding of life, knowledge, and communication. However, because of the increasing exploitation of private data, some critical voices have arisen arguing against the production and distribution of free content and warning of the negative consequences for content quality and privacy (e.g., Keen, 2007; Welzer, 2016). -
Solar Cycles: a Comparative 83 Analysis M
Volume 6 Number 2 Apr - Jun 2017 STUDENT JOURNAL OF PHYSICS INTERNATIONAL EDITION INDIAN ASSOCIATION OF PHYSICS TEACHERS ISSN – 2319-3166 STUDENT JOURNAL OF PHYSICS EDITORIAL BOARD INTERNATIONAL ADVISORY BOARD Editor in Chief H.S. Mani, CMI, Chennai, India ([email protected]) L. Satpathy, Institute of Physics, Bhubaneswar, India S. M. Moszkowski, UCLA, USA ([email protected]) ([email protected]) Jogesh C. Pati, SLAC, Stanford, USA ([email protected]) Satya Prakash, Panjab University, Chandigarh, India Chief Editors ([email protected]) S. D. Mahanti, Physics and Astronomy Department, T.V. Ramakrishnan, BHU, Varanasi, India Michigan State University, East Lansing, Mi 48824, USA ([email protected]) ([email protected]) G. Rajasekaran, The Institute of Mathematical Sciences, A.M. Srivastava, Institute of Physics, Bhubaneswar, India Chennai, India ([email protected]) ([email protected]) Ashoke Sen, HRI, Allahabad, India ([email protected]) X. Vinas, Departament d’Estructura i Constituents de la Mat`eria and Institut de Ci`encies del Cosmos, Facultat de F INTERNATIONAL EDITORIAL BOARD ´ısica, Universitat de Barcelona, Barcelona, Spain Danny Caballero, Department of Physics, Michigan State ([email protected]) University, U.S.A. ([email protected]) Gerd Kortemeyer, Joint Professor in Physics & Lyman Briggs College, Michigan State University, U.S.A. Technical Editor ([email protected]) D. Pradhan, ILS, Bhubaneswar, India Bedanga Das Mohanty, NISER, Bhubaneswar, India ([email protected]) ([email protected]) Prasanta Panigrahi, IISER, Kolkata, India ([email protected]) Web Management K.C. Ajith Prasad, Mahatma Gandhi College, Aditya Prasad Ghosh, IOP, Bhubaneswar, India Thiruvananthapuram, India ([email protected]) ([email protected]) Ralph Scheicher, Physics Department, University of Uppsala, Sweden ([email protected]) Vijay A. -
Observational Cosmology - 30H Course 218.163.109.230 Et Al
Observational cosmology - 30h course 218.163.109.230 et al. (2004–2014) PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 31 Oct 2013 03:42:03 UTC Contents Articles Observational cosmology 1 Observations: expansion, nucleosynthesis, CMB 5 Redshift 5 Hubble's law 19 Metric expansion of space 29 Big Bang nucleosynthesis 41 Cosmic microwave background 47 Hot big bang model 58 Friedmann equations 58 Friedmann–Lemaître–Robertson–Walker metric 62 Distance measures (cosmology) 68 Observations: up to 10 Gpc/h 71 Observable universe 71 Structure formation 82 Galaxy formation and evolution 88 Quasar 93 Active galactic nucleus 99 Galaxy filament 106 Phenomenological model: LambdaCDM + MOND 111 Lambda-CDM model 111 Inflation (cosmology) 116 Modified Newtonian dynamics 129 Towards a physical model 137 Shape of the universe 137 Inhomogeneous cosmology 143 Back-reaction 144 References Article Sources and Contributors 145 Image Sources, Licenses and Contributors 148 Article Licenses License 150 Observational cosmology 1 Observational cosmology Observational cosmology is the study of the structure, the evolution and the origin of the universe through observation, using instruments such as telescopes and cosmic ray detectors. Early observations The science of physical cosmology as it is practiced today had its subject material defined in the years following the Shapley-Curtis debate when it was determined that the universe had a larger scale than the Milky Way galaxy. This was precipitated by observations that established the size and the dynamics of the cosmos that could be explained by Einstein's General Theory of Relativity. -
Proceedings of the XXXVI International Congress of Physiological Sciences (IUPS2009) Function of Life: Elements and Integration
Volume 59 · Supplement 1 · 2009 Volume 59 · Supplement 1 · 2009 The XXXVI International Congress of Volume 59 · Supplement 59 Volume 1 · 2009 · pp 1–XX Physiological Sciences (IUPS2009) International Scientific Program Committees (ISPC) ISPC Chair Yoshihisa Kurachi Vice Chair Ole Petersen ISPC from IUPS Council Akimichi Kaneko (IUPS President) Irene Schulz (IUPS Vice President) Pierre Magistretti (IUPS Vice President) Malcolm Gordon (IUPS Treasurer) ISPC IUPS2009 Members and Associated Members Proceedings of the XXXVI International Congress of Physiological Sciences (IUPS2009) Commission I Locomotion Commission VII Comparative Physiology: Hans Hoppeler, Masato Konishi, Hiroshi Nose Evolution, Adaptation & Environment Function of Life: Elements and Integration Commission II Circulation/Respiration Malcolm Gordon, Ken-ichi Honma, July 27–August 1, 2009, Kyoto, Japan Yung Earm, Makoto Suematsu, Itsuo Kodama Kazuyuki Kanosue Commission III Endocrine, Reproduction & Commission VIII Genomics & Biodiversity Development David Cook, Hideyuki Okano, Gozoh Tsujimoto Caroline McMillen, Yasuo Sakuma, Toshihiko Yada Commission IX Others Commission IV Neurobiology Ann Sefton, Peter Hunter, Osamu Matsuo, Quentin Pittman, Harunori Ohmori, Fumihiko Kajiya, Tadashi Isa, Tadaharu Tsumoto, Megumu Yoshimura Jun Tanji Commission V Secretion & Absorption Local Executives Irene Schulz, Miyako Takaki, Yoshikatsu Kanai Yasuo Mori, Ryuji Inoue Commission VI Molecular & Cellular Biology Cecilia Hidalgo, Yoshihiro Kubo, Katsuhiko Mikoshiba, Masahiro Sokabe, Yukiko -
The Era of International Space Station Utilization Table of Contents
Perspectives on Strategy From International Research Leaders The Era of International Space Station Utilization Table of Contents Executive Summary 3 Scientifi c Disciplines and Potential 7 Gravity-dependent Processes in the Physical Sciences 7 Fundamental Physics 9 Gravity-dependent Processes in the Life Sciences 10 Human Health Research 12 Psychology and Space Exploration 14 Earth and Space Observations 15 Exploration and Technology Development 16 Commercial Development 17 Education 18 Space Agency Perspectives 21 Biographical Sketches 35 Notes and References 40 Editorial Board Canadian Space Agency: Nicole Buckley, Perry Johnson-Green European Space Agency: Martin Zell Japan Aerospace Exploration Agency: Tai Nakamura Roscosmos: George Karabadzhak, Igor Sorokin National Aeronautics and Space Administration: Tara Ruttley, Ken Stroud Italian Space Agency: Jean Sabbagh Managing Editor Tracy L. Thumm, NASA Executive Editor Julie A. Robinson, NASA Astronaut Peggy Whitson looks at the plants grown in the Advanced AstrocultureTM (ADVASC) green house. Image: NASA ISS005E08001 The Era of International Space Station Utilization Manfred Dietel Charité Berlin, Germany Berndt Feuerbacher International Astronautical Federation, France Vladimir Fortov Joint Institute for High Temperature Russian Academy of Sciences, Russia David Hart University of Calgary, Canada Life Sciences Advisory Committee, Canadian Space Agency Charles Kennel Scripps Institution of Oceanography, USA Space Studies Board, National Academy of Sciences, USA Oleg Korablev Space Research -
Download the Floorplan Here - and Meet Other Visitors from the Photonics and Laser Community
Company Profile Elliot Scientific is a major supplier of Opto-Mechanic components and systems under the Elliot|Martock and Elliot Scientific brands to the Scientific, Research and Industrial communities. In addition, we supply world-class Laser, Cryogenic, Magnetic, Telecom and Datacom systems sourced from many British, North American, European and Far Eastern companies. Elliot Scientific is uniquely positioned to assist customers by being able to: ■ Supply competitive components and systems ■ Source, integrate and manufacture complex systems ■ Design and manufacture for Custom or OEM requirements Elliot|Martock Martock Design became a wholly owned subsidiary of Elliot Scientific in 2003 following thirty years at the forefront of design, development and manufacture of high quality precision instruments and equipment. That tradition continues today as we continually strive to improve and expand the ranges of Elliot|Martock and Elliot Scientific own brand products. These include our award winning optical tweezer systems, the lab essentials mirror mount range, fibre positioning components, waveguide manipulators, automated alignment systems, micropositioners and other class-leading products. All of our customers - from academic institutions and government agencies through to commercial researchers and industry - are provided with the highest levels of service backed up by solid technical support from our team of experienced engineers. Solution Science for Research and Industry We pride ourselves in offering Solution Science for Research and Industry. We employ the best- qualified staff and scientists to help you sift through the multitude of options available to get the equipment and systems that match your needs. That's Solution Science. Staff We employ PhD level physicists, scientists and mechanical design engineers to assist you with your product search or application, and to ensure that our advice is correct and balanced. -
THE GRAND HARMONIOUS SYMMETRY of JAPAN: an Investigation in Uncanny Flag Similarities Christopher J. Maddish
THE GRAND HARMONIOUS SYMMETRY OF JAPAN: An Investigation in Uncanny Flag Similarities Christopher J. Maddish The 47 prefectures of Japan have unique flags, whose designs came from various sources. Many flags employ a stylized version of Japanese alphabet in either Hiragana or Katakana on a solid field. Like most sub‐national flags, they are strongly influenced by the national colors and design. Conventional wisdom assumes this process of sub‐national flag selection is a fairly random, yet attenuated to the cultural tastes the particular nation. The thesis of this paper is that a pattern can be found among the prefectural flags of Japan. The revolutionary and rather uncanny pattern is that each prefecture’s flag has a kind of “harmonious twin”. This paper will first describe the methodology of how flags are paired, followed by several illustrative examples. This is a new system of classification of flags based on groups limited to two. This paper’s title, the Grand Harmonious Symmetry of Japan, hints that the flags of Japan exhibit a certain degree of harmony and the title itself exhibits a subtle relationship to Japan. By way of uncanny historical, geographical, and cultural events a pattern of harmonious symmetry will be presented. On the left is the name of Japan written in Japanese as Nihon, literally translated as Sun‐ Source. The upper kaniji that looks like a digital eight means sun, the lower kanji means source, book, and root. To the right is the classical name of Japan, Yamato. The upper kanji means grand or big. The kanji on the lower right means harmony. -
The Cosmic Cast: Communicating Planetary Sciences to General Audiences J
51st Lunar and Planetary Science Conference (2020) 1378.pdf THE COSMIC CAST: COMMUNICATING PLANETARY SCIENCES TO GENERAL AUDIENCES J. F. Pernet-Fisher*, T. A. Harvey, M. Lo, E. Carter, R. Bahia. Department of Earth and Environmental Sciences, University of Manchester, M13 9PL, UK (*[email protected]). Introduction: Since the turn of the millennium, to supplement our podcasts with videos where visuals podcasts have served as a free medium to engage large better suit a topic of interest. global audiences with science. There has been an ex- Key drivers of audience enjoyment and podcast ponential growth of science podcasts between 2010 longevity are based around creator-audience engage- and 2018, 77% of which target public audiences [1]. ments [5]. To this end, we have made use of our re- Podcasts, by their very nature, are unconstrained by search group’s existing outreach frame-work (under demographic or geographical restrictions. As such, the brand of ‘Earth and Solar System’ [6]) using Twit- they have the potential to make publicly funded sci- ter and Facebook pages to publicize episodes and to ence accessible to many more people than are reached solicit questions for regular ‘Q&A’ episodes. by in-person events commonly organized by universi- Based on a data set collected in 2009, the average ties. person spends ~30 minutes listening to individual pod- Despite this potential, there is currently a dearth of casts [7]. As such, we aim to keep each episode to planetary science focused podcasts. Out of 952 active around 30 minutes in length, in order to maximize lis- podcasts surveyed by [1] in 2019, 68% are described tener retention. -
Scientists HAVE Written the World's Smallest Periodic Table 5 October 2011
It's true! Scientists HAVE written the world's smallest periodic table 5 October 2011 He is travelling with the creator of the Period Table of Videos, Australian, Brady Haran. Brady said: "We never set out to break a word record, so it's really a pleasant surprise. The main aim of our videos is getting people to think about chemistry. So having our tiny periodic table printed in such a best-seller can only help our cause." More information: www.physorg.com/news/2010-12-s … able-side- human.html (PhysOrg.com) -- The 2012 Guinness World Records has been published and confirms that scientists at The University of Nottingham hold the record for writing the world's smallest periodic table Provided by University of Nottingham . They engraved the table on a strand of hair belonging to Green Chemist Professor Martyn Poliakoff. It took the skills of experts in the University's Nanotechnology and Nanoscience Centre, a beam of accelerated gallium ions and clever imaging to create a table so small that a million of them could be replicated on a typical post- it note. Professor Poliakoff said: "I am delighted. In my wildest nightmares, I have never imagined being in the Guinness World Records, least of all in connection with my hair! The fact that I am is a tribute to the University's Nanotechnology Centre." Professor Poliakoff is one of the stars of the Periodic Table of Videos: www.periodicvideos.com The world's tiniest periodic table was presented to him as a birthday present. His contributions to PTOV have turned him and his colleagues into YouTube stars.