(12) Patent Application Publication (10) Pub. No.: US 2006/0068405 A1 Diber Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2006/0068405 A1 Diber Et Al US 2006.0068405A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2006/0068405 A1 Diber et al. (43) Pub. Date: Mar. 30, 2006 (54) METHODS AND SYSTEMIS FOR Correspondence Address: ANNOTATING BOMOLECULAR Martin D. Moynihan SEQUENCES PRTSI, Inc. (76) Inventors: Alex Diber, Rishon-LeZion (IL); Sarah P.O. Box 16446 Pollock, Tel-Aviv (IL); Zurit Levine, Arlington, VA 22215 (US) Herzlia (IL); Sergey Nemzer, RaAnana (IL); Vladimir Grebinskiy, Highland Park, NJ (US); Brian Meloon, (21) Appl. No.: 11/043,860 Plainsboro, NJ (US); Andrew Olson, Northport, NY (US): Avi Rosenberg, Kfar Saba (IL); Ami Haviv, (22) Filed: Jan. 27, 2005 Hod-HaSharon (IL); Shaul Zevin, Mevaseret Zion (IL); Tomer Zekharia, Givataim (IL); Zipi Shaked, Tel-Aviv (IL); Moshe Olshansky, Haifa (IL); Related U.S. Application Data Ariel Farkash, Haifa (IL); Eyal Privman, Tel-Aviv (IL); Amit Novik, (60) Provisional application No. 60/539,129, filed on Jan. Beit-YeHoshua (IL); Naomi Keren, 27, 2004. Givat Shmuel (IL); Gad S. Cojocaru, Ramat-HaSharon (IL); Pinch as Akiva, Publication Classification Ramat-Gan (IL); Yossi Cohen, Surrey (GB); Ronen Shemesh, Modi In (IL); (51) Int. C. Osnat Sella-Tavor, Kfar-Kish (IL); CI2O I/68 (2006.01) Liat Mintz, East brunswick, NJ (US); G06F 9/00 (2006.01) Hanging Xie, Lambertville, NJ (US); Dvir Dahary, Tel-Aviv (IL); Erez (52) U.S. Cl. ................................................... 435/6; 702/20 Levanon, Petach-Tikva (IL); Shiri Freilich, Haifa (IL); Nili Beck, Kfar Saba (IL); Wei-Yong Zhu, Plainsboro, (57) ABSTRACT NJ (US); Alon Wasserman, New York, NY (US); Chen Chermesh, Mishmar HaShiva (IL); Idit Azar, Tel-Aviv (IL); Polypeptide sequences and polynucleotide sequences are Rotem Sorek, Rechovot (IL); Jeanne provided. Also provided are annotative information concern Bernstein, Kfar Yona (IL) ing Such sequences and uses for these sequences. Patent Application Publication Mar. 30, 2006 Sheet 1 of 50 US 2006/0068405 A1 S1GH-D z - Z. <g O 2 <C O X I A. Patent Application Publication Mar. 30, 2006 Sheet 2 of 50 US 2006/0068405 A1 N V S. 545 - Z CN y O O Ž- w seO M) Z.Sd CD O A. OD A. op Z. O <g O A 2. S Patent Application Publication Mar. 30, 2006 Sheet 3 of 50 US 2006/0068405 A1 Patent Application Publication Mar. 30, 2006 Sheet 4 of 50 US 2006/0068405 A1 O N ef a C9 s CD Op. s - Patent Application Publication Mar. 30, 2006 Sheet 5 of 50 US 2006/0068405 A1 Figure 4 1 tumor 1.1 epithelial cell tumors 1.1.1 carcinoma 1.1.1.1 adenocarcinoma 1.1.1.2 lobular carcinoma 1.2 Mesenchimal cell tumors 1.2.1 sarcoma 1.2.1.1 liposarcoma 1.2.1.2. rhabdomyosarcoma 1.2.1.3 pnet 1.2.1.4 ewing sarcoma 1.3 blood tumors 1.3.1 lymphoma 1.3.2 leukemia 1.3.3 myeloma 1.4 endocrine tumors 1.4.1 pheocromocytoma 1.4.2 carcinoid Patent Application Publication Mar. 30, 2006 Sheet 6 of 50 US 2006/0068405 A1 Figure 4 2 endocrine system 2.1 adrenal 2.1.1 pheocromocytoma 2.2 pancreas 2.2.1 islets of Langerhans 2.3 neuroendocrine 2.3.1 hypothalamus 2.3.2 carcinoid 2.4 thyroid 3 vascular tissue 3.1 arteries 3.1.1 aorta 3.2 Vein Patent Application Publication Mar. 30, 2006 Sheet 7 of 50 US 2006/0068405 A1 Figure 4 4 genitourinary System 4.1 urinary system 4.1.1 bladder 4.1.2 kidney 4.2 genital system 4.2.1 women genital system 4.2.1.1 cervix 4.2.1.2 ovary 4.2.1.3 uterus 4.2. I.3.I endometrium 4.2.2 men gentile system 4.2.2.1 prostate 4.2.2.2 testis 4.2.2.2.1 epididymis 5 muscles 5.1 rhabdomyosarcoma 5.2 tongue - 5.3 bladder 5.4 heart 5.5 uterus Patent Application Publication Mar. 30, 2006 Sheet 8 of 50 US 2006/0068405 A1 Figure 4 6 Blood 6.1 peripheral blood 6.1.1 erythroid line 6.1.2 leukocyte 6.1.2.1 lymphoid system 6. I.2.1. I lymphoma 6.1.2.1.2 spleen 6. I.2.1.3 thalamus 6.2 stem cells 6.2.1 myeloid 6.2.2 myeloma 6.3 'Bone narrow 6.4 leukemia Patent Application Publication Mar. 30, 2006 Sheet 9 of 50 US 2006/0068405 A1 Figure 4 7 nerve system 7.1 CNS, central nervous system 7.1.1 brain 7.1.1.1 cerebrum 7.1.1.2 cerebellum 7.1.1.3 pitituary gland 7.1.1.4 hypothalamus 7.1.1.5 thalamus 7.1.1.6 olfactory 7.1.1.7 Hippocampus 7.1.1.8 amygdala 7.1.1.9 frontal lobe 7.1.1.10 pnet 7.2 Embryonal nerve system 7.2.1 primitive neuroectoderm 7.3 retina 7.3.1 retinobastoma Patent Application Publication Mar. 30, 2006 Sheet 10 of 50 US 2006/0068405 A1 Figure 4 8 breast 8.1 ductal breast 8.1.1 ductal carcinoma 8.2 lobular carcinoma 8.3 mammary 9 skeleton 9.1 bone 9.1.1 evving sarcoma 9.1.2 craniofacial 9.1.2.1 cavarium 9.2 connective tissue 9.2.1 trabeculae 9.2.2 cartilage 10 embryo 10.1 annion . 10.2 chorion 10.3prinitive neuroectodern 10.4 placenta Patent Application Publication Mar. 30, 2006 Sheet 11 of 50 US 2006/0068405 A1 Figure 4 11 exocrine system 11.1 pancreas 11.1.1 islets of Langerhans 11.2prostate 11.3salivary gland Patent Application Publication Mar. 30, 2006 Sheet 12 of 50 US 2006/0068405 A1 Figure 4 12 face organs 12.1 nose 12.2ear 12.2.1 cochlea 12.3eye 12.3.1 retina 12.3.1.1 retinoblastoma 12.3.2 lens 12.4mouth 12.5 tongue 13 gastrointestinal system. 13.1 mucosa 13.2stomach 13.3 intestine 13.3.1 colorectal 13.3.1.1 colon 13.4 hepatobiliary system 1341 liver 13.4.2 biliary system 13.4.2.1 gallbladder 13.5 pancreas 13.5.1 islets of Langerhans Patent Application Publication Mar. 30, 2006 Sheet 13 of 50 US 2006/0068405 A1 Figure 4 14 respiratory system 14.1 nasopharynx 14.2 lung 14.2.1 : Small cell lung carcinoma 15 skin 15.1 dernis 15.1.1 melanocyte 16 fat tissue 16.1 liposarcoma Patent Application Publication Mar. 30, 2006 Sheet 14 of 50 US 2006/0068405 A1 separe th as A s h Figure 5 Patent Applicaication d Publicaication Mar. 30, 2006 Sheet 16 Of 5 O US 200 6/00684 05 A1 i . Ste. bos lay oqdds seron, Xodso a Jsue stup ou O-IA lood Sea--M. Seupstup '08o to lood Pseup .. Epid m PuoqPunod lso3.is lso O't2'sseto stop lose P?y a Puoq -S unse strop real Sop 10Pa?que po PJ to ulyae 'o Ioap - - amal "laoudtu.?zt linuru, 'suayapm seau loao 'Isoup lio3 S S &S & S. S. CRs swf/64ouárve ve ro 4 winn Patent Application Publication Mar. 30, 2006 Sheet 18 of 50 US 2006/0068405 A1 brain Stomach placenta kidney spleen thymus ovary heart lung testis liver breast pancreas i muscle adenocarcinoma colon normal . CVS Duke A E. S. Duke B c 2 S Duke C 3 S 5. Duke D as B EE C. 93 : 3 D ... genomic DNA Patent Application Publication Mar. 30, 2006 Sheet 19 of 50 US 2006/0068405 A1 Patent Application Publication Mar. 30, 2006 Sheet 20 of 50 US 2006/0068405 A1 eulosedOneN buoulouebouapw uood IbuI.ION I.-9 eulobes fuAA auog CN Ioun auog gld Jo IounL s s CD E o C (9is O i Patent Application Publication Mar. 30, 2006 Sheet 21 of 50 US 2006/0068405 A1 Brain Stomach Placenta Kidney Spleen Thymus i Adenocarcinoma Colon Duke's D Patent Application Publication Mar. 30, 2006 Sheet 22 of 50 US 2006/0068405 A1 i N go e N v was yes as a SeAe I uOSSeIdx poZIeUILION 9Alee Patent Application Publication Mar. 30, 2006 Sheet 23 of 50 US 2006/0068405 A1 A. euouple3 ful in SNA.it 9. Oue Oagppo 9. gy (ouapw) o9s)Ogil ty (ouapw) OZ500 til (ooo-)-eu ougeoo.uapi Ely Oule-uebSylpaw a oup JeuenbS gippo is euoupe) soulenbSoil 2uoupe) SoueinbS 6. i (lood-Og) ouped-uebS gy Og) euouple) souenbS, (u0)) sinouenbS fun 9; euouple) zi-90 Gil NIOSO (eluon fun El lood ugeupoiguon Bunzhi O to a o R N tre a n w is SI3A9 I uOSSeIdx peZIIeu.ION 9Alee Patent Application Publication Mar. 30, 2006 Sheet 24 of 50 US 2006/0068405 A1 euoupe) fun SN ly 9 oupled-oaAIvyippon 9th G# (ouapi. O990 Gil it (Ouapozlso pay (ooo-eulou.Je3Ouapi Ely OuJIeuenbSylpa is oupeauenbs JON euouple3 souenbS Oy euou)120 SouebS 6: i ?oodog) ouped-uenbS 9; O) euouse) souebS: (uo) SIOuenbS fun 9 euloupe 90 gly NZOZ-9) reulon fun. Eit . lood ueu) og uon fun El O a r in a v SeAe I uOSSeIdx peZeuION 9Alee Patent Application Publication Mar. 30, 2006 Sheet 26 of 50 US 2006/0068405 A1 SuOX?Þ6suoxa6ºl 0-eçISQJnãIJ Patent Application Publication Mar. 30, 2006 Sheet 28 of 50 US 2006/0068405 A1 sau?od9:VINCI—OT9TOOVVT9z?G?G800LN6O–––VILLOLOOWOO>?<ÐVLOÐOO?\,\! nu?OdI:LSE—0989LOIV–––VALLOLOOWOO>O<ÐVLOÐOOÐVV aufodI:LSE--OT9I00\!\,–––VILLOLOOVION>O<ÐVLOÐOOÐVV StìSU3SUOO—V?LILOLOOVZOO»O<5)VILOÐOOÐVIVI I%99O#Z%L9?ÇOIUO?ISOd18?NS q9I31AI Patent Application Publication Mar.
Recommended publications
  • Review Article Functional Subunits of Eukaryotic Chaperonin CCT/Tric in Protein Folding
    SAGE-Hindawi Access to Research Journal of Amino Acids Volume 2011, Article ID 843206, 16 pages doi:10.4061/2011/843206 Review Article Functional Subunits of Eukaryotic Chaperonin CCT/TRiC in Protein Folding M. Anaul Kabir,1 Wasim Uddin,1 Aswathy Narayanan,1 Praveen Kumar Reddy,1 M. Aman Jairajpuri,2 Fred Sherman,3 and Zulfiqar Ahmad4 1 Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Kerala 673601, India 2 Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India 3 Department of Biochemistry and Biophysics, University of Rochester Medical Center, NY 14642, USA 4 Department of Biology, Alabama A&M University, Normal, AL 35762, USA Correspondence should be addressed to M. Anaul Kabir, [email protected] Received 15 February 2011; Accepted 5 April 2011 Academic Editor: Shandar Ahmad Copyright © 2011 M. Anaul Kabir et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Molecular chaperones are a class of proteins responsible for proper folding of a large number of polypeptides in both prokaryotic and eukaryotic cells. Newly synthesized polypeptides are prone to nonspecific interactions, and many of them make toxic aggregates in absence of chaperones. The eukaryotic chaperonin CCT is a large, multisubunit, cylindrical structure having two identical rings stacked back to back. Each ring is composed of eight different but similar subunits and each subunit has three distinct domains. CCT assists folding of actin, tubulin, and numerous other cellular proteins in an ATP-dependent manner.
    [Show full text]
  • Structure, Hormonal Regulation and Chromosomal Location of Genes Encoding Barley (1-+A)-B-Xylan Endohydrolases
    l;),, (!. s,9 47 STRUCTURE, HORMONAL RB,GULA CHROMOSOMAL LOCATION OF GENES ENCODING BARLEY (1+4)- p-XYLAI\ ENDOHYDROLASES by MITALI BANIK, B.Sc. (Hons.), M.Sc. A thesis submitted in fulfillment of the requirement for the degree of Doctor of Philosophy Department of Plant Science, Division of Agricultural and Natural Resource Sciences, TheUniversity of Adelaide, Waite Campus, Glen Osmond,5064 Australia October, 1996 1l STATEMENT OF AUTHORSHIP Except where reference is made in the text of the thesis, this thesis contains no material published elsewhere or extracted in whole or in part from a thesis presented by me for another degree or diploma. No other person's work has been used without due acknowledgment in the main text of the thesis. This thesis has not been submitted for the award of any other degree or diploma in any other tertiary institution. MITALI BANIK October, 1996 o lll ACKNOWLBDGMENTS I would like to express my deepest sense of gratitude and indebtedness to my supervisor, Professor Geoffrey B. Fincher, Head of Department, Plant Science, University of Adelaide for his constant guidance, infinite patience, encouragement and invaluable suggestions throughout my studies. I wish to express my immense gratitude to Professor Derek Bewley, Department of Botany, University of Guelph, Canada for his constructive criticism during the preparation of this thesis. I am also grateful to Drs. Frank Gubler and John V. Jacobsen, CSIRO Division of Plant Industry, Canberra for providing a cDNA library. I wish to thank Dr. Simon Robinson, Senior Scientist, CSIRO for his constructive suggestions throughout the duration of my research project.
    [Show full text]
  • The Chaperonin Folding Machine
    Review TRENDS in Biochemical Sciences Vol.27 No.12 December 2002 627 32 He, B. et al. (1998) Glycogen synthase kinase 3β DNA damage-induced phosphorylation. Science regulates transcriptional activity. Mol. Cell 6, and extracellular signal-regulated kinase 292, 1910–1915 539–550 inactivate heat shock transcription factor 1 by 43 Waterman, M.J. et al. (1998) ATM-dependent 53 Beals, C.R. et al. (1997) Nuclear localization of facilitating the disappearance of transcriptionally activation of p53 involves dephosphorylation and NF-ATc by a calcineurin-dependent, active granules after heat shock. Mol. Cell. Biol. association with 14-3-3 proteins. Nat. Genet. 19, cyclosporin-sensitive intramolecular interaction. 18, 6624–6633 175–178 Genes Dev. 11, 824–834 33 Xia, W. et al. (1998) Transcriptional activation of 44 Stavridi, E.S. et al. (2001) Substitutions that 54 Porter, C.M. et al. (2000) Identification of amino heat shock factor HSF1 probed by phosphopeptide compromise the ionizing radiation-induced acid residues and protein kinases involved in the analysis of factor 32P-labeled in vivo. J. Biol. association of p53 with 14-3-3 proteins also regulation of NFATc subcellular localization. Chem. 273, 8749–8755 compromise the ability of p53 to induce cell cycle J. Biol. Chem. 275, 3543–3551 34 Dai, R. et al. (2000) c-Jun NH2-terminal kinase arrest. Cancer Res. 61, 7030–7033 55 Yang, T.T. et al. (2002) Phosphorylation of NFATc4 targeting and phosphorylation of heat shock 45 Kaeser, M.D. and Iggo, R.D. (2002) Chromatin by p38 mitogen-activated protein kinases. factor-1 suppress its transcriptional activity.
    [Show full text]
  • Technische Universität München
    TECHNISCHE UNIVERSITÄT MÜNCHEN Department Chemie Lehrstuhl für Biotechnologie Analysis of small heat shock proteins and their interaction with substrate proteins Marina Angelika Kreuzeder Vollständiger Abdruck der von der Fakultät für Chemie der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation. Vorsitzender: Prof. Dr. Bernd Reif Prüfer der Dissertation 1. Prof. Dr. Johannes Buchner 2. Prof. Dr. Michael Sattler Die Dissertation wurde am 18.09.2017 bei der Technischen Universität München eingereicht und durch die Fakultät für Chemie am 02.11.2017 angenommen. Für meine Eltern Contents Contents 1. INTRODUCTION.............................................................................................. 1 1.1 Protein folding .................................................................................................................................. 1 1.2 Cell stress and heat shock proteins ........................................................................................... 3 1.3 Molecular chaperones .................................................................................................................... 5 1.4 ATP- dependent chaperones ........................................................................................................ 6 1.5 Small heat shock proteins ............................................................................................................. 9 1.5.1 Structure of Hsps .....................................................................................................................................
    [Show full text]
  • 12) United States Patent (10
    US007635572B2 (12) UnitedO States Patent (10) Patent No.: US 7,635,572 B2 Zhou et al. (45) Date of Patent: Dec. 22, 2009 (54) METHODS FOR CONDUCTING ASSAYS FOR 5,506,121 A 4/1996 Skerra et al. ENZYME ACTIVITY ON PROTEIN 5,510,270 A 4/1996 Fodor et al. MICROARRAYS 5,512,492 A 4/1996 Herron et al. 5,516,635 A 5/1996 Ekins et al. (75) Inventors: Fang X. Zhou, New Haven, CT (US); 5,532,128 A 7/1996 Eggers Barry Schweitzer, Cheshire, CT (US) 5,538,897 A 7/1996 Yates, III et al. s s 5,541,070 A 7/1996 Kauvar (73) Assignee: Life Technologies Corporation, .. S.E. al Carlsbad, CA (US) 5,585,069 A 12/1996 Zanzucchi et al. 5,585,639 A 12/1996 Dorsel et al. (*) Notice: Subject to any disclaimer, the term of this 5,593,838 A 1/1997 Zanzucchi et al. patent is extended or adjusted under 35 5,605,662 A 2f1997 Heller et al. U.S.C. 154(b) by 0 days. 5,620,850 A 4/1997 Bamdad et al. 5,624,711 A 4/1997 Sundberg et al. (21) Appl. No.: 10/865,431 5,627,369 A 5/1997 Vestal et al. 5,629,213 A 5/1997 Kornguth et al. (22) Filed: Jun. 9, 2004 (Continued) (65) Prior Publication Data FOREIGN PATENT DOCUMENTS US 2005/O118665 A1 Jun. 2, 2005 EP 596421 10, 1993 EP 0619321 12/1994 (51) Int. Cl. EP O664452 7, 1995 CI2O 1/50 (2006.01) EP O818467 1, 1998 (52) U.S.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur Et Al
    US 2012026.6329A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0266329 A1 Mathur et al. (43) Pub. Date: Oct. 18, 2012 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/10 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/24 (2006.01) CI2N 9/02 (2006.01) (75) Inventors: Eric J. Mathur, Carlsbad, CA CI2N 9/06 (2006.01) (US); Cathy Chang, San Marcos, CI2P 2L/02 (2006.01) CA (US) CI2O I/04 (2006.01) CI2N 9/96 (2006.01) (73) Assignee: BP Corporation North America CI2N 5/82 (2006.01) Inc., Houston, TX (US) CI2N 15/53 (2006.01) CI2N IS/54 (2006.01) CI2N 15/57 2006.O1 (22) Filed: Feb. 20, 2012 CI2N IS/60 308: Related U.S. Application Data EN f :08: (62) Division of application No. 1 1/817,403, filed on May AOIH 5/00 (2006.01) 7, 2008, now Pat. No. 8,119,385, filed as application AOIH 5/10 (2006.01) No. PCT/US2006/007642 on Mar. 3, 2006. C07K I4/00 (2006.01) CI2N IS/II (2006.01) (60) Provisional application No. 60/658,984, filed on Mar. AOIH I/06 (2006.01) 4, 2005. CI2N 15/63 (2006.01) Publication Classification (52) U.S. Cl. ................... 800/293; 435/320.1; 435/252.3: 435/325; 435/254.11: 435/254.2:435/348; (51) Int. Cl. 435/419; 435/195; 435/196; 435/198: 435/233; CI2N 15/52 (2006.01) 435/201:435/232; 435/208; 435/227; 435/193; CI2N 15/85 (2006.01) 435/200; 435/189: 435/191: 435/69.1; 435/34; CI2N 5/86 (2006.01) 435/188:536/23.2; 435/468; 800/298; 800/320; CI2N 15/867 (2006.01) 800/317.2: 800/317.4: 800/320.3: 800/306; CI2N 5/864 (2006.01) 800/312 800/320.2: 800/317.3; 800/322; CI2N 5/8 (2006.01) 800/320.1; 530/350, 536/23.1: 800/278; 800/294 CI2N I/2 (2006.01) CI2N 5/10 (2006.01) (57) ABSTRACT CI2N L/15 (2006.01) CI2N I/19 (2006.01) The invention provides polypeptides, including enzymes, CI2N 9/14 (2006.01) structural proteins and binding proteins, polynucleotides CI2N 9/16 (2006.01) encoding these polypeptides, and methods of making and CI2N 9/20 (2006.01) using these polynucleotides and polypeptides.
    [Show full text]
  • Requirement for Binding Multiple Atps to Convert a Groel Ring to the Folding-Active State
    Requirement for binding multiple ATPs to convert a GroEL ring to the folding-active state Eli Chapmana, George W. Farrb,c, Wayne A. Fentonc, Steven M. Johnsona, and Arthur L. Horwicha,b,c,1 aThe Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037; and bHoward Hughes Medical Institute and cDepartment of Genetics, Yale School of Medicine, Boyer Center, 295 Congress Avenue, New Haven, CT 06510 Contributed by Arthur L. Horwich, October 22, 2008 (sent for review October 9, 2008) Production of the folding-active state of a GroEL ring involves reflected in a structure of GroEL–GroES–ADP–AlF3 (11), initial cooperative binding of ATP, recruiting GroES, followed by affords a critical level of energy and cooperativity. large rigid body movements that are associated with ejection of The question remains, however, of how many subunits must bound substrate protein into the encapsulated hydrophilic cham- cooperatively bind ATP to recruit the collective of subunits in a ber where folding commences. Here, we have addressed how ring to the folding-active state. For example, does binding a many of the 7 subunits of a GroEL ring are required to bind ATP to single ATP to a ring bring about such movement and activation drive these events, by using mixed rings with different numbers of of folding? Or, at the other extreme, is there a requirement to wild-type and variant subunits, the latter bearing a substitution in bind ATP to each subunit to produce the collective movement the nucleotide pocket that allows specific block of ATP binding and that activates folding? In other words, how redundant is the turnover by a pyrazolol pyrimidine inhibitor.
    [Show full text]
  • All Enzymes in BRENDA™ the Comprehensive Enzyme Information System
    All enzymes in BRENDA™ The Comprehensive Enzyme Information System http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4 1.1.1.1 alcohol dehydrogenase 1.1.1.B1 D-arabitol-phosphate dehydrogenase 1.1.1.2 alcohol dehydrogenase (NADP+) 1.1.1.B3 (S)-specific secondary alcohol dehydrogenase 1.1.1.3 homoserine dehydrogenase 1.1.1.B4 (R)-specific secondary alcohol dehydrogenase 1.1.1.4 (R,R)-butanediol dehydrogenase 1.1.1.5 acetoin dehydrogenase 1.1.1.B5 NADP-retinol dehydrogenase 1.1.1.6 glycerol dehydrogenase 1.1.1.7 propanediol-phosphate dehydrogenase 1.1.1.8 glycerol-3-phosphate dehydrogenase (NAD+) 1.1.1.9 D-xylulose reductase 1.1.1.10 L-xylulose reductase 1.1.1.11 D-arabinitol 4-dehydrogenase 1.1.1.12 L-arabinitol 4-dehydrogenase 1.1.1.13 L-arabinitol 2-dehydrogenase 1.1.1.14 L-iditol 2-dehydrogenase 1.1.1.15 D-iditol 2-dehydrogenase 1.1.1.16 galactitol 2-dehydrogenase 1.1.1.17 mannitol-1-phosphate 5-dehydrogenase 1.1.1.18 inositol 2-dehydrogenase 1.1.1.19 glucuronate reductase 1.1.1.20 glucuronolactone reductase 1.1.1.21 aldehyde reductase 1.1.1.22 UDP-glucose 6-dehydrogenase 1.1.1.23 histidinol dehydrogenase 1.1.1.24 quinate dehydrogenase 1.1.1.25 shikimate dehydrogenase 1.1.1.26 glyoxylate reductase 1.1.1.27 L-lactate dehydrogenase 1.1.1.28 D-lactate dehydrogenase 1.1.1.29 glycerate dehydrogenase 1.1.1.30 3-hydroxybutyrate dehydrogenase 1.1.1.31 3-hydroxyisobutyrate dehydrogenase 1.1.1.32 mevaldate reductase 1.1.1.33 mevaldate reductase (NADPH) 1.1.1.34 hydroxymethylglutaryl-CoA reductase (NADPH) 1.1.1.35 3-hydroxyacyl-CoA
    [Show full text]
  • The Structural and Functional Study of the Human Mitochondrial Hsp60 Chaperonin in Neurodegenerative Diseases
    University of Texas at El Paso DigitalCommons@UTEP Open Access Theses & Dissertations 2018-01-01 The trS uctural And Functional Study Of The Human Mitochondrial Hsp60 Chaperonin In Neurodegenerative Diseases Jinliang Wang University of Texas at El Paso, [email protected] Follow this and additional works at: https://digitalcommons.utep.edu/open_etd Part of the Biochemistry Commons Recommended Citation Wang, Jinliang, "The trS uctural And Functional Study Of The umH an Mitochondrial Hsp60 Chaperonin In Neurodegenerative Diseases" (2018). Open Access Theses & Dissertations. 20. https://digitalcommons.utep.edu/open_etd/20 This is brought to you for free and open access by DigitalCommons@UTEP. It has been accepted for inclusion in Open Access Theses & Dissertations by an authorized administrator of DigitalCommons@UTEP. For more information, please contact [email protected]. THE STRUCTURAL AND FUNCTIONAL STUDY OF THE HUMAN MITOCHONDRIAL HSP60 CHAPERONIN IN NEURODEGENERATIVE DISEASES JINLIANG WANG Doctoral Program in Chemistry APPROVED: Ricardo A Bernal, Ph.D., Chair Chu Young Kim, Ph.D. Xiujun Li, Ph.D. Jianying Zhang, Ph.D. Sudheer Molugu, Ph.D. Jay M. Bhatt, Ph.D. Charles Ambler, Ph.D. Dean of the Graduate School Copyright © by Jinliang Wang 2018 Dedication This dissertation is dedicated to my teachers and my family. All my achievements would not have been reached without their support. THE STRUCTURAL AND FUNCTIONAL STUDY OF THE HUMAN MITOCHONDRIAL HSP60 CHAPERONIN IN NEURODEGENERATIVE DISEASES by JINLIANG WANG, MS DISSERTATION Presented to the Faculty of the Graduate School of The University of Texas at El Paso in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Department of Chemistry and Biochemistry THE UNIVERSITY OF TEXAS AT EL PASO December 2018 Acknowledgements I would like to express my sincere gratitude to my advisor Dr.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur Et Al
    US 20150240226A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2015/0240226A1 Mathur et al. (43) Pub. Date: Aug. 27, 2015 (54) NUCLEICACIDS AND PROTEINS AND CI2N 9/16 (2006.01) METHODS FOR MAKING AND USING THEMI CI2N 9/02 (2006.01) CI2N 9/78 (2006.01) (71) Applicant: BP Corporation North America Inc., CI2N 9/12 (2006.01) Naperville, IL (US) CI2N 9/24 (2006.01) CI2O 1/02 (2006.01) (72) Inventors: Eric J. Mathur, San Diego, CA (US); CI2N 9/42 (2006.01) Cathy Chang, San Marcos, CA (US) (52) U.S. Cl. CPC. CI2N 9/88 (2013.01); C12O 1/02 (2013.01); (21) Appl. No.: 14/630,006 CI2O I/04 (2013.01): CI2N 9/80 (2013.01); CI2N 9/241.1 (2013.01); C12N 9/0065 (22) Filed: Feb. 24, 2015 (2013.01); C12N 9/2437 (2013.01); C12N 9/14 Related U.S. Application Data (2013.01); C12N 9/16 (2013.01); C12N 9/0061 (2013.01); C12N 9/78 (2013.01); C12N 9/0071 (62) Division of application No. 13/400,365, filed on Feb. (2013.01); C12N 9/1241 (2013.01): CI2N 20, 2012, now Pat. No. 8,962,800, which is a division 9/2482 (2013.01); C07K 2/00 (2013.01); C12Y of application No. 1 1/817,403, filed on May 7, 2008, 305/01004 (2013.01); C12Y 1 1 1/01016 now Pat. No. 8,119,385, filed as application No. PCT/ (2013.01); C12Y302/01004 (2013.01); C12Y US2006/007642 on Mar. 3, 2006.
    [Show full text]
  • ATP-Bound States of Groel Captured by Cryo-Electron Microscopy
    Cell, Vol. 107, 869–879, December 28, 2001, Copyright 2001 by Cell Press ATP-Bound States of GroEL Captured by Cryo-Electron Microscopy Neil A. Ranson,1,5 George W. Farr,2,3 characterized of which is the GroEL/GroES system in Alan M. Roseman,1,6 Brent Gowen,4,7 E. coli (Hartl, 1996; Ranson et al., 1998; Sigler et al., Wayne A. Fenton,3 Arthur L. Horwich,2,3 1998). The essential physiological role of chaperonins, and Helen R. Saibil1 together with the experimental accessibility of the GroE 1Department of Crystallography system, has stimulated intensive biochemical and theo- Birkbeck College London retical analysis. The resulting information may provide Malet Street a conceptual model for ring complexes which harness London WC1E 7HX the energy of nucleotide binding for many cellular func- United Kingdom tions. 2 Howard Hughes Medical Institute and The double-ring GroEL binds nonnative proteins in a 3 Department of Genetics central cavity, then mediates productive folding inside Yale School of Medicine a sequestered space formed when ATP and GroES bind New Haven, Connecticut 06510 to the same ring as polypeptide. Each GroEL subunit 4 Biochemistry Department comprises an equatorial, ATP binding domain joined by Imperial College a hinge region to a slender intermediate domain that in Exhibition Road turn has a hinge connection to an apical domain mediat- London SW7 2AY ing polypeptide binding (Braig et al., 1994). The two United Kingdom apposed rings of equatorial domains hold the cylindrical oligomer together through both intra- and inter-ring con- tacts. The cooperative binding of ATP to a GroEL ring allows Summary rapid binding of GroES to that ring, converting it from a polypeptide-accepting to a folding-active state.
    [Show full text]
  • Functional Residues in Proteins
    Journal of Amino Acids Functional Residues in Proteins Guest Editors: Shandar Ahmad, Jung-Ying Wang, Zulfiqar Ahmad, and Faizan Ahmad Functional Residues in Proteins Journal of Amino Acids Functional Residues in Proteins Guest Editors: Shandar Ahmad, Jung-Ying Wang, Zulfiqar Ahmad, and Faizan Ahmad Copyright © 2011 SAGE-Hindawi Access to Research. All rights reserved. This is a special issue published in volume 2011 of “Journal of Amino Acids.” All articles are open access articles distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Editorial Board Fernando Albericio, Spain Mario Herrera-Marschitz, Chile Vadim A. Soloshonok, USA Jordi Bella, UK Riccardo Ientile, Italy Imre Sovago, Hungary Simone Beninati, Italy Hieronim Jakubowski, USA Heather M. Wallace, UK Carlo Chiarla, Italy Madeleine M. Joullie, USA Peter W. Watt, UK Kuo-Chen Chou, USA Sambasivarao Kotha, India Robert Wolfe, USA Arthur Conigrave, Australia Rentala Madhubala, India Guoyao Wu, USA Arthur J. L. Cooper, USA Andrei Malkov, UK Andreas Wyttenbach, UK Zbigniew Czarnocki, Poland Yasufumi Ohfune, Japan Nigel Yarlett, USA Dorothy Gietzen, USA Norbert Sewald, Germany Axel G. Griesbeck, Germany H. S. Sharma, Sweden Contents Functional Residues in Proteins, Shandar Ahmad, Jung-Ying Wang, Zulfiqar Ahmad, and Faizan Ahmad Volume 2011, Article ID 606354, 1 page Small Changes Huge Impact: The Role of Protein Posttranslational Modifications in Cellular Homeostasis and Disease, Tejaswita M. Karve and Amrita K. Cheema Volume 2011, Article ID 207691, 13 pages Role of Charged Residues in the Catalytic Sites of Escherichia coli ATP Synthase,ZulfiqarAhmad, Florence Okafor, and Thomas F.
    [Show full text]