Supporting Information for Proteomics DOI 10.1002/Pmic.200600526

Total Page:16

File Type:pdf, Size:1020Kb

Supporting Information for Proteomics DOI 10.1002/Pmic.200600526 Supporting Information for Proteomics DOI 10.1002/pmic.200600526 Servet zcan, Volkan Yldrm, Levent Kaya, Dirk Albrecht, Drte Becher, Michael Hecker and Gulay Ozcengiz Phanerochaete chrysosporium soluble proteome as a prelude for the analysis of heavy metal stress response ª 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.proteomics-journal.com Figure S1. Predicted 2-D gel separation of the P. chrysosporium proteome. The rectangle indicates the analytical window of the experimental master gel. Figure S2. Comparison of the theoretical and experimental molecular weights (A) and pI (B) of the identified proteins in the P. chrysosporium master gel. The migration distances of the spots were measured by Delta2-D as Y and X-axis coordinates of the spot centers on the gel image, respectively. Table 1. List of protein identifications according to accession number*** ) % ( e g pI/Mr Hit Number of matched Number of matched peptides in PMF Subcellular localization* of Number multiple spots Modification** peptide Signal Relative abundancy Phosohorylation Sequence covera Accession number (kDa) score Putative function Identified peptides by MS/MS K.YLVDVGAGR.M 62 5.65/36.2 134 26S proteasome regulatory subunit rpn-8. C 0.041 30 R.VSEQLASLR.G R.ASDQEINDLLKR.Y 8 R.SEISNPPAFGAR.I K.LILGEDSPVIAAGR.V 265 6.43/45.8 199 Aspartate/other aminotransferase C 0.22 38 R.VGALHLVAPTTEAAAR.V 14 361 5.29/46.7 127 AAA ATPase N 0.023 21 R.EAVELPLTHFDLYR.K 23 425 7.76/28.8 139 Short-chain dehydrogenase/reductase SDR M + 0.017 35 R.NAGHIINIGSIAGR.E 11 K.ILAPFKGDK.K 465 4.61/31.5 88 DNA-directed RNA polymerase N 0.119 24 K.AEAAPAEAAPAPAAEAPKEEK.K 8 R.YLNESKR.L 503 8.97/26.7 78 Glutathione S-transferase, C-terminal C 0.12 24 R.TGLDLDEFPNVK.A K.GREYILGTYGIADIK.I 4 511 5.66/41.2 108 Enoyl-CoA hydratase/isomerase C 0.08 15 R.EASEAPGLFR.G K.IGYTPDVGATFFLSR.L 13 R.CHPFAVLR.G + Carbamidomethyl (C) Pyruvate dehydrogenase E1 component alpha R.SSSNTEYFTR.G 563 8.41/44.2 122 subunit M 3 C-M 0.336 + 32 K.GPILLEFVTYR.Y 16 582 6.39/57.7 87 Anthranilate synthase. C 0.058 19 K.LKEHIVAGDIIQAVPSQR.L 12 843 6.76/18.1 203 TonB-dependent receptor protein N 0.047 52 R.LFDEAFNNR.V R.VGGSQGQGNSGQLQR.R 6 871 5.13/30.0 105 E3 binding C 0.186 40 K.TAPAPPLDGPAIR.R 10 K.HLLPPLTR.E K.VVQDGTTADQIFTVR.Q 1076 6.65/32.6 178 Fumarylacetoacetate (FAA) hydrolase P + 0.056 13 R.FVAAETSQVHLGEPVDR.W 3 26S proteasome non-ATPase regulatory subunit K.DAATLLFFR.T 1148 5.43/32.1 104 Nin1/mts3 N 0.497 23 K.LITVNLQYAR.E 6 K.VNHGIISGVR.Y K.ASLGIVPGASGPATGPR.V 1157 8.91/84.1 358 RHO protein GDP dissociation inhibitor M 0.204 8 K.TVDEYAQLDAEDESLAR.W 10 1164 5.74/23.3 109 Uracil phosphoribosyl transferase C 0.028 48 K.LHVLAHPVINAR.L 8 1173 6.35/42.3 63 Oxidoreductase, N-terminal M + 0.125 + 24 K.GLVLYPYQNR.R 7 K.YFAYGISR.S R. 1293 5.48/85.0 142 Peptidase S9A, prolyl oligopeptidase M 0.019 5 YGAVLAVPNIR.G 15 RNA-binding region RNP-1 1311 10.12/19.1 96 (RNA recognition motif) N 0.119 32 R.DYDGPSTSAPPASNGEPR.W 6 R.RGAALHGLR.R 1324 5.58/64.2 65 TPR repeat, heat shock chaperonin-binding C 2 C 0.037 11 K.LAEQSFAQDPR.L 14 1333 6.44/48.8 139 NAD-dependent epimerase/dehydratase N 0.089 22 R.VAETLTYGFHR.Q 15 RNA-binding region RNP-1 (RNA recognition K.EVGGRPIAVK.V K.GYGFVDVGDEANQAK.A 1407 9.18/36.2 330 motif) C 2 M 0.495 + 49 R.SAGYGFVSLNTAEAAQK.A 12 K.YQLAYVR.S 1474 5.05/47.0 224 Proteasome component region PCI C_N 2 C-M 0.271 48 K.LSQTSQTFHIVR.A 16 1585 5.45/33.5 164 Proteasome endopeptidase complex M + 0.083 + 18 K.GNTEEFPSTDLDILDR.S 6 R.HNNVDFAIIR.E Isocitrate dehydrogenase NAD-dependent, R.EYALFEPGCR.H + Carbamidomethyl (C) 1651 9.07/40.6 104 mitochondrial M + 0.097 8 K.LGDGLFLNTFR.R 4 1661 7.28/28.4 85 Puromycin N-acetyltransferase M 0.085 6 R.AGYHLQLIGVHPDHQR.R 2 R.YLTVFSPEGR.L R.LANINQVYTQR.A 1827 6.34/31.3 203 20S proteasome, A and B subunits M 2 C 0.152 29 K.YGYEITPDALAR.R 9 R.YALQLLTPASILAR.L R.GTTDIVAPHGIPVDLLDR.C 1962 5.81/50.0 146 Replication factor C conserved region M 0.05 14 K.GLGLNPEGYANVDGAGFVGQVNAR.E 8 2075 5.62/15.7 72 Ubiquitin-conjugating enzymes C 0.802 25 R.QNSIETVLVEIR.R 3 2311 4.94/18.8 109 Tropomyosins N 0.275 50 12 K.IAVHVTIR.G K.VKEYELR.R 2657 10.36/20.1 91 Mitochondrial ribosomal protein L5 M 0.239 44 K.QRFDGIILK.- 9 2729 6.23/57.0 180 Probable oxidoreductase C + 0.027 26 13 K.VLHQGYFDNR.R Zinc-containing alcohol dehydrogenase K.VLHQGYFDNRR.A 2822 7.78/38.4 306 superfamily C 0.027 39 K.EIVHVFGNVHVPEQR.A 14 K.LLSHPSASTFDITALVR.N R.NVDNAIFEADKEGYCR.A + Carbamidomethyl 2920 5.36/37.7 53 Putative dyhydroflavanol-4-reductase C + 0.09 22 (C) 11 2978 5.20/61.5 95 Chaperonin ATPase. C 0.087 9 R.QQFLLATQLVR.A 15 Nucleotidyl transferase, Mannose-6-phosphate 3052 6.35/53.9 96 isomerase, type II Cs 2 C 0.203 6 R.EIPGFYVVIPAGGAGTR.L 9 K.AASEAAPFFR.D R.DVHDFIFGR.T 3168 6.03/49.9 227 Transforming growth factor beta C 0.015 24 R.LPPTFIEQAR.H 10 K.TLAGPPYPYR.E 3179 5.83/26.2 56 Hypothetical protein C 0.136 21 R.ADGTDVFLGDIDVHR.C 7 tRNA synthetases, class-II (G, H, P and S), C, K.TATPVPVVVIAR.E 3216 5.85/78.8 141 Prolyl-tRNA synthetase C 3 C-M + 0.092 10 K.FAGGLYTTTVEGFIPTSGR.A 16 K.TFTTQETITNATSAR.D 3583 6.17/61.8 58 Phosphoglucose isomerase (PGI) C 0.042 9 K.TEEEVRQELGPNASEPLVK.S 12 Hypothetical protein, elongation factor EF-Tu, K.EILAGFAGAFVDR.E 3623 4.62/13.1 144 tufA N 0.035 39 K.EILAGFAGAFVDREVETR.G 5 3711 6.80/38.2 64 GDP-L-fucose synthetase C 0.221 24 K.NGTPFIVGGTGKPLR.Q 9 K.VVETPQSETTPFYPR.S R.LHHLYEDQHERPNK.F 3727 6.61/42.9 61 GDP-mannose 4,6-dehydratase C 2 C 0.239 23 R.YFRPAEVDLLHGNPAK.A 10 4077 6.51/46.7 122 Adenylosuccinate synthetase C 0.058 27 R.YGHFEYDTEGEIVR.Y 12 Metalloenzyme, phosphoglycerate mutase, 2,3- 4270 5.62/57.8 162 bisphosphoglycerate-independent C 2 C-M 0.164 + 24R.IKDGDTLFFFNYR.S 16 4311 4.93/23.0 111 Amidase from nicotinamidase family C + 0.033 21 R.NAPHPPLIIHVR.N 6 4345 6.81/36.0 153 Arp2/3 complex, 34kDa subunit p34-Arc N 0.018 45 K.VFLQEFVDAR.R 14 4500 6.48/62.8 105 G-protein beta WD-40 repeat, corin like proteinon E + 0.016 28 K.AITALAPTSSSGTFIAGLADGR.V 13 Adipophilin (adipose differentiation-related R.VHPLLEATQAR.A 4580 6.37/37.6 83 protein) C 0.029 45 R.TPALTVVQGIDQR.F 14 Zinc-containing alcohol dehydrogenase K.SINIIGSYVGNR.Q 4796 7.54/37.9 189 superfamily C 2 C-M 0.445 54 K.AAVVDAHGAPLEIR.D 14 K.LFDDTFNVNVK.V K.SEQLIQFFANLHPQK.R 4883 5.79/27.2 336 Short-chain dehydrogenase/reductase SDR M 2 C-M 0.072 34 K.GVNVNAIAPGPVDTDLFR.A 5 5061 5.57/82.5 136 Dipeptidyl-peptidase V precursor E 3 C-M + 0.169 13 R.NSLTSPNDAFVLR.N 8 5153 5.75/37.6 146 Putative dyhydroflavanol-4- reductase C + 0.036 36 R.TYIVSPGTIYGLAR.G 11 K.HIVPDPAR.A K.VAEYAEEETSKR.A 5211 5.43/21.6 111 Suppressor protein SRP40 M + 0.143 22 R.APIPEPEGAANDEASATPSANDDSAK.V 3 R.VHHFDESYFR.A R.VAFSEDDEQVVCVTEQR.M + Carbamidomethyl 5240 5.96/37.4 182 G-protein beta WD-40 repeat N 0.207 43 (C) 14 R.IPLPIDDASR.F K.ELILEYYSLVR.A C, M R.SLVLLSAAGCEYAEYNR.Q + Carbamidomethyl 5348 5.55/35.6 58 Hypothetical protein M 4 C-M + 0.365 + 35 (C) 10 R.EPNQDHHAHH.- K.NEADAFLELCER.E + 5470 6.54/19.5 149 ATP synthase subunit h M 0.152 12 Carbamidomethyl (C) 4 R.NTLEGYLYR.L 5586 6.32/92.9 116 Heat shock protein Hsp70 E.R. + 0.016 + 15 R.LFGSDAFNIAGR.F 19 5721 5.93/121.8 111 Glycosyl S-transferase 35 C 0.072 22 8 Required for invasion and pseudohyphae R.AAYDYAVAHAR.A 5811 4.82/76.5 53 formation in response to nitrogen starvation N 0.507 + 5 K.NKPVHAYEHALNGLLAR.L 5 Elongation factor 1, beta/beta'/delta chain, K.LVPIGYGIR.K 5826 4.55/25.3 193 inorganic pyrophosphatase C 0.039 33 K.AITSAPDASLVSVNR.W 7 5864 6.25/52.3 129 Glutamine synthetase, catalytic region M 0.048 21 R.LSPYAPGHATVFGYFQYK.V 11 K.AFGNIYSR.I 5957 5.97/46.7 83 O-acetylhomoserine/O-acetylserine sulfhydrylase C 0.134 27 R.FPSFTKPSEGYHGLK.F 16 R.EGIAPVPVDAPR.L 6010 5.74/63.8 81 Glucose-methanol-choline oxidoreductase C 0.066 12 R.LVVVSAGTFGSPAILER.S 11 K.IGIQLAHAGR.K 6330 6.27/44.8 213 NADH flavin oxidoreductase/NADH oxidase C + 0.064 28 R.GPGLTFFEATAVSPEGR.I 13 R.DYFGAHTFR.V R.SEVVPANLIQAQR.D 6357 6.35/54.1 177 6-phosphogluconate dehydrogenase, C-terminal C 2 C 0.424 36 K.GLLFVGSGVSGGEEGAR.Y 17 6364 5.50/29.4 53 6-phosphogluconolactonase C 0.059 + 44 R.LTLTFPVINHAAR.V 10 K.EGIAIVFPDTSPR.G 6460 6.32/31.8 100 Esterase/lipase/thioesterase M 0.023 36 K.VIQEAGLPIDFSR.Q 9 Translation elongation factor Tu, protein K.YSPQIFLR.T 6570 8.36/51.8 177 synthesis factor M 0.05 20 K.FTDYNEIDKAPEER.A 17 R.GITINSAHVEYETDNR.H Rab GDI protein, probable secretory pathway C, K.QIAGSFVYR.D 6612 5.44/50.2 123 GDP dissociation inhibitor 1 C 3 C-M 0.376 + 38 K.FRPDQAPPAELGR.D 18 R.LIYFYLDER.G Phosphoglucomutase/phosphomannomutase C K.LPPSLAAHLKPGQR.A 6660 5.96/59.4 172 terminal C 0.051 24 R.NAGVTTTPILHYLVR.A 13 6715 6.00/32.9 66 Aldose 1-epimerase P + 0.011 46 K.YICVEPGYVR.G + Carbamidomethyl (C) 11 Ribosomal protein S3, C-terminal, 6737 8.72/29.2 103 Eukaryotic/archaeal ribosomal protein S3 M 0.052 42 R.FKFPENSLELYAEK.V 11 R.VYEIGPVFR.A 6758 6.05/62.7 230 Aspartyl-tRNA synthetase class IIb N 2 C-M 0.226 5 K.LQHAIGHLFR.D 20 Alkyl hydroperoxide reductase/ Thiol specific antioxidant/ Mal allergen, similar to K.VGRPIVLFFYPK.S 6867 5.36/25.2 144 peroxiredoxin Q M + 0.051 39 K.LTYPVLSDSAGEAR.K 7 6915 4.68/34.9 60 F-actin capping protein, alpha subunit N 0.048 31 8 R.LLEFNNGR.V Glycyl-tRNA synthetase, alpha2 dimer, tRNA R.FFYAPAFEIYR.G 7072 5.92/73.8 156 synthetases, class-II (G, H, P and S) C 0.029 12 R.EFTPNVIEPSFGLGR.I 13 R.EFLQSIEDR.K 2Fe-2S ferredoxin, iron-sulfur binding site, R.CHTIFNCSR.T + 2 Carbamidomethyl (C) 7113 8.99/31.1 86 Ferredoxin M + 0.025 10 K.IKNEIDPTLTFR.R 3 R.SQFEGLVSNLIQR.T C, R.VINEPTAAALAYGLDR.A
Recommended publications
  • Review Article Functional Subunits of Eukaryotic Chaperonin CCT/Tric in Protein Folding
    SAGE-Hindawi Access to Research Journal of Amino Acids Volume 2011, Article ID 843206, 16 pages doi:10.4061/2011/843206 Review Article Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding M. Anaul Kabir,1 Wasim Uddin,1 Aswathy Narayanan,1 Praveen Kumar Reddy,1 M. Aman Jairajpuri,2 Fred Sherman,3 and Zulfiqar Ahmad4 1 Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Kerala 673601, India 2 Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India 3 Department of Biochemistry and Biophysics, University of Rochester Medical Center, NY 14642, USA 4 Department of Biology, Alabama A&M University, Normal, AL 35762, USA Correspondence should be addressed to M. Anaul Kabir, [email protected] Received 15 February 2011; Accepted 5 April 2011 Academic Editor: Shandar Ahmad Copyright © 2011 M. Anaul Kabir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stacked back to back. Each ring is composed of eight different but similar subunits and each subunit has three distinct domains. CCT assists folding of actin, tubulin, and numerous other cellular proteins in an ATP-dependent manner.
    [Show full text]
  • Structure, Hormonal Regulation and Chromosomal Location of Genes Encoding Barley (1-+A)-B-Xylan Endohydrolases
    l;),, (!. s,9 47 STRUCTURE, HORMONAL RB,GULA CHROMOSOMAL LOCATION OF GENES ENCODING BARLEY (1+4)- p-XYLAI\ ENDOHYDROLASES by MITALI BANIK, B.Sc. (Hons.), M.Sc. A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy Department of Plant Science, Division of Agricultural and Natural Resource Sciences, TheUniversity of Adelaide, Waite Campus, Glen Osmond,5064 Australia October, 1996 1l STATEMENT OF AUTHORSHIP Except where reference is made in the text of the thesis, this thesis contains no material published elsewhere or extracted in whole or in part from a thesis presented by me for another degree or diploma. No other person's work has been used without due acknowledgment in the main text of the thesis. This thesis has not been submitted for the award of any other degree or diploma in any other tertiary institution. MITALI BANIK October, 1996 o lll ACKNOWLBDGMENTS I would like to express my deepest sense of gratitude and indebtedness to my supervisor, Professor Geoffrey B. Fincher, Head of Department, Plant Science, University of Adelaide for his constant guidance, infinite patience, encouragement and invaluable suggestions throughout my studies. I wish to express my immense gratitude to Professor Derek Bewley, Department of Botany, University of Guelph, Canada for his constructive criticism during the preparation of this thesis. I am also grateful to Drs. Frank Gubler and John V. Jacobsen, CSIRO Division of Plant Industry, Canberra for providing a cDNA library. I wish to thank Dr. Simon Robinson, Senior Scientist, CSIRO for his constructive suggestions throughout the duration of my research project.
    [Show full text]
  • The Chaperonin Folding Machine
    Review TRENDS in Biochemical Sciences Vol.27 No.12 December 2002 627 32 He, B. et al. (1998) Glycogen synthase kinase 3β DNA damage-induced phosphorylation. Science regulates transcriptional activity. Mol. Cell 6, and extracellular signal-regulated kinase 292, 1910–1915 539–550 inactivate heat shock transcription factor 1 by 43 Waterman, M.J. et al. (1998) ATM-dependent 53 Beals, C.R. et al. (1997) Nuclear localization of facilitating the disappearance of transcriptionally activation of p53 involves dephosphorylation and NF-ATc by a calcineurin-dependent, active granules after heat shock. Mol. Cell. Biol. association with 14-3-3 proteins. Nat. Genet. 19, cyclosporin-sensitive intramolecular interaction. 18, 6624–6633 175–178 Genes Dev. 11, 824–834 33 Xia, W. et al. (1998) Transcriptional activation of 44 Stavridi, E.S. et al. (2001) Substitutions that 54 Porter, C.M. et al. (2000) Identification of amino heat shock factor HSF1 probed by phosphopeptide compromise the ionizing radiation-induced acid residues and protein kinases involved in the analysis of factor 32P-labeled in vivo. J. Biol. association of p53 with 14-3-3 proteins also regulation of NFATc subcellular localization. Chem. 273, 8749–8755 compromise the ability of p53 to induce cell cycle J. Biol. Chem. 275, 3543–3551 34 Dai, R. et al. (2000) c-Jun NH2-terminal kinase arrest. Cancer Res. 61, 7030–7033 55 Yang, T.T. et al. (2002) Phosphorylation of NFATc4 targeting and phosphorylation of heat shock 45 Kaeser, M.D. and Iggo, R.D. (2002) Chromatin by p38 mitogen-activated protein kinases. factor-1 suppress its transcriptional activity.
    [Show full text]
  • Technische Universität München
    TECHNISCHE UNIVERSITÄT MÜNCHEN Department Chemie Lehrstuhl für Biotechnologie Analysis of small heat shock proteins and their interaction with substrate proteins Marina Angelika Kreuzeder Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Bernd Reif Prüfer der Dissertation 1. Prof. Dr. Johannes Buchner 2. Prof. Dr. Michael Sattler Die Dissertation wurde am 18.09.2017 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 02.11.2017 angenommen. Für meine Eltern Contents Contents 1. INTRODUCTION.............................................................................................. 1 1.1 Protein folding .................................................................................................................................. 1 1.2 Cell stress and heat shock proteins ........................................................................................... 3 1.3 Molecular chaperones .................................................................................................................... 5 1.4 ATP- dependent chaperones ........................................................................................................ 6 1.5 Small heat shock proteins ............................................................................................................. 9 1.5.1 Structure of Hsps .....................................................................................................................................
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2006/0068405 A1 Diber Et Al
    US 2006.0068405A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0068405 A1 Diber et al. (43) Pub. Date: Mar. 30, 2006 (54) METHODS AND SYSTEMIS FOR Correspondence Address: ANNOTATING BOMOLECULAR Martin D. Moynihan SEQUENCES PRTSI, Inc. (76) Inventors: Alex Diber, Rishon-LeZion (IL); Sarah P.O. Box 16446 Pollock, Tel-Aviv (IL); Zurit Levine, Arlington, VA 22215 (US) Herzlia (IL); Sergey Nemzer, RaAnana (IL); Vladimir Grebinskiy, Highland Park, NJ (US); Brian Meloon, (21) Appl. No.: 11/043,860 Plainsboro, NJ (US); Andrew Olson, Northport, NY (US): Avi Rosenberg, Kfar Saba (IL); Ami Haviv, (22) Filed: Jan. 27, 2005 Hod-HaSharon (IL); Shaul Zevin, Mevaseret Zion (IL); Tomer Zekharia, Givataim (IL); Zipi Shaked, Tel-Aviv (IL); Moshe Olshansky, Haifa (IL); Related U.S. Application Data Ariel Farkash, Haifa (IL); Eyal Privman, Tel-Aviv (IL); Amit Novik, (60) Provisional application No. 60/539,129, filed on Jan. Beit-YeHoshua (IL); Naomi Keren, 27, 2004. Givat Shmuel (IL); Gad S. Cojocaru, Ramat-HaSharon (IL); Pinch as Akiva, Publication Classification Ramat-Gan (IL); Yossi Cohen, Surrey (GB); Ronen Shemesh, Modi In (IL); (51) Int. C. Osnat Sella-Tavor, Kfar-Kish (IL); CI2O I/68 (2006.01) Liat Mintz, East brunswick, NJ (US); G06F 9/00 (2006.01) Hanging Xie, Lambertville, NJ (US); Dvir Dahary, Tel-Aviv (IL); Erez (52) U.S. Cl. ................................................... 435/6; 702/20 Levanon, Petach-Tikva (IL); Shiri Freilich, Haifa (IL); Nili Beck, Kfar Saba (IL); Wei-Yong Zhu, Plainsboro, (57) ABSTRACT NJ (US); Alon Wasserman, New York, NY (US); Chen Chermesh, Mishmar HaShiva (IL); Idit Azar, Tel-Aviv (IL); Polypeptide sequences and polynucleotide sequences are Rotem Sorek, Rechovot (IL); Jeanne provided.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • Requirement for Binding Multiple Atps to Convert a Groel Ring to the Folding-Active State
    Requirement for binding multiple ATPs to convert a GroEL ring to the folding-active state Eli Chapmana, George W. Farrb,c, Wayne A. Fentonc, Steven M. Johnsona, and Arthur L. Horwicha,b,c,1 aThe Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and bHoward Hughes Medical Institute and cDepartment of Genetics, Yale School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510 Contributed by Arthur L. Horwich, October 22, 2008 (sent for review October 9, 2008) Production of the folding-active state of a GroEL ring involves reflected in a structure of GroEL–GroES–ADP–AlF3 (11), initial cooperative binding of ATP, recruiting GroES, followed by affords a critical level of energy and cooperativity. large rigid body movements that are associated with ejection of The question remains, however, of how many subunits must bound substrate protein into the encapsulated hydrophilic cham- cooperatively bind ATP to recruit the collective of subunits in a ber where folding commences. Here, we have addressed how ring to the folding-active state. For example, does binding a many of the 7 subunits of a GroEL ring are required to bind ATP to single ATP to a ring bring about such movement and activation drive these events, by using mixed rings with different numbers of of folding? Or, at the other extreme, is there a requirement to wild-type and variant subunits, the latter bearing a substitution in bind ATP to each subunit to produce the collective movement the nucleotide pocket that allows specific block of ATP binding and that activates folding? In other words, how redundant is the turnover by a pyrazolol pyrimidine inhibitor.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • The Structural and Functional Study of the Human Mitochondrial Hsp60 Chaperonin in Neurodegenerative Diseases
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2018-01-01 The trS uctural And Functional Study Of The Human Mitochondrial Hsp60 Chaperonin In Neurodegenerative Diseases Jinliang Wang University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biochemistry Commons Recommended Citation Wang, Jinliang, "The trS uctural And Functional Study Of The umH an Mitochondrial Hsp60 Chaperonin In Neurodegenerative Diseases" (2018). Open Access Theses & Dissertations. 20. https://digitalcommons.utep.edu/open_etd/20 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. THE STRUCTURAL AND FUNCTIONAL STUDY OF THE HUMAN MITOCHONDRIAL HSP60 CHAPERONIN IN NEURODEGENERATIVE DISEASES JINLIANG WANG Doctoral Program in Chemistry APPROVED: Ricardo A Bernal, Ph.D., Chair Chu Young Kim, Ph.D. Xiujun Li, Ph.D. Jianying Zhang, Ph.D. Sudheer Molugu, Ph.D. Jay M. Bhatt, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Jinliang Wang 2018 Dedication This dissertation is dedicated to my teachers and my family. All my achievements would not have been reached without their support. THE STRUCTURAL AND FUNCTIONAL STUDY OF THE HUMAN MITOCHONDRIAL HSP60 CHAPERONIN IN NEURODEGENERATIVE DISEASES by JINLIANG WANG, MS DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department of Chemistry and Biochemistry THE UNIVERSITY OF TEXAS AT EL PASO December 2018 Acknowledgements I would like to express my sincere gratitude to my advisor Dr.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • ATP-Bound States of Groel Captured by Cryo-Electron Microscopy
    Cell, Vol. 107, 869–879, December 28, 2001, Copyright 2001 by Cell Press ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy Neil A. Ranson,1,5 George W. Farr,2,3 characterized of which is the GroEL/GroES system in Alan M. Roseman,1,6 Brent Gowen,4,7 E. coli (Hartl, 1996; Ranson et al., 1998; Sigler et al., Wayne A. Fenton,3 Arthur L. Horwich,2,3 1998). The essential physiological role of chaperonins, and Helen R. Saibil1 together with the experimental accessibility of the GroE 1Department of Crystallography system, has stimulated intensive biochemical and theo- Birkbeck College London retical analysis. The resulting information may provide Malet Street a conceptual model for ring complexes which harness London WC1E 7HX the energy of nucleotide binding for many cellular func- United Kingdom tions. 2 Howard Hughes Medical Institute and The double-ring GroEL binds nonnative proteins in a 3 Department of Genetics central cavity, then mediates productive folding inside Yale School of Medicine a sequestered space formed when ATP and GroES bind New Haven, Connecticut 06510 to the same ring as polypeptide. Each GroEL subunit 4 Biochemistry Department comprises an equatorial, ATP binding domain joined by Imperial College a hinge region to a slender intermediate domain that in Exhibition Road turn has a hinge connection to an apical domain mediat- London SW7 2AY ing polypeptide binding (Braig et al., 1994). The two United Kingdom apposed rings of equatorial domains hold the cylindrical oligomer together through both intra- and inter-ring con- tacts. The cooperative binding of ATP to a GroEL ring allows Summary rapid binding of GroES to that ring, converting it from a polypeptide-accepting to a folding-active state.
    [Show full text]